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ABSTRACT: 
 
Bayesian object recognition is applied to the analysis of complex forest object configurations measured in high-density airborne laser 
scanning (LIDAR) data.  With the emergence of high-resolution active remote sensing technologies, highly detailed, spatially 
explicit forest measurement information can be extracted through the application of statistical object recognition algorithms. A 
Bayesian approach to object recognition incorporates a probabilistic model of the active sensing process and places a prior 
probability model on object configurations. LIDAR sensing geometry is explicitly modelled in the domain of scan space, a three-
dimensional analogue to two-dimensional image space. Prior models for object configurations take the form of Markov marked point 
processes, where pair-wise object interactions depend upon object attributes. Inferences are based upon the posterior distribution of 
the object configuration given the observed LIDAR. Given the complexity of the posterior distribution, inferences are based upon 
dependent samples generated via Markov chain Monte Carlo simulation. This algorithm was applied to a 0.21 ha area within Capitol 
State Forest, WA, USA.  Algorithm-based estimates are compared to photogrammetric crown measurements and field inventory data.  
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1. INTRODUCTION 

1.1 Automated forest inventory 

While national and local inventories often utilize remotely 
sensed data for stratified sampling and classification of general 
forest type, most of these programs remain heavily reliant upon 
expensive field data for individual tree-level information. At the 
national level in the United States, individual tree inventory 
information is collected at considerable expense. It is significant 
that senior researchers within the USDA Forest Service Forest 
Inventory and Analysis (FIA) program have recognized the 
need for the development of automated forest interpretation and 
measurement algorithms to reduce human intervention and 
labor costs (Gulden, 2000).  
 
1.2 The LIDAR technology 

LIDAR (LIght Detection And Ranging) is an operationally 
mature remote sensing technology that can provide highly 
accurate measurements of both forest canopy and ground 
surface. While specifications vary among systems, LIDAR 
systems emit from 5,000 - 100,000 pulses per second. In 
forested areas, individual LIDAR pulses can penetrate the forest 
canopy through gaps, and can therefore acquire information 
relating to three-dimensional forest structure as well the 
underlying terrain surface.
 
1.3 LIDAR analysis for forest measurement applications 

In recent years, there has been increasing interest in the use of 
LIDAR for automated detection and measurement of forest 
features. Research efforts in the last fifteen years were focused 

on the use of small footprint (0-1 m pulse diameter) LIDAR 
systems to estimate forest stand level parameters (Nelson et al., 
1988; Means et al., 2000). Researchers in Canada used a 
model-based approach to recover tree heights from LIDAR 
canopy height measurements (Magnussen et al., 1999).  Three-
dimensional mathematical morphology has been applied to a 
high-resolution LIDAR-based canopy surface model to extract 
individual tree measurements (Andersen et al., 2001).   
 
1.4 Automated individual tree crown recognition through 
template matching 

With the recognition that high-resolution remotely sensed 
spatial data can support more intensive forest management 
practices, there has been increasing interest in recent years in 
the development of algorithms for automated identification and 
measurement of individual trees using high-resolution, two 
dimensional digital imagery. Several studies have used a model-
based approach to locate individual trees using tree crown 
template models (Pollock, 1996; Larsen, 1998; Sheng et al., 
2001).  
 
Researchers in Scandinavia have attempted to model the 
relationship between the spatial distribution of individual trees 
and the position of spectral maxima in a digital image (Dralle 
and Rudemo, 1997). Another Scandinavian study has used 
deterministic parameter search methods for maximum 
likelihood estimation on a spatial point process model to infer 
the parameters of a disturbance model that relates the true 
position of tree-tops to those observed on an aerial photograph 
(Lund and Rudemo, 2000). 
 
 



 

2. STUDY AREA AND DATA 

2.1 LIDAR data 

LIDAR data were acquired with a Saab TopEye system over a 5 
km2 area within Capitol State Forest, WA in the spring of 1999. 
The sensor settings and flight parameters are shown in Table 1. 
Data were provided in the form of an ASCII text file, with GPS 
time, aircraft position, and coordinate position for the first laser 
reflection included.  
 
