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ABSTRACT:

In this paper, a new method for reconstruction of 3D segments from multiple images in urban areas environment is presented. Compared
to previous algorithms, this one performs the matching of 2D segments in the Object Space through a sweep plane technique, thus
avoiding the combinatorial exploration of all possible correspondences and handling images in a symmetric way. Furthermore, a
method for reconstruction of 3D line from 2D lines, which takes into account the uncertainty on the parameters that define the 2D lines
is also presented. It enables to get normalized residuals, which is used as a geometric criterion usable whatever the number of images
is, to assess or reject potential correspondences. This criterion along with an unicity criterion is at the heart of the algorithm to prune
the set of possible correspondences and to keep only reliable matches. Promising results are presented on simulated and real data. They
show the ability of the algorithm to overcome detection errors in images and its robustness to occlusions in some images.

1 INTRODUCTION

1.1 Context

Reconstruction of buildings in urban areas is a very hard prob-
lem with regard to the complexity of the scenes. In this context,
the extraction of reliable 3D primitives is a key step and an im-
portant preliminary to facilitate the generation of hypotheses of
buildings or to detect models of buildings (Baillard et al., 1999;
Fuchs and Le-Men, 1999; Fischer et al., 1998; Willuhn and Ade,
1996; Noronha and Nevatia, 2001). 3D segments are essential in
order to make a model of urban scenes, because of both their ge-
ometric reliability and their ability to caricature the scene. How-
ever, matching of segments is a difficult problem mainly because
of the segmentation artifacts visible in the images: although the
line orientation is generally well known, boundary points are not
reliable and the polygonal approximation often behaves differ-
ently in the images. However, 3D geometric constraints are very
strong and can efficiently discriminate potential matches. One of
the key element for an algorithm of 3D segments reconstruction
in multi-view is to avoid the tedious exploration of all possible
matches and to handle images in a symmetric way without giving
any image a special role.

1.2 State of the Art

Detection and reconstruction of 3D segments is a well-known
problem and has received much attention for years from the sci-
entific community. In the case of stereoscopic views, the geo-
metric constraint is reduced to an overlap constraint, which led
the authors to use two kinds of strategies. The first one consists
in matching graphs of segments, which introduces very strong
constraints (Ayache, 1989; Horaud and Skordas, 1989). These
methods give a priori more reliable results but are very sensi-
tive to segmentation errors that alter the appearance of graphs
from one image to another. Besides, they have a high complexity,
which makes the generalization to the multi-view case very dif-
ficult. The other strategy is based on the use of geometric or ra-
diometric attributes such as orientation, length, overlap (Medioni
and Nevatia, 1985; Zhang and Faugeras, 1992; Gros et al., 1998)
or radiometric neighborhood (Schmid and Zisserman, 1997). The
set of these attributes is also very sensitive to segmentation errors
and depends on the conditions in which views were taken.
In multi-view, the use of trifocal tensor ensures a strong geomet-
ric constraint (Hartley, 1995; Shashua, 1994; Torr and Zisserman,
1997; Papadopoulo and Faugeras, 1998) and promising results

are supplied by (Schmid and Zisserman, 1997) who show that
the introduction of this constraint enables to get much less am-
biguous matches. All these techniques face three main problems:

combinatory : all the triplets of segments must be tested

fusion : information from the triplets need to be merged

dissymmetry : one always uses a reference image.

The algorithm proposed in this article overcomes these draw-
backs and shows a new approach for the reconstruction of 3D seg-
ments from calibrated views. First, it performs the point to point
matching in the Object Space, thus avoiding the tedious combi-
natorial exploration of all possible correspondences and handling
images in a true symmetric way. Second, this article shows a new
reconstruction method that takes into account the uncertainty on
the parameters and enables to get a statistic score usable what-
ever the number of images is, in order to assess or reject potential
matches. Potential matches are then pruned based on this geomet-
ric criterion as well as on an unicity criterion. Results, presented
on simulations and real data, are promising,

2 MATCHING IN OBJECT SPACE

2.1 A Sweep Plane Approach for 3D Edge Points

The first step in the reconstruction of 3D primitives, known as the
most difficult one, is the matching of 2D primitives. This prob-
lem, deeply studied in the stereoscopic case, is hard in multi-view
because the exhaustive search of all possible correspondences has
a crippling combinatory. Our goal, here, is to provide a method
satisfying the 3 principles of true multi-image as stated by Collins
(Collins, 1995):

