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ABSTRACT:

The extraction of road networks from aerial images is one of the current challenges in digital photogrammetry and computer vision.
In this paper, we present our system for 3D road network reconstruction from aerial images using knowledge-based image analysis.
In contrast to other approaches, the developed system integrates processing of color image data and information from digital spatial
databases, extracts and fuses multiple object cues, takes into account context information, employs existing knowledge, rules and
models, and treats each road subclass accordingly. The key of the system is the use of knowledge as much as possible to increase
success rate and reliability of the results, working in 2D images and 3D object space, and use of 2D and 3D interaction when needed.
Another advantage of the developed system is that it can correctly and reliably handle problematic areas caused by shadows and
occlusions. This work is part of a project to improve and update the 1:25,000 vector maps of Switzerland. The system has been
implemented as a standalone software package. We tested the system on a number of images in different landscapes. In this paper we
present the results of our system in recent benchmark tests conducted independently by our project partner in Switzerland, and test
results with black and white images in a test site in Belgium.

1. INTRODUCTION

The extraction of roads from digital images has drawn
considerable attention lately. The existing approaches cover a
wide variety of strategies, using different resolution aerial or
satellite images. Overviews can be found in Gruen et al. (1995,
1997), Foerstner and Pluemer (1997) and Baltsavias et al.
(2001). Semi-automatic schemes require human interaction to
provide interactively some information to control the extraction.
Roads are then extracted by profile matching (Airault et al.,
1996; Vosselman and de Gunst, 1997), cooperative algorithms
(McKeown et al., 1988), and dynamic programming or LSB-
Snakes (Gruen and Li, 1997). Automatic methods usually
extract reliable hypotheses for road segments through edge and
line detection and then establish connections between road
segments to form road networks (Wang and Trinder, 2000).
Contextual information is taken into account to guide the
extraction of roads (Ruskone, 1996). Roads can be detected in
multi resolution images (Baumgartner and Hinz, 2000). The use
of existing road data for road updating is reported in Agouris et
al. (2001). The existing approaches show individually that the
use of road models and varying strategies for different types of
scenes are promising. However, most methods are based on
relatively simplistic road models, and make only insufficient use
of a priori information, thus they are very sensitive to
disturbances like cars, shadows or occlusions, and do not
always provide good quality results. Furthermore, most
approaches work in single 2D images, thus neglecting valuable
information inherent in 3D processing.

In this paper, we present a knowledge-based system for
automatic extraction of 3D roads from stereo aerial images
which integrates processing of colour image data and existing
digital spatial databases. The system has been developed within
the project ATOMI (Automated reconstruction of Topographic
Objects from aerial images using vectorized Map Information),
in cooperation with the Swiss Federal Office of Topography
(L+T), with aims to improve road centerlines from digitized

1:25,000 topographic maps by fitting them to the real
landscape, improving the planimetric accuracy to 1m and
providing height information with 1-2m accuracy. The details of
ATOMI can be found in Eidenbenz et al. (2000). We currently
use 1:16,000 scale color imagery, with 30cm focal length, and
60%/20% forward/side overlap, scanned with 14 microns at a
Zeiss SCAI. The other input data include: a nationwide DTM
with 25m grid spacing and accuracy of 2-3/5-7m in
lowland/Alps, the vectorized map data (VEC25) of 1:25,000
scale, and the raster map with its 6 different layers. The VEC25
data have a RMS error of ca. 5-7.5m and a maximum one of ca.
12.5m, including generalization effects. They are topologically
correct, but due to their partly automated extraction from maps,
some errors exist. In addition, DSM data in the working area
was generated from stereo images using MATCH-T of Inpho
with 2m grid spacing.

2. GENERAL  STRATEGY

Our road network reconstruction system makes full use of
available information about the scene and contains a set of
image analysis tools. The management of different information
and the selection of image analysis tools are controlled by a
knowledge-based system. We give a brief description of our
strategy in this section, for more details, we refer to Zhang and
Baltsavias (2000).

The initial knowledge base is established by the information
extracted from the existing spatial data and road design rules.
This information is formed in object-oriented multiple object
layers, i.e. roads are divided into various subclasses according
to road type, land cover and terrain relief. It provides a global
description of road network topology, and the local geometry
for a road subclass. Therefore, we avoid developing a general
road model; instead a specific model can be assigned to each
road segment. This model provides the initial 2D location of a
road in the scene, as well as road attributes, such as road class,
presence of road marks, and possible geometry (width, length,



horizontal and vertical curvature, land cover and so on). A road
segment is processed with an appropriate method corresponding
to its model, certain features and cues are extracted from
images, and roads are derived by a proper combination of cues.
The knowledge base is then automatically updated and refined
using information gained from previous extraction of roads. The
processing proceeds from the easiest subclasses to the most
difficult ones. Since neither 2D nor 3D procedures alone are
sufficient to solve the problem of road extraction, we make the
transition from 2D image space to 3D object space as early as
possible, and extract the road network with the mutual
interaction between features of these spaces.