 

Flying height 200 m 
Flying speed 25 m/s 
Swath width 70 m 
Forward tilt 8 degrees 
Laser pulse density        3.5 pulses/m2 

Laser pulse rate 7000 pulses/sec 
 

Table 1.  Flight parameters and LIDAR system settings.  
 
The LIDAR vendor also provided a LIDAR-derived digital 
terrain model (DTM) for the study area with a 4.57-meter (15-
ft) resolution.  
 
2.2   Aerial photography 

Large-scale (1:7000) normal-color aerial photography was 
acquired over the study area in 1999.  This photography was 
oriented in an analytical stereoplotter.  
 
 

3. METHODS 

3.1 Bayesian image analysis  

 In general, Bayesian image analysis provides a means to 
incorporate prior knowledge or beliefs into the analysis of 
remotely sensed data (Besag, 1993). These a priori beliefs are 
represented in the form of a prior distribution, or prior model, 
that is placed over the image and is updated upon observation of 
the data. Formally, if this prior description of the image is 
denoted as p(x), then the conditional spatial distribution of this 
description, given the observed image y, is given by:    

  
 
 ( | ) ( | ) ( )p x y l y x p x∝  (1) 
 
  
In Bayesian parlance, this conditional distribution p(x|y) is 
referred to as the posterior distribution, on which all inferences 
are based. In Bayesian inference this posterior distribution is 
always represented as the product of the likelihood l(y|x) and the 
prior p(x). Typically, the goal in Bayesian inference is to 
calculate expectations or credible intervals (explicit probability 
statements made regarding the range of a parameter given the 
observed data).  
 
Bayesian image analysis has traditionally been carried out using 
digital images consisting of a discrete grid of picture elements 
(or pixels). Often the objective is to reconstruct an "underlying" 
image that has been distorted through a noise process. 
 

3.2  Bayesian object recognition 

More recently, the methods of Bayesian image analysis have 
been applied to the problem of object recognition (Baddeley 
and van Lieshout, 1993; van Lieshout, 1995; Rue and 
Syversveen, 1998; Rue and Hurn, 1999). The objective of this 
type of analysis is typically to locate and characterize various 
objects of interest in space, incorporating prior knowledge of 
the spatial distribution of these objects. Therefore, prior models 
based upon discrete grid-based neighborhood structures tend to 
be less appropriate.  The description of Bayesian object 
recognition presented here generally follows van Lieshout 
(1995).   
 
In Bayesian object recognition, the observed data consist of an 
image, ( ; )ty y t T= ∈ , where T (the image space) is an arbitrary 
finite set. The class of possible objects U, is an arbitrary set, 
termed object space. Objects can be seen as points u in U, and 
each determine a subset ( )R u T⊂  of image space that is 
occupied by the object. Any particular configuration is a finite 
set of distinct objects { }1 2, ,..., nx x x x= . The objective in 

object recognition is to estimate the (unobserved) true 
underlying pattern x given the observed image y.  
 
This true configuration x is related to the observed image y 
through the likelihood function l(y|x). As van Lieshout (1995) 
describes, the likelihood l(y|x) represents both the deterministic 
influence of the true configuration x, and the stochastic effects 
within the remote sensing process that produces the image, y.  
 
In a Bayesian analysis, the prior models will represent our prior 
beliefs regarding the spatial distribution of objects, and can be 
formulated to assign low probability to configurations that we 
do not expect to occur frequently, such as a large number of 
overlapping objects. The maximum a posteriori (MAP) 
estimator of x is the configuration �x that maximizes the function 
l(y|x)p(x), and the prior essentially is a penalty assigned to this 
maximization. Therefore MAP estimation is also called 
penalized maximum likelihood estimation. 
 