� the method generalizes to any number of images greater
than 2,

� the algorithmic complexity is
�������

in the number of im-
ages

� all the images are treated equally (no “reference” image)

The reader can refer to this article for further bibliography on the
multi-view topic and the techniques developed in the literature
meeting or not these three conditions.
In his article, Collins shows a method that consists in finding 3D
edge points by matching 2D edge points directly in the Object



Space. By successively considering all the voxels in the dis-
cretized 3D space, Collins determines whether there should be
a 3D edge point or not, according to the number of rays hitting
the given voxel. The matching is done through a sweep plane
algorithm. The main drawback is that no explicit link is made
between matched primitives. Collins uses a statistic criterion to
assess whether there is a 3D edge point or not, without linking the
2D edges. No use of topology in images can thus be made. The
algorithm described here extends this method and stores potential
matchings of 2D segments.

2.2 Matching of 2D Segments

Images of Segments: An edge extraction followed by a polyg-
onal approximation are first performed in each image. There-
fore, one gets a set of images of labels called hereafter im-
ages of segments (an edge point belongs to a labelled segment).
More formally, ��� refers as the set of labels in the image � and������ � �	��
��� where � indicates the absence of edge. A pixel� in an image of segment ��� verifies then ��� � �� .

Sweeping plane: The matching process is based on the move
of a “sweeping plane” along a line that is normal to it, as it is
presented in (Collins, 1995). Conveniently but without loss of
generality, in the case of aerial images, we will choose a horizon-
tal plane � � ��� partitioned into a grid of cells whose axis are
chosen aligned with the X-Y axes of the scene. Thus, each cell������� �

on this grid defines a 3D voxel in the space
��������� �� ). By

sweeping from ��� �! to ���#"%$ , this plane samples a volume of in-
terest discretized into a set of voxels.
Let us notice that the optimal cell size of the grid as well as the
step of the sweeping procedure in � can be automatically defined,
knowing the absolute positions of the focal points of the images
(result of an aerotriangulation process in the case of aerial im-
ages) and the intrinsic parameters of the camera.

Ground Grids: For a given sweeping plane � � �&� , each im-
age of segments is projected onto the grid leading to a “ground
grid” ' � . Each edge point “votes” for a set of cells surround-
ing the intersection of its viewing ray with the sweeping plane
and roughly subtended by a pixel shaped cone of viewing rays
emanating from the edge point. This set is specified by the ap-
proximate Jacobian of the transformation that maps image � onto
the grid (Collins, 1995). Thus, we account for the fact that close-
up images give finer localization than further images.
Since all the “ground grids” ' � are in a common referential de-
fined by the grid of the sweeping plane, for each voxel (

�
,
�

, �&� )
of this grid, one can thus determine some hypotheses of matches
between labels and therefore between segments of the different
images (Figure 1). A match hypothesis is formally defined by the(

-uplet: ) � ��*+%��*-,�-.-.-.-�/*%0 �
where

* � � � �� (1)

and the set of matches hypotheses computed in a given voxel1 � �����/��� � � is 243 .

Associations and 5 : By sweeping the plane in the Object
Space from � � �6 to � �7"%$ , one can easily collect all the potential
correspondences. these are segments that have, at least, one voxel
of intersection when they are projected through the scene. Since
the matching is done “voxel by voxel”, this method of matching
enables us to keep the number of occurrences 8 � ) � of a given hy-
pothesis (the number of voxels in which this hypothesis was met),
which is proportional to the overlap of the 2D segments projected
in the 3D space in the case of a correct match:

8 � ) � �:9<;>=�? 
 1�@ ) � 2 3A� (2)

This valuation will be used afterwards to discriminate be-
tween hypotheses. An association is then defined by a couple

� )�B � 8 B � � � ) � 8 � ) � � . The set of all the associations is 5 �DCFE .
An order is assigned to each association related to the number of
segments that really match, namely:

G =�? � E � � G =�? � ) B � �:9<;H=�? 
 * � � � �JI .-.-. (K@ * ��L� ��� (3)

