
A Semantics for Version Queries In GIS
Databases

Hanna Kemppainen

Finnish Geodetic Institute, Geodeetinrinne 2, FIN-02430 Masala, Finland,
hanna.kemppainen@fgi.fi

Abstract

A formal semantics for spatio-temporal version queries is presented. A version
query specifies criteria against which change information is obtained from a
database. The query criteria may concern spatial and temporal characteristics and
indexed states of objects. The semantics is given using an object calculus, where
the calculus terms refer to versioned geographical objects, their changing states
and spatial and temporal relationships. The purpose of specifying the semantics of
queries is to aid in understanding the exact meaning of spatio-temporal queries
better. The work provides a framework for future research in modelling of
complex identity-affecting mutations of objects and related queries.
Keywords: spatio-temporal, object-oriented, change, query

1 Introduction

Implementation of a GIS that supports various aspects of object-based change is
founded on models of change itself and models of queries to get information of the
stored change data. A model of change can be based on an object-oriented model
of geographical information where a geographical object consists of spatial,
aspatial and temporal components (Worboys, 1992, 1994b). A change in an object
may involve the identity, spatial or aspatial attribute values or the thematic content
of the object. A software system that supports change should not only be able to
store data of the changing states and identities of the objects. It should also provide
a query language to specify criteria against which change information is obtained
from a database. A query language should provide support for queries where the
user wants to find out what happened to an entity at a given time or during a given
time interval. The user should also be able to ask what happened to an entity when
a related entity changed at a given time, or how an entity changed between two

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

consecutive changes of a related entity. Such analysis capabilities are not provided
by current commercial GIS.

A model of extracting data from a database is often given as an SQL-like query
language. Several languages exist that augment the standard SQL with temporal
constructs (Snodgrass, 1992). A query language that integrates both spatial and
temporal aspects is needed for geographical applications (Egenhofer, 1994), and
such languages have been developed (Griffiths et al. 2001, Kemppainen, 2001).
This paper does not present another SQL-like query language, but examines how
the semantics of change queries can be expressed. Starting with queries expressed
in an SQL-like language, the objective is to look for a semantics that aids in
finding a solution to implement them. This can be accomplished if the semantics is
given in terms that are near to the concepts used in implementing systems, for
example objects and methods. A formal semantics also aids in understanding the
exact meaning of the queries.

Specification of the semantics of change queries is studied here using a logical
language called spatio-temporal version calculus. The calculus, as any formal
language, consists of syntax and semantics. The syntax specifies the symbols that
may be used to express spatio-temporal version queries and how those symbols
may be arranged to create well-formed query formulas. The semantics of the
calculus specifies how meaning is ascribed to the symbols and the well-formed
query formulas. The calculus is designed such that the terms of the calculus
correspond to geographical objects and their spatial and temporal operations.
Given a set of database objects I, the semantics of a query q specifies which
objects are to be included in the query result. The calculus approach to specifying
semantics of queries is adapted from the field of database theory for relational
query languages (Abiteboul et al. 1995, Gallaire et al. 1984). An object calculus is
also suggested as a query language for geographic databases in (Clementini et al.
1993).

The remainder of the paper is organized as follows. Related work is discussed
in section 0. A note is made in section 0 as to how change data can be stored in
GIS systems. The paper presents a semantics for some typical query types (section
0) based on a conceptual model of version data (section 0). The semantics is
similar to the relational query semantics, which is reviewed in section 0. The main
contribution of the paper is the object calculus and its use in expressing version
queries and their semantics. This is the topic of the remaining chapters.

2 Related Work

Geographical change and temporal GIS have been popular research topics for over
a decade (Armstrong, 1988, Langran, 1992, Peuquet, 1994, Frank et al. 2000).
Conceptual models of change have been proposed for object-based
representations, where the object mutates to another object or the object state
changes (Claramunt et al. 1995). Hornsby & Egenhofer developed a change

description language that can be used to graphically represent operations on
identity of simple and composite objects (Hornsby et al, 1997, 1998). Medak
(1999) developed a theory of lifestyles in terms of operations affecting object
identity. The theory is presented as an algebra, i.e. as types, operations and axioms
that define their behaviour.

Implementation models have been proposed to store change-related information
in GIS databases, relational or object-oriented (Langran, 1989, Kemp et al. 1992,
Tryfona, 1998). Change that does not affect the object identity can be modelled as
object versions (Claramunt et al. 1995, Wachowicz et al. 1994). A unified model
to space and time and its implementation using simplicial complexes was
introduced in (Worboys, 1994a).