3.3 Bayesian object recognition for the analysis of three-
dimensional LIDAR data in forested areas 

While Bayesian object recognition has previously been applied 
to the analysis of two-dimensional images, this approach can 
also be applied to analyze structure within three-dimensional 
LIDAR data. In this case, the observed data, yt, are not defined 
in terms of a raster image space, T. Instead, the scan space 
becomes a collection of vectors, T, determined by the LIDAR 
scanning process. Therefore, an individual pulse vector, t, 
represents the three-dimensional direction of each LIDAR 
pulse, from the aircraft to the terrain surface. The observed data, 
yt, then represent range measurements along these vectors at 
which point the returning signal intensity exceeded a 
predetermined threshold (see Figure 1).  

 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  LIDAR sensing geometry (red stars represent LIDAR 
measurements; blue lines represent pulse vectors 
composing the scan space T; yt represents a single 
range measurement along pulse vector t). 

 
The distribution of tree crowns over the entire scene is then 
modeled as an object configuration, x. If individual plants were 
actually solid objects (e.g. ellipsoids, spheres, etc.) in object 
space U, these LIDAR measurements, yt, would represent the 
location where each vector t intercepted the surface of the 
object. In the terminology introduced above, these 
measurements would represent the signal, or the deterministic 
influence of the actual configuration of objects x on the series of 
LIDAR range measurements that are observed.  A more realistic 
approach, however, would need to account for the fact that 
plants are not solid geometric objects, and LIDAR pulses 
actually penetrate a certain distance into the canopy through 
foliage gaps.  
 
This would incorporate a stochastic element to the LIDAR 
measurements, yt, due to the irregular spatial distribution of 
foliage elements (leaves, branches, etc.) in the pathway of a 
laser pulse as it intersects a tree crown. Therefore, again using 
the notation introduced above, the conditional distribution of 
individual LIDAR measurements, given the signal, is given by a 
family of densities ( | )tg y x . In the context of LIDAR 
measurement of tree crowns, these probability densities will be 
related to the laser attenuation function, which in the case of 
discrete LIDAR systems is directly related to the probability of 
reflection. If the values of individual LIDAR measurements 
along a pulse vector can be considered conditionally 
independent, given the true configuration of objects, x, the 
likelihood function, representing the joint probability of the 
data, is given by: 
 
 
 ( | ) ( | )t

t T

l y x g y x
∈

=∏  (2) 

 
  
3.3.1   Modelling the distribution of foliage in complex forest 
scenes:  Previous studies of laser transmission through the 
forest canopy have utilized three-dimensional grid models 
populated with generalized geometric forms that represent 
individual plants (Sun and Ranson, 2000). 
  
In this study, a three-dimensional array, with 0.91-m cell size, 
was used to model the distribution of foliage density throughout 

a forested area. The spatial distribution of foliage is a function 
of individual tree locations, sizes, crown forms, and an average 
leaf area density (LAD). Crown forms were represented as 
generalized ellipsoids following Sheng et al.. (2001), where the 
space occupied by the foliage within an individual tree crown is 
determined by four parameters: crown width (cw), crown height 
(ch), crown curvature (cc), tree height (ht), and the 2-D 
coordinate of the crown top (Xtop,Ytop,) (see Figure 2).  
 
 

                      
a) ht:47, cw:11, ch:14, cc:1.45              b) ht:30, cw:8, ch:18, cc:0.75
                           

Figure 2. Generalized ellipsoid crown models. 
 
The surface of a tree crown is then given by the following 
mathematical expression:  
 
  

 ( ) ( ) ( )( ) / 22 2

1

cc
cc

top toptop
cc cc

X X Y YZ ch Z
ch cr

− + −+ +
+ =  (3) 

 
   
where the elevation of the crown top, Ztop, is determined by 
adding the tree height to the elevation of the base as determined 
from the DTM. Values for LAD were obtained from previous 
research findings (Webb and Ungs, 1993).  
 
3.3.2  Modelling laser-canopy foliage interaction: The 
analysis of data acquired from active remote sensing 
technologies requires an understanding of the interactions 
between the emitted radiation and the physical properties of the 
target.   
 