The set of associations calculated through this sweeping plane
technique defines a set of hypotheses, which need to be assessed
or rejected. We present in section 3 a method of reconstruction
that gives a statistic score that will be used to prune 5 . A total
order law will also be defined in section 4 so that maximal asso-
ciations should be kept while ensuring an unicity criteria. Let us
mention that this method can also easily integrate point by point
correlation method (Paparoditis et al., 2000) along the 3D seg-
ment, which could be used to discriminate between hypotheses.
However this criterion may be not reliable because most of the
time, the segments delineate facades which are seen in very dif-
ferent ways according to the point of view.
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Figure 1: Technique of the sweeping plane. In this figure, we
show the projection of images of segments at an given altitude.
Since the referential is the same for all the ground grids, the pro-
jections are shown by accumulation on the same grid.

3 RECONSTRUCTION OF 3D SEGMENTS

3.1 Straight Lines in Space

In order to represent a 3D straight line, we decide to use the com-
plete M�NPORQ representation (Ayache, 1989; Zhang and Faugeras,
1992) described by the three maps:

STU TV Map 1 :
� �W; �YX � �Z� �W[ �\XF]

Map 2 :
� �W; � X � � � �W[ � XF]

Map 3 :
� �^; � X � � � �W[ � XF]

(4)

In each map, the 3D line is represented as the intersection of two
planes. Map 1 can represent straight lines non parallel to _�`ba ,
Map 2 straight lines non parallel to _ aPc and Map 3, straight lines
non parallel to _b`�c .



3.2 Iterative Reconstruction

The goal is to compute the line � , which represents intersection
of
���

planes � � where � � is defined as the plane going through
the 2D segment � � in image � and the corresponding focal point9 � (Figure 1).
In the following, after a recall of the relationships between the
equations of lines in the images and the equations of planes � � ,
we describe a method taking into account the uncertainty on the
parameters of the line underlying the segment ��� : ��� � ��� � � and
giving a valid criterion on the quality of the reconstruction.

From 2D Lines to Planes � � : A straight line � � in the plane
can be represented by the parameters

� � and
� � and the equation:	�
��� � ��� 8���� 
 � � X � � ��� (5)

where 	 and 8 are the coordinates of a pixel.

In the following, the variance-covariance matrices ����� linked to
the uncertainty on these parameters are assumed to be known.
These matrices can indeed be computed after the polygonal ap-
proximations steps (Deriche et al., 1992).
The camera parameters are assumed to be known as well, by hy-
pothesis. Thus, one knows, for each camera the 3x4 perspective
transformation matrix � :

� �
�� � +�+ � + , � + � � + !� , + � ,�, � ,�� � ,�!� � + � � , � �� � �!

"#
(6)

Considering the pinhole camera model, a 3D point $ �&%��'7�)( �
can be linked to its projection * � 	 � 8 � in the image by the rela-
tion +* �-, � +$ with , L�.� in homogeneous coordinates. Sub-
stituting 	 and 8 from the latter equation in equation (5) gives/02143 ��� with

3 �
�55� � +�+ 
�6� � � � , + ��� 
 � X7� � + �� + , 
�6� � � � ,�, ��� 
 � X7� � ,8�� + � 
�6� � � � ,�� ��� 
 � X7� �� �� + ! 
�6� � � � ,�! ��� 
 � X7� �!��

" 99#
(7)

For each 2D segment � � , the corresponding plane � � can there-
fore be represented by a 4-parameter vector

3�: �<; = � ��> � ��? � �@ �BA 1
defined in equation (7). In order to compute the straight line � ,
intersection of the planes

3C:
, one uses the complete M�NPORQ rep-

resentation described in 3.1. The reconstruction should be per-
formed in the three maps in order to be able to represent each
straight line solution. At the end of the process, we choose the
map where D ;>[ D is minimum. That represents the case where
both intersecting planes are the closest to the orthogonal config-
uration for which the intersection is better defined. In the follow-
ing, we will only describe the computations for Map 1 since they
are the same in the other maps. Then each point on the straight
line � represented in this map satisfies equation (8):; ; �\X � � [ ��X ] � � � I A 1 3�: ��� E � � ; I . . �F� A (8)

For the
� �

segments, G � �
equations are obtained:H, � �^;I= �	X [ > ��X ? � ���H , �KJ + � � = � X ] > � X @ � ��� E � � ; I . . �F� A (9)

In order to find out the 4 unknown ; � [ � � � ] , we search for L �; ; � [ � � � ] A 1 solution of the linear system MNL � N where the M -
matrix and the N -vector, whose sizes are respectively of G � �

x4
and G ���

, are given by:

M �
�5555� ...