3. CUE EXTRACTION

When a road segment from VEC25 is selected, the system
focuses on the image regions around the road. The regions are
defined using the position of the road segment and the maximal
error of VEC25. Then, according to the road attributes a set of
image processing tools is activated to extract features and cues.
3D straight edge generation is a crucial component of our
procedure. We are interested in 3D straight edges because the
correct roadsides are among them. The 3D information of
straight edges is determined from the correspondences of edge
segments between stereo images. With color images, a
multispectral image classification method is implemented to
find road regions. We also exploit additional cues such as road
marks to support road extraction.

3.1 3D straight edge extraction

The edge segments are extracted by the Canny operator in
stereo images. The correspondences of edge segments across
images are determined by our developed structural matching
method that exploits edge rich attributes and edge geometrical
structure information. The edge rich attributes include the
geometrical description of the edge and the photometrical
information in the regions right beside the edge. The epipolar
constraint is applied to reduce the search space. The similarity
measure for an edge pair is computed by comparing the edge
attributes. The similarity measure is then used as a prior
information in structural matching. The locally consistent
matching is achieved through structural matching with
probability relaxation. We refer to Zhang and Baltsavias (2000)
and Zhang et al. (2001b) for the detailed matching strategy and
qualitative performance evaluation.

The 3D position of each edge pixel is computed by the well-
known photogrammetric forward intersection. In order to find
the corresponding pixels, we examined following three
methods. In Figure 1, we represent edge pixels as small
rectangles, and the straight edge segment l in solid black lines.

Figure 1. Pixel correspondence for 3D computation

For pixel A in left image, its epipolar line ep (shown in red line)
in right image can be computed using orientation parameters.

The correspondence of A should be on the pixel chain, and
close to the intersection of ep with l, A’. In the first method we
take a window centred on A’, and obtain the candidate matches
for A from the edge pixels on the chain and inside the window.
We then compute the orthogonal distances from the candidates
to ep (the dashed line), and take the pixel with the smallest
distance as the correspondence of A.

The above method works fine except in the case shown in
Figure 2, where edge pixels A, B and C are aligned parallel to
base line, consequently their epipolar lines are totally identical.
Therefore the method may find a same point as correspondence
for A, B and C, resulting a zigzag chain in object space. We
apply a “pixel grouping” method (method 2) to improve
solution in this case. That is, we take pixel A, B and C in a
group, and only find the correspondence and compute the 3D
position for the group center. The pixel grouping procedure is
applied to the edges in left and right images if necessary.

Figure 2. Pixel grouping for 3D computation

Another method (method 3) to compute 3D position is directly
from the fitted straight edge segments. We select along the
straight edge segment in left image points at an interval of 1
pixel. Then, for each point we take the intersection of ep with
the corresponding straight edge segment in right image as its
correspondence.

We applied the above three methods in different cases, and
compared the results with manually extracted 3D edge
segments. This is done by matching the computed 3D edge
positions with the reference data, and calculating the coordinate
differences. Table 1 summarises the RMS errors from a
comparison for a vertical edge (case 1) and an edge with 20
degree difference in direction to the base line (case 2). The three
methods deliver similar results for case 1, while improvements
are obvious for case 2 using method 2 and method 3, especially
in Z direction. Furthermore, we observed in experiments that
the results from method 3 in case 2 are more smooth.

dx dy dz
method 1 0.136755 0.011757 0.085529
method 2 0.136355 0.011684 0.085155case 1
method 3 0.136420 0.011729 0.097824
method 1 0.056595 0.122870 0.610071
method 2 0.052046 0.113061 0.437204case 2
method 3 0.055884 0.122865 0.452631

Table 1. Evaluation of 3 methods for 3D computation (unit: m)

After the 3D computation for edge pixels, a 3D straight edge
segment is then fitted to the 3D edge pixels.