Research in query languages for changing geographical objects has been
somewhat less intense compared to the development of conceptual models of
change. Typologies of spatio-temporal queries are presented in (Peuquet, 1994, El-
Geresy et al. 2000). A model of extracting data from a database is often given as
an SQL-based query language. Several query languages have been proposed for
temporal (Snodgrass, 1992, Chomicki, 1994) and spatial applications (Egenhofer,
1994, Herring, 1987). A recent contribution augments the syntax of an object
oriented query language OQL (Cattell et al. 2000) with spatial and temporal
operations and index numbers on object states (Griffiths et al. 2001). An earlier
work by the author of this paper developed a similar but SQL-based query
language that also contains constructs to refer to the version history of an object
(Kemppainen, 2001).

3 Support for Change in GIS

It has been stated that implementation of a temporal GIS is still problematic and
support for tracking changes in spatio-temporal databases is not effective (Peuquet,
2001, Griffits et al. 2001). Current GISs provide two kinds of mechanisms that
support storing change-related data: user-defined attributes and version
management. Users may time-stamp their data by storing a temporal value as one
of an object’s attributes. To track the evolution of a database object one can chain
different objects representing the same real world entity. Some systems implement
database versions rather than object versions to provide users with simultaneous
access to data. Version management systems (Easterfield et al. 1990) consider
change as a tree of database alternatives. A database alternative is a database view
that corresponds to some state Si of the database, and each sub-alternative Sii
derived from Si provides another view to the database by updating Si independently
of other sub-alternatives. Object’s representation in each of the database
alternatives corresponds to a version of an object.

The purpose of such a versioning mechanism is to allow different users to work
simultaneously with the same data rather than to provide a representation of the
evolution of objects. If, however, database alternatives are used to store evolution

data, a specific meaning is assigned to each database alternative. For example,
there might be a cadastral database alternative, utilities alternative, etc. To track
the “evolution” of a single object in different alternatives, the alternative tree has
to be traversed to extract the object information in each of the alternatives. It is left
to the application programmers to extract the version data from different
alternatives and make analysis as to what changes the entity has experienced, and
how the different versions of the entity relate to other entities.

4 Examples of Queries on Time-Varying Geographical
Objects

The starting point for this work is provided by a typology of spatio-temporal
queries by Peuquet (1994). The queries are not given with respect to any data
model, and no indication is made as to how they should be implemented. The
formulation of the queries suggests a natural approach to consider changing
geographical phenomena, for example, when making observations of the landscape
by eye, or studying maps or plans.

The first class of queries addresses changes in an object or feature: "How has
this object changed or moved over the last five years" and "Where was this object
two years ago". These queries involve some real world entity ("this object") that is
to be monitored at different points in time. Such an entity is thus identifiable, but
not necessarily well defined. The problem is that we should identify exactly the
same entity at different time instants.

The second class of queries involves changes in the spatial distribution of an
object or a set of objects; for example, "What agricultural areas in January 1980
changed to residential land use areas as of December 1989" and "Did any land use
changes occur in this drainage basin between t1 and t2". Entities may not be well
defined here either. As far as land use areas are concerned, it may be questioned
whether a land use area should be considered as an identifiable object at all; rather,
such areal phenomena might be abstracted as fields. If they are considered as
discrete objects, it should be possible to model class changes of objects and
provide support for such change queries.

Class III queries address the temporal relationships among multiple geographic
phenomena, for example, "Which areas experienced a landslide within one week
of a major storm event?" In such a query, both the thematic attribute and the
spatial characteristics of objects are related.

Based on this framework, geographical real world entities are considered here
as spatio-temporal objects that are elements of some class. The name of the class
reveals the thematic content of the object (for example, Road class contains road
objects). Objects have aspatial, spatial and temporal characteristics. A change may
occur that concerns any apatial or spatial value of the object, or the class of the
object may change.

5 Version Model and Model of Version Queries

5.1 Conceptual version model

Modelling of changing geographical entities as versioned objects is suggested in
e.g. (Wachowicz et al. 1994). A versioned object consists of a sequence of
versions. The versioned object denotes the changing real world entity, and each
version in the version sequence denotes an entity state during some time interval.
Change of an object to another object, or other mutations affecting object identity
(Claramunt et al. 1995) are not supported. Using this model, a road object Road-A
would be represented as a versioned object, whose changing states correspond to
versions Road-A-1, Road-A-2, etc. The version scenario is depicted in Fig. 1,
where versioned objects are depicted as small squares, connected to a sequence of
circles that denote versions.