...
...

...= � > � � �� � = � > �
...

...
...

...

" 9999#
and N �

�5555� ...� ? �� @ �
...

" 9999#
(10)

The least square solution of this system, already supplied by
(Zhang and Faugeras, 1992) minimizes the sum of squares of the
residuals: O

��P � .-.-. X H ,, � X H ,, �QJ + X .-.-. (11)

The classical solution is RL �TS MVU�MXWZY + MVU N .

Iterative Method: The previous method assumes implicitely
that the same variance is taken for each residual (the least-square
solution is only optimal under this condition). The same impor-
tance is thus given to each plane whereas the variances �\[]� de-
pend a lot on the variance of the parameters of the lines in images.
In order to take this uncertainty into account, a weighted least-
square solution is used and one searches for the minimization of:

/O � P � .%.-. X H ,, �^ ,_�` � X
H ,, �QJ +^ ,_�` �Kacb X .%.-. (12)

This resolution is the same as the resolution of the weighted least-
square problem deMXL � d N with:

d �W? � ;gf � I^ _�h �%. . . I^ _�`i�j acb � (13)

when k is constant, the problem is sorted out using the same
methodology implemented inf the classical least-square mini-
mization, namely RL � � M 1 d 1 dlM � Y + M 1 d 1 d N . In our case,
however, the variance parameters on the residuals ^ _4m , which can
be computed from the relations ((9)) and ((7)) and equation ((14))
(Xu and Zhang, 1996), assuming � � � known, depend on L .

^ ,_ ` � �&% � �on H, �n 3 : 1 n 3C:
n �A� 1 � � � n 3C:

n �A� n H�, �n 3 :
^ ,_ ` �Qapb �&% � � n H , �QJ +n 3C: 1 n 3�:

n � � 1 � � � n 3�:
n � � n H , �QJ +n 3C: (14)

The following iterative scheme is thus finally used:

r=0
resolution of qsrNtvu)wCxzy
do

computations of { t6|]w_}�~ r tv|8w�� with (14)

resolution of ��q�rNt6| J + wFxz��y
with �<xz���&��� ~ +�I�v��b�� +�g�6���` �)�]�]�)� +�I�v��`4j apb �

if ~ ~ r | J + wF� r tv|8w � ,������I�����8�I��� � � convergence=true
else convergence=false
r=r+1

while ( � (convergence) � (r¡NMAX))
end

3.3 Final Reconstruction and Qualification

The extremity points are finally computed by projecting each 2D
extremity on the 3D line. We chose an union strategy, which con-
sists in taking the union of all the 2D segments projected on the
3D line.
One of the key points of this approach is that residuals are nor-
malized. Assuming that the errors follow a Gaussian law, the sum
of the squares

/O
of these residuals follows a   , law with G¢¡ ��� ��£

degree of freedom (there are indeed G¤¡ � �
equations and £ pa-

rameters). This result can give a good qualification criterion and
enables to assess or reject a given match. We will use this result
in the final algorithm to select correct matches.



4 GLOBAL ALGORITHM

4.1 Extraction of 2D Segments

First, an edge extraction is performed on each image, using a
classical gradient operator (Deriche, 1987) followed by the hys-
teresis detection of local maxima in the direction of gradients.
Edges are then linked and polygonized. One uses an iterative
merging process based on the maximum residual of the orthog-
onal regression: The polylines whose merging gives a minimal
maximum residual are first merged. A tolerance on the polygonal
approximation enables us to stop the process when the merging
has a maximum residual above a threshold given by the user ,������ .
Once the polygonal approximation is done, the parameters

�
and�

of the lines underlying the segments as well as the variance-
covariance matrix of these parameters are estimated by using the
results of (Deriche et al., 1992) and assuming that the edge points
detected by the Canny-Deriche operator (Deriche, 1987) have a
variance given by: � �

� ^ , �� ^ ,�� (15)

where ^ can be determined through the ratio signal/noise in the
images.