3.2 Image Classification for Road Region Detection

ISODATA (Jain and Dubes, 1988) is employed in our system to
classify the color images and separate road regions from other
objects. The algorithm automatically classifies the image data
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into desired clusters. It recursively generates a new partition by
assigning each pattern to its closest cluster center and merges
and splits existing clusters or removes small or outlier clusters.
The success of image classification also depends on the data
used. As we are concerned with road surfaces and shadows
(especially shadows on road surfaces), our purpose is to
separate them from other objects in the image, and we do not
pay much attention to separate other objects. The original RGB
color image is transformed into different color spaces, and the
following 3 bands are selected for image classification:
1) The first component of principal component transformed

image
2) a band calculated  with R and G bands in RGB space as

(G-R) / (G+R)
3) S band from HSI color space
With this classification, we avoid using a hard threshold for
image segmentation, and 5 classes are determined. They
correspond to road regions, green objects, shadow areas, dark
roofs and red roofs (if available).

3.3 DSM and DTM Analysis

The DTM or DSM has been used in our system to reduce search
space for straight edge matching. They are also used to verify if
a 3D straight edge or a region is on the ground. Because a DSM
ideally models the man-made objects as well as the terrain,
subtracting the DTM from the DSM results in a so-called
normalized DSM (nDSM) which enables the separation of
above-ground objects (buildings and trees) and ground objects
(roads, etc.). Since in ATOMI, the DTM data is not very
precise, we propose to extract above-ground objects directly
from the DSM data, thus avoid introducing errors from the
DTM data. This is achieved by a multiple height bin method
(Baltsavias et al., 1995) to generate nDSM from the DSM data.
By combining the information of nDSM with image
classification data, our system creates redundancy to confirm
the existence of roads. Furthermore, it is also used to correct
errors in classification data and in occlusion areas to
compensate the missing information in classification data.

3.4 Road mark and zebra crossing extraction

Road marks and zebra crossings are good indications of the
existence of roads. They are usually found on main roads and
roads in urban areas. Both of them have distinct color (usually
white or yellow). Generally, road marks give the road direction
and often the road centerline, while the zebra crossings define
the local road width. Thus, they can be used to guide the road
extraction process or verify the extraction results. In addition, in
many cases the correct road centerlines can be even derived
directly from present road marks and/or zebra crossings. This is
especially useful when the roadsides are occluded or not well
defined, such as in cities or city centers.

Since road marks are usually white, the image is first segmented
by thresholding in R, G, B bands. The road marks are then
extracted using an image line model and the geometrical
description of each road mark is obtained. The shape of a image
line can be presented as a second order polynomial (Busch,
1994); it is fitted to the grey values as a function of the pixel’s
row and column coordinates. We can compute the line local
direction α using this model. We then get the profile in the
direction perpendicular to α. The profile can be described as a
parabola, from which the precise position of each line point is
obtained. The detected line points with similar direction and
second directional derivative are linked. The details of the

algorithm and implementation can be found in Zhang et al.
(2001a). Straight lines are obtained by least squares fitting. The
3D lines are generated by our developed structural matching
method. The 3D lines are then evaluated using knowledge. Only
those on the ground (as defined by the nDSM data), belonging
to road region (as determined by the classification) and in the
buffer defined by VEC25 are kept as detected road marks.

Zebra crossings are composed of several thin stripes. Using
color information, the image is first segmented. Morphological
closing is applied to bridge the gaps between zebra stripes. We
then obtain several clusters by connected labeling. Only the
clusters with a certain size are kept, while the small ones are
discarded. Then, the shape of the cluster is analyzed. The
rectangle-like clusters are selected as zebra crossings. The
center, the short and long axes of the detected zebra crossings
are computed using spatial moments.

4. KNOWLEDGE-BASED ROAD RECONSTRUCTION:
CUE COMBINATION

With the information from existing spatial data and image
processing, the knowledge base is established according to the
general strategy. The system then extracts roads by finding 3D
parallel edges that belong to roadsides and link them in
sequence. In case of shadows, occlusions caused by trees and
buildings etc., a reasoning process is activated using the
knowledge base. Thus, also the cases when only one or no side
is visible can be often handled by the system. The main
procedures are described below.

The system checks extracted edges to find 3D parallel edges.
Only edges located in the buffer defined by VEC25, having a
similar orientation to VEC25 segments and a certain slope are
further processed. Since roads are on the ground, edges above
ground are removed by checking with the DTM. By checking
with the image classification results, a relation with the road
region (in, outside, at the border) is attached to each edge. Two
edges are considered as parallel if they have similar orientation
in 3D space. The edges of a pair must overlap in the direction
along the edges, and the distance between them must be within
a certain range. The minimum and maximum distances depend
on the road class defined in VEC25. The found 3D parallel
edges are projected onto the images and evaluated using
multiple knowledge. The region between the projected edges
must belong to the class road as determined by the image
classification. If road marks are presented on this road, the
extracted road marks are used to confirm that the edge pair
corresponds to correct roadsides.