In our model, where the laser footprint (0.4 m) is significantly 
less than the cell size (0.91 m), the probability that a direct light 
beam that enters a cell exits from the cell without being 
intercepted is calculated as a function of the leaf area density 
and the off-nadir angle (θ) of the laser pulse. The model then 
calculates the probability of penetration to the center of any cell 
by direct laser energy originating from outside the cell.  
 
Specifically, the probability of a laser beam that enters a canopy 
cell, zi, at a specific off-nadir angle, θt, reflects from this cell 
with foliage density LADi is given by the following function 
(Vanderbilt, 1990): 
 
 
 ( ) 1 exp( 1/ cos ( , ) )t i t i ip reflection LAD G z dzθ θ = − − ⋅ ⋅ ⋅ 

 (4) 

 
 
where LADi is the leaf area density (m2/ m3) within cell zi, G(θ, 
zi) is the projection of the vegetation within cell zi in the 
direction of θ, and dzi is the depth of cell zi. Often, a spherical 

leaf angle distribution can be assumed, in which case G(θ, zi) is 

y t
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0.5 (Goudriaan, 1988). Therefore, the probability of an 
individual LIDAR pulse reflecting from a specific cell zi in the 
grid (and not reflecting from the cells i-1, i-2, �, 0 that it has 
already passed through) will be given by: 
 
 

 [ ]

[ ]

1

0

( | ) exp( 1/ cos ( , ) )

1 exp( 1/ cos ( , ) )

i

t t k t k k
k

t i t i i

g y x LAD G z dz

LAD G z dz

θ θ

θ θ

−

=

 = − ⋅ ⋅ ⋅ 
 

× − − ⋅ ⋅ ⋅

∏  (5) 

 
 
This function defines a probability density for LIDAR reflection 
yt, anywhere along a three-dimensional pulse vector t.  In 
addition, in our model it is assumed that the probability of a 
laser pulse reflecting if it penetrates to within 6 meters of the 
terrain (DTM) elevation is 1. In addition, foliage reflectance is 
assumed to be constant.  
 
The likelihood function is then given by the following 
expression, which represents the joint probability of the LIDAR 
data:  
 
 

 [ ]

[ ]

1

0

exp( 1/ cos ( , ) )
( | )

1 exp( 1/ cos ( , ) )

i

k k k
k

t T
i i i

LAD G z dz
l y x

LAD G z dz

θ θ

θ θ

−

=
∈

  − ⋅ ⋅ ⋅  =   
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∏∏
 (6) 

 
 
The object configuration �x  that maximizes this function will 
represent the maximum likelihood estimate (MLE) of the true 
object configuration x.  However, given that MLE does not 
penalize large numbers of overlapping objects, it is likely that 
the MLE will be overly sensitive to the data and therefore will 
not represent a realistic forest object configuration.  Through a 
Bayesian approach, prior knowledge relating to tree 
distributions and interactions can be incorporated into the 
model through the specification of the prior model, leading to 
more accurate estimates of the true object configuration.  
 
3.3.3 Forest object processes: In the Bayesian object 
recognition approach, the underlying prior distribution, and the 
resulting posterior probability distribution of the true object 
configuration given the observed image data, usually takes the 
form of a spatial point process, a stochastic geometric model 
for an irregular, random pattern of points. These models allow 
for inference to be carried out relating to the spatial position of 
individual objects as well as the attributes of these individuals. 
These models also allow inter-object interaction, as well as 
possible global properties of a distribution of objects to be 
incorporated into the spatial model (Ripley, 1991).  
 
If we define the environment E(A) of a set A to be the set of 
neighbors of points in A, a point process is a Markov process if 
the conditional distribution on A given the rest of the process 
depends only on the process in E(A). One of the most common 
Markov point process models is the pair-wise interaction model, 
which has the form:   
  
 ( )( ) ( , )n x

i j
i j

p x g x xα β
<

= ∏  (7) 

 
 

where n(x) is the number of points in x and g(xi,xj) is an 
interaction function (Ripley, 1981). This model therefore places 
a constant multiplicative penalty on each pair of interacting 
points. This type of model can be used to represent varying radii 
of inhibition surrounding biological phenomenon, and therefore 
can provide a useful model for forest object processes where 
trees exhibit pair-wise interactions.  
 