4.2 Pruning of 5
Geometric pruning: By using the matching technique de-
scribed in section 2, a set of associations is generated. In this
algorithm, only the association which match more than three 2D
segments are taken into account (the geometric criterion is indeed
valid under this condition). An association is assumed to be valid
only if the score given by the reconstruction (see section 3) passes
the   , test with a probability _ defined by the user. 5 is pruned
by using this geometric constraint.

Pruning on an unicity criterion: A total order law � is then
defined on 5 :

E � E
	�� SU V G =? � E �
 G =? � E
	 �
or else 8 B  8 B��
or else

/�����  /������� (16)

/� represents the sum of the squares of normalized residuals of the
reconstruction. Thus, this relation gives the priority to the asso-
ciations that have a high number of matched segments and then
the associations whose number of matched edge points is high.
This relation enables us to adopt a “winner takes all” strategy
while keeping the symmetry in the problem and without giving
any image a special role. Thanks to the set 5 and to the relation-
ships given in (16), associations can be sorted. Iteratively, each
maximal association is chosen and 5 is pruned by checking the
following unicity constraint: a segment in one image can only
belong to one association. At the end of the process, the set of as-
sociations validated as correct is obtained and 3D segments can
be reconstructed.

5 RESULTS

5.1 Comparison with the   , Law

The geometric pruning is based on the comparison test of the
normalized sum of the squares of residuals with the   , law and it
is therefore important to assess the behavior of the reconstruction
with this law. In order to check this point, the following random
test has been performed:

1 project a 3D segment sampled in 6 images,

2 add a Gaussian noise of parameter ^ on each 2D point in the
images,

3 reconstruct the 3D segment by computing the normalized sum
of squares of residuals

/O 1 for the test � .
By iterating steps 2 and 3, one can compute the proportion f ��� �
of the tests for which

/O 1 is greater than a number
�

:

f ��� � � 9<;H=�? 
 � @ /O 1�� � �9<;>=? 
 � � (17)

If
/O 1 follows the   , law with G�¡�� � £ ��� degrees of freedom,f must follow the probability law _ �   , � �! � � � given by equation

(18):

_ �   , � �! � � � �#" �$ 	 t �%$ , w Y + ¡'&�(�) � � 	 @ G � ? 	
" �u 	 t �%$ , w Y + ¡'&�(�) � � 	 @ G � ? 	 (18)

Results presented in Figure 2 show that the comparison of f ��� �
with this law is fairly good. The theoretical curve and the curve
obtained through the statistic test follow the same tendency. The
observed differences are likely due to the first order approxima-
tions made in the computations of the variances at the different
steps of the reconstruction (Deriche et al., 1992). The general
shapes are however close enough to justify the use of the   ,
statistic test to reject incorrect matches.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 x

Khi2(x)
"g(x)"

Figure 2: comparison of residuals with the   , law. ^ � G , num-
ber of tests : 10000

5.2 Simulations

Some simulations have been performed with a building model
from the BD TRAPU c

*,+
(Figure 3). This model is made up of a

set of polygonal facets whose edges are extracted. They are then
projected in several images (6 in our test). In order to test the
matching abilities of our algorithm independently of the segmen-
tation errors present in the images, we perform no edge detection
in this simulation. The 2D segments are then directly the projec-
tions of existing 3D segments. In all the simulations, the value_ ��� . - and a volume of interest of 160x170x40 . �

were used.
We first validated our algorithm onto noisy and noise-free simu-
lated data to test its capabilities when all the segments are seen
in the 6 images. In this case, no mismatch was found, all the
segments were reconstructed (except in the noisy case where the
choice of _ L� I induced a few rejects). In order to also assess
the capabilities of the algorithm to handle cases where the seg-
ments are visible in whatever number (greater than 3) of images,
another simulation was performed with hidden faces and noise
(Figure 4): the segments are projected in the images by taking
into account hidden faces and by adding some noise to the points.
The reconstruction is still correct as the matches accepted by the
algorithm are all correct. Necessarily, some of the true matches
were rejected due to the fact that _ L� I . The algorithm has welli

“TRAce de Perspectives Urbaines”. IGN Copyright.



handled the case where the segment is only seen in a number of
images smaller than

( � � .
In the case of a perfect line detector, the results have thus shown
that the generation of matching hypotheses is correct and that the
algorithm extracts the correct association independently on the
number of images.