Possible queries for versioned objects are identified by examining potential
relationships between versioned objects and their versions. Different ways of
associating versioned objects are depicted using large rectangles in Fig.1. Given
versionable objects O1 and O2, with a set of versions V1 and V2, respectively, a
query may involve the location of an element of V1 in the version sequence
(similarly for V2). Such a query extracts versions using expression such as "get the
latest version of the object" or "get the first and the second version of the object",
to determine how the entity has changed. Another category of queries relates
versions based on their aspatial, spatial, and temporal characteristics.

The limitations of this version scenario are the following: 1) Many geographical
phenomena are difficult to identify so that exactly the same entity or phenomenon
can be detected, say, years later. 2) Creating new versions causes data duplication,
which may result in inefficient systems unless the storage problem can be resolved
efficiently.

Fig. 1. Relationships between versioned objects

5.2 SQL-Like Version Queries

Version queries are expressed using a select-from-where expression, which is the
basic construct of SQL, the standard relational query language (explained in e.g.
Elmasri et al. 1989). Similar expression, but with a somewhat different syntax, is
also used in OQL, a standard for object database queries (Cattell et al. 2000). The
SQL-like version query language developed in (Kemppainen, 2001) is used to
express queries whose semantics is studied in this paper.

Let us suppose the data about the versioned objects is stored in a relational
database. There are two tables: one for versioned objects and one for versions. A
version query would be expressed as:

select versioned_exp | version_exp
from relation_name [,relation_name*]
where select-condition

Here relation_name refers to the tables storing data of versioned and version
objects. The select clause identifies the data that will comprise the query result; for
example, versioned_exp is an expression that refers to the whole versioned object.
In this case, the select clause would be formulated as "select versioned", to select

Versioned and version objects of type �2 (e.g. Forest)

Versioned and version objects of type �1 (e.g. Road)

Relating versioned objects.

a) b)

Relating versions of the
same object.

road

road-

road-

d)

Referring to all versions. Relating versions of different
types of objects.

c)

all the versions that exist of the object. The expression might be used in queries
such as "Did something change about this object?" The query would return all the
versions of the versioned object, for which conditions specified in the select
condition apply. A version_exp may be of the form 1) "select version.aspatial", 2)
"select version.spatial" or 3) "select version.temporal", where aspatial, spatial
and temporal denote the corresponding attributes of the version, or 4) "select
version" if the whole version is asked for.

The select condition is expressed as a combination of version sequence clauses
and aspatial, spatial and temporal clauses. An example of a version sequence
clause is "version in (last –1, last)", to denote the latest version and the one
preceding it. A spatial clause uses spatial operators (Egenhofer et al. 1991) to
evaluate relationships between spatial components of versions, for example,
"version_1.spatial inside version_2.spatial" to relate spatial components of the
two versions using is a spatial operator inside. In a similar manner, we express
aspatial clauses using standard comparison operators ���������������������, and
temporal clauses using standard temporal operators (Halpern et al. 1991). When
relating temporal characteristics of objects, we use temporal expressions to refer to
time instants or time intervals given with respect to some calendar value, or now.
For example, to denote a time interval that started two years ago and ends at the
current moment, we would specify "last (“year”, 2, now, “interval”)".

Examples of queries and their semantics are given in section 9.

6 Specification of the Semantics of Queries

The semantics of queries is discussed in terms of relational database theory in
(Abiteboul et al. 1995, Gallaire et al. 1984). These principles are extended to
object-oriented databases for versioned geographical objects.

From a logic perspective to databases, one considers a relational database as an
interpretation of a first-order language, where the atomic constructs of the
language are n-ary predicates P(x1,…, xn), and equality operator =. A predicate is
understood as a tuple in a relation, and is deemed true in the interpretation if the
corresponding tuple exist in the database. Queries are expressed as logical
formulas. Their truth-value can be determined when we know how the constants of
the language are interpreted, and how the variables occurring in the formulas are
valuated. The truth of a formula is derived with respect to the values that are stored
in the database. An answer to a query q, presented as a logical formula �, is
obtained by finding a valuation of variables in � that makes � true.

To put this formally, we consider a relational database with n-ary relations Ri. A
fact over Ri is an expression of the form R(a1,…,an), where ai is an alphanumeric
value. A relation instance over R is a finite set of facts over R. A database schema
R consists of the relation names, R = {R1, 	, Rn} and a database instance is a
finite set I that is the union of relation instances over Ri, for Ri
 R.

Let L be a first order language whose domain is dom, an infinite set