A marked point process is a point process with a characteristic 
(mark) attached to each point in the process. Therefore a 
marked point process on Rd is a random sequence 

[ ; ]n nx s m= where the points s  constitute an (unmarked) 
point process in Rd and the m are the marks corresponding to 
each location s.  
 
In this model, s denotes the location of a tree, while m 
represents a vector of object attributes including height, crown 
width, crown height, and crown curvature.   
 
Given a probability distribution for the marks, ν(m), the prior 
model, representing the Markov object process, takes the 
following form, where forest object interactions depend upon 
the individual tree attributes (marks):  
 
 
 ( )( ) ( ) ( , )n x

i i j
i i j

p x m g x xα β ν
<

= ∏ ∏  (8) 

 
 
In our model, two crowns were considered to be overlapping if 
the ratio of the distance between the center of the crowns and 
the sum of the crown radii was less than 0.75.  The mark 
distribution was a multivariate normal distribution, with 
parameters determined from stand observations.  
 
3.3.4 Simulation-based posterior inference for the MAP 
forest object configuration:  In Bayesian analysis, all 
inferences are based upon the posterior distribution: 

( | ) ( | ) ( )p x y l y x p x∝ . The typical objective of Bayesian 
object recognition is to estimate the true configuration of 
objects x, given the observed data y.  In particular, the maximum 
a posteriori (MAP) estimate, representing the mode of the 
posterior distribution, is of primary interest in the context of 
object recognition.   
 
Within our model formulation, the posterior distribution is also 
a Markov object process. Due to the complex nature of the 
posterior distribution in this case, posterior inference was 
conducted via Markov chain Monte Carlo (MCMC) simulation. 
In MCMC, one constructs a Markov chain with an equilibrium 
distribution converging to the target distribution (the posterior 
distribution in the case of Bayesian inference). Ideally, this 
Markov chain should be constructed so as to efficiently move 
throughout the set of possible configurations, while maintaining 
the correct equilibrium distribution.  



 

 
In this case, proposed moves for the Markov chain include 1) 
change of object parameters, 2) birth of an object, 3) death of an 
object, 4) merging of two objects, and 5) splitting a single 
object into two objects. Due to the change of dimension when 
proposing to add, delete, merge, or split objects in the 
configuration, the Metropolis-Hastings-Green reversible jump 
MCMC algorithm was used to maintain the correct equilibrium 
distribution (Green, 1995; Hurn and Syversveen, 1998). The 
change of parameters is achieved by drawing a sample from a 
multivariate normal distribution centered on the parameter 
vector for a selected object.  The birth of an object is carried out 
by drawing a sample from the multivariate normal mark 
distribution for tree objects.  
 
3.3.5   MAP estimation via simulated annealing:  Finding the 
object configuration that maximizes the posterior probability 
(i.e. MAP estimate) is essentially a combinatorial optimization 
problem. Simulated annealing, an optimization technique with 
its origins in statistical mechanics, provides a means of arriving 
at the global optimum for a given system through a process of 
first �melting� the system at a high temperature, then gradually 
lowering the temperature until the system freezes at the optimal 
configuration (Kirkpatrick et al., 1983).  In the context of 
Bayesian object recognition, it has been shown that samples 
obtained, via MCMC, from the tempered posterior distribution 
[ ]1/( | ) Hp x y will converge to the MAP solution as H → 0 (van 

Lieshout, 1994). In our algorithm, an annealing schedule of 
1n nH Hλ+ = ⋅  was used, where H is the temperature at iteration 

n, and λ is the cooling rate.
 