Figure 3: Reference model used
in all our simulations

Figure 4: reconstruction with
noise and hidden faces

5.3 Real Images

With real images, the experiment has been made with 6 images
of a building. For this set of images taken by the CCD camera of
IGN, a pixel in an image represents roughly 20cm on the ground.
The parameters used in the following are:

� size of the volume of interest: 160x170x40 . �
� alpha for the Canny-Deriche filter: 1.5
� hysteresis thresholds: sB=0 sH=5
� polygonisation threshold: 1 pixel
� minimum size for a 2D segment in an image: 20 pixels
� number of images required for an association: 4
� _ � � . -

The results (Figure 5) show that 413 3D segments have been re-
constructed. Given the number of segments detected in each im-
age (between 845 and 1100), this result is fairly satisfactory. The
results show a good restitution of details, as for instance parallel
and very close lines that are difficult to discriminate. The algo-
rithm overcomes some artifact problems due to the detection in
images like broken segments or undersegmentation in some im-
ages for instance. Besides, there is no false match between 2D
segments in different images.

6 EXTENSIONS

6.1 Restriction of the Search Space

In order to reduce the search space and also to avoid mismatches,
a search volume can be derived from the dilatation of a DEM.
One can thus restrain the valid voxels and force the reconstructed
segments to have their extremities in the search volume.

6.2 Extension to 2 Images

In order to overcome most of the undersegmentation problems,
the algorithm can easily be extended to integrate hypotheses with
2 matched 2D segments only. In this case, of course, the geo-
metric criterion is not used. Instead of it, an overlap constraint
has been set up to 0.5 (ratio of the common part over the union
part). Figure 6 shows that a lot of segments are reconstructed
using these both extensions. Nevertheless, some mismatches ap-
peared, certainly due to the poor geometric constraint in the last
case.
These two extensions enables to treat regions where the number
of available images is relatively low or to treat wide areas while
keeping a reasonable running time as in Figure 6, where 3500
3D segments were reconstructed from 5 images using a DEM to
constrain the search space.

Figure 5: 2 extracts of the 6 images used in this experiment.
Above: segments detected. Middle: reconstructed segments pro-
jected on the images. Below: lateral view of the reconstruction.

7 DISCUSSION

7.1 Advantages

The main interest of the method described above, on the first hand
is to deal with all images in a symmetric way, without giving
any image a special role, and on the other hand to test all the
possible associations, without any combinatorial explosion. A
new method of reconstruction of 3D segments has also been pre-
sented. Although certainly less precise than any bundle adjust-
ment technique that avoids the propagation of first order errors,
the method enables to give a valid criterion usable whatever the
number of images is to assess or reject a potential match.

7.2 Problems

The actual algorithm does not handle the uncertainty in the cam-
era parameters and takes only into account the variance on the
line parameters. A modelisation of the influence of these er-
rors on ��[]� should be thought over. As far as the extensions are
concerned, the algorithm would certainly benefit from correla-
tion score in the case of matching segments in only 2 short-range
images.

7.3 Future Work

We plan to improve the “winner takes all” scheme and trying
to merge associations in order to refine the geometric precision.



Figure 6: 2 extracts of the 5 images used in this experiment.
Above: segments detected in them. Middle: reconstructed seg-
ments projected on them. Below: lateral view of reconstruction

These 3D segments will be used as basic primitives to make the
generation of hypotheses of buildings easier and thus constrain
the search of buildings models that matches the best the reality.

8 CONCLUSION

We have presented an algorithm that enables matching and recon-
struction of 2D segment in a multiple calibrated images context.
The algorithm performs the matching in the Object Space and
does not give thus any image a special role. The algorithm tries
to keep matches that ensure maximum overlaps. Furthermore, the
matching is in

� � ( �
and thus avoids the tedious exploration of

all possible correspondence while taking into account all the pos-
sible associations. The article also presents a method of recon-
struction of 3D segments that takes into account the uncertainty
on the determination of the parameters of the 2D lines underly-
ing the segments. This method gives normalized residuals, which
enables us to qualify the reconstruction. The results of this al-
gorithm have already been used with points obtained through a
correlation process in the caricature of an urban scene and pro-
vides very promising results. (Paparoditis et al., 2001).
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