For each found 3D parallel edge pair, the system tries to extend
them as much as possible using 3D and 2D edge information.
For each extension, a reasoning process (see below) is activated
to guarantee that the extension area is road region and extended
edges are roadsides.

The system also checks each individual 3D straight edge, if this
edge does not belong to any 3D parallel pair. When one of the
sides of the edge is road, the system hypothesizes its opposite
side using the width from already found 3D parallel edges.
Again the hypothesized area is checked using the accumulated
knowledge. Compared with the visible 3D parallel edges, the
system assigns a low reliability to the hypothesized parallel. If
the single visible edge is close to an edge of a found 3D parallel
pair and has similar orientation, its reliability is increased.



All found parallel edges are considered as Possible Road Sides
that are Parallel (PRSP). They compose a weighted graph. The
nodes of the graph are PRSPs, the arcs of the graph are the
relations between PRSPs. Note that in occlusion areas, the arcs
also represent the missing parts of a road between a pair of
PRSPs. The width of two PRSPs should be similar. If there is
no gap between two PRSPs, i.e. one PRSP shares points with
another, and the linking angles between them in 3D space
comply with VEC25, they are connected directly. In case of an
existing gap, we first check the connecting angles between
PRSPs and the gap. If the angles comply with the VEC25, the
gap area is further evaluated using additional information, and
we compute the possibility of the gap belonging to road. This is
called reasoning process in our work. If the gap is not too long,
and
• within the gap is a road region, or
• within the gap is a shadow or shadow mixed with road

region, or
• the gap is caused by tree occlusion (determined from the

image classification results and nDSM data), or
• within the gap is terrain as determined by the DSM, or
• road marks are extracted within the gap
Then, we consider the gap as possibly belonging to a road.
Suppose N is the total number of pixels in the gap, and Nr, Ns
are numbers of pixels of road and shadow respectively. Ng is
the number of pixels of ground objects. The possibility of the
gap belonging to a road is computed as Pg = wg * wp , where wg
and wp are measures using height and image information
respectively. They are given as

N
N

gw g= , 
N

NN
pw sr += (1)

The road is then found by searching the graph using a best-first
method that maximizes the length while minimizing the
curvature difference between the extracted road and VEC25 in a
merit function. The function is defined as

cwjlgaplil *)( ++ (2)

i and j are adjacent PRSPs, li and lj are their lengths, lgap is the
gap length between i and j, wc is a measure that is inversely
related to the curvature difference between the curve formed by
i, j and the corresponding curve on VEC25. The function
defined in (2) gives high values to long curves that have similar
curvature to VEC25.

For main roads, on which the system knows that road marks are
present, the system also extracts roads using detected road
marks and zebra crossings. The road marks are linked using a
similar method as described in the previous paragraph. This
procedure increases the effectiveness and reliability of our
system. In complex areas, such as in city centers, the roadsides
are usually occluded very much, and sometimes it is impossible
to identify them. However, the road centerlines are successfully
extracted by the system using road marks. In rural and suburban
areas, the extracted road using road marks is used by the system
to verify the extraction results using 3D parallel edges.

5. RESULTS

The described system is implemented as a standalone software
package with a graphic user interface running on SGI platforms.
The system reads color stereo imagery, old road databases and
other input data, and outputs the extracted roads in 3D Arc/Info

Shapefile format that is readily imported in existing GIS
software. The system has been tested using different datasets in
various landscapes. Reports of the test results and the system
performance can be found in Zhang et al. (2001a) and Zhang et
al. (2001b). A recent benchmark test has been conducted
independently by our project partner Swiss Federal Office of
Topography with several stereopairs. We will show in this
section some results of the benchmark test. Besides, we also
tested our system on quite different image data provided by the
National Geographic Institute (NGI), Belgium. The test results
and performance evaluation will be given.

The benchmark test images were over Thun, Switzerland. The
area fluctuates from 550m to 2200m. Almost all types of roads
in Switzerland can be found in this area. The image data have
the same specifications as described in Section 1. During the
test, our system was only applied to extract roads in rural areas,
while roads in urban and forest areas were not processed.

Figure 3 presents a portion of 3D road extraction and road
network generation. The landscape of Figure 3 includes open
rural and forest areas distributed with some houses. All the
roads in this area are correctly extracted by our system. The
details of automatic 3D road extraction and junction generation
are presented in Figure 4, where the outdated roads from
VEC25 are shown in yellow lines, and the extracted roads in
pink lines. Figure 4a is an example of road extraction and
junction generation in rural areas. Figure 4b shows a highway
with 4 lanes, the system extracted the lane border lines and lane
centerlines through road mark extraction.