 

4. EXAMPLE 

The algorithm was run on a 0.21 ha area within a lightly thinned 
unit of the Capitol State Forest (see Figure 3). The interaction 
parameter used in the prior distribution was set to 750e− , which 
places a moderately heavy penalty on severely overlapping tree 
crowns.  The intensity parameter for the object process, β, was 
also set to 100e− .  For this example, 133900 iterations of the 
MCMC algorithm were run with the cooling rate, λ, set to 
0.999975, and initial temperature (H) of 20.  The MCMC 
algorithm started with zero objects.  
 

 
 
Figure 3. Location of example area (delineated in white) within 

area of Capitol State Forest, WA. 
 

The locations, heights, and tree crown dimensions 
corresponding to the MAP estimate of the true object 
configuration within this area are shown in Figure 4, 
superimposed on the three-dimensional scatter plot of the 
LIDAR data and terrain model. A two-dimensional 
representation of the MAP estimate and LIDAR data is shown 
in Figure 5.  
 
 

 
 
 
Figure 4.    Three-dimensional perspective view of MAP 

estimate of tree locations and crown dimensions 
superimposed on LIDAR data. LIDAR pulse 
footprints are drawn to scale and are color-coded by 
elevation. 

 
  

 
 
Figure 5.  Planimetric view of MAP estimate of crown 

configuration (black circles) superimposed on 
LIDAR data. LIDAR pulse footprints are drawn to 
scale and are color-coded by elevation. 

 
The estimates obtained from the object recognition algorithm 
were compared to photogrammetric measurements of crown 
locations made from large-scale (1:7000) aerial photography 
within a 0.21 ha area (see Figure 6). 
 



 

 
 
Figure 6.  Planimetric view of MAP estimate of crown 

configuration (black circles), photogrammetric 
crown measurements (short dashes) and 0.081 ha 
circular inventory plot boundary (long dashes).   

 
 

5. DISCUSSION  

Results indicate that the algorithm is generally successful in 
identifying structures associated with individual tree crowns 
within this forest area. The MAP estimate of the crown 
configuration generated by the algorithm closely matches the 
spatial patterns evident in the LIDAR data (Figure 5). The 
algorithm appears to be very sensitive to the data, and in some 
areas added spurious small crowns to increase the likelihood of 
the data.  
 
In general, the MAP estimate of crown locations corresponds to 
the photogrammetric crown measurements (see Figure 6). It 
should be noted that accurate recognition and delineation of 
overlapping tree crowns is difficult even in high-resolution 
aerial imagery. In this case, there is a systematic discrepancy of 
1-4 meters in the north-south direction between algorithm-based 
crown locations and photo-based crown locations. This offset is 
probably due to the effect of crown layover and/or 
misregistration of the aerial photography.  
 
Field data was available for a 0.081 ha circular inventory plot 
located within the study area (see Figure 6). Interestingly, the 
number of codominant (overstory) trees found within the plot in 
the field (14) matches the number found by the algorithm and 
measured in the photographs.   
 
 

6. CONCLUSIONS 

Bayesian object recognition provides a promising framework 
for the analysis of complex forest scenes using high-density, 
three-dimensional LIDAR data. It is clear that modelling 
assumptions will have a strong influence on the results; for 
example, it is apparent that crowns with an asymmetrical, 
irregular shape will be difficult to detect given the constraints of 
the generalized ellipsoidal crown model used here. The use of 
more complex crown models may improve recognition of 
irregularly shaped crowns.  
 

Future research will focus on comparing algorithm results to 
field-based measurements and assessing the influence of 
automated measurement error on stand-level parameter 
estimates.  In addition, Bayesian object recognition offers a 
flexible modelling approach that allows for fusing the 
information content from multiple sources of data. Such 
multiple data sources are becoming more available as vendors 
offer simultaneous acquisition of georeferenced imagery and 
LIDAR data. As the data enter the model only through the 
likelihood function in Bayesian object recognition, other types 
of remotely sensed data (including aerial photography and high 
resolution satellite imagery) can be easily incorporated into the 
model through adjustment of the likelihood function.  
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