Figure 5 presents some results from the Belgium site. The image
data and the old road databases are provided by the National
Geographic Institute, Belgium. The test area is generally flat.
The image scale is around 20,000, and the camera focal length
around 150mm. The image is black and white, and scanned
using a PS1 scanner with 15 microns. As can be seen in Figure
6, the image does not have good quality, and many road-like
lines are observed in the fields in the test site. A DTM in the
test area is provided with 40m interval, the RMS error is around
10m. The RMS error in old road databases is around 9m, with
maximum one around 25m. Some road attributes, e.g. road
width, can be derived from the old databases. However, these
parameters are too strict, they have to be relaxed for the test. We
did not change anything in our system except in the image
classification procedure. With black and white image, we only
cluster a single band data to try to find road regions. Figure 5
shows a portion of the test results. The roads in rural area are
correctly and reliably extracted by our system. In Figure 6, the
details of road extraction and junction generation for this
dataset is presented.

In order to evaluate the extraction results, we developed a
method in previous paper to compare the extracted roads with
the reference data. The method was applied to the datasets of
Switzerland and Belgium. The reference data were measured by
L+T and NGI at analytical plotters. The quality measures aim at
assessing exhaustiveness as well as geometrical accuracy. To
evaluate exhaustiveness, completeness and correctness are used.
Completeness measures the amount of the reference data that is
covered by the extracted roads, while correctness is the amount
of correctly extracted roads covered by the reference data. The
geometrical quality is assessed by mean and RMS of the
distances between the extracted road and the reference data. The
comparison results for Figure 3 and Figure 5 are listed in Table
2.



Figure 3. Extracted 3D roads and road network (the pink lines)
in test site Thun, Switzerland

          

    

Figure 4. Details of road extraction in the test sites in
Switzerland. The Extracted roads are shown in pink
lines and outdated roads in yellow lines. a) Road
extraction and junction generation, b) extracted lane
border lines and lane centerlines on a highway

Figure 5. Extracted 3D roads and road network in test site in
Belgium superimposed on image as pink lines

Figure 6. Details of road extraction and junction generation in
Belgium dataset. Extracted roads are shown in pink
lines and outdated roads in yellow lines

Quality Measures Figure 3 Figure 5
Completeness 93% 97.6%
Correctness 96.3% 98.1%

dx -0.08 0.04
dy 0.07 -0.11Mean of

difference dz 0.19 0.27
dx 0.45 0.57
dy 0.31 0.72RMS of

difference dz 0.62 0.89

Table 2. Quality evaluation (in m) of the reconstructed roads
using manually measured reference data for the
Swiss and Belgium datasets

6. DISCUSSION AND CONCLUSION

We presented a knowledge-based image analysis system for
road extraction from stereo aerial images. The system has
several advantages over other approaches. It uses existing
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knowledge, image context, rules and models to restrict the
search space, treats each road subclass differently, checks the
plausibility of multiple possible hypotheses, therefore provides
reliable results. The system contains a set of image processing
tools to extract various cues about road existence, and fuses
multiple cues and existing information sources. This fusion
provides complementary and redundant information to account
for errors and incomplete results. Working on stereo images, the
system makes an early transition from image space to 3D object
space. The road hypothesis is generated directly in object space.
This not only enables us to apply more geometric criteria to
create hypotheses, but also largely reduces the search space, and
speeds up the process. The hypotheses are evaluated in images
using accumulated knowledge. Whenever 3D features are
incomplete or entirely missing, 2D information from stereo
images is used to infer the missing features. By incorporating
multiple knowledge, the problematic areas caused by shadows,
occlusions etc. can be often handled. Based on the extracted
roads the road junctions are generated, thus the system provides
an up-to-date road network for practical uses. We also present
in this paper the results of road extraction in benchmark tests
conducted independently by our project partner, and the results
on black and white image data provided by another national
mapping agency.  The quantitative analysis using accurate
reference data is also presented. The comparison of the
reconstructed roads with such data showed that more than 93%
of the roads in rural areas are correctly and reliably extracted,
and the achieved accuracy of the road centerlines is better than
1m both in planimetry and height. This indicates that the
developed system can serve as an automatic tool to extract roads
in rural areas for digital road data production. We are currently
working on the derivation of reliability criteria for the extraction
results. Our future work will concentrate on road extraction in
cities and city centers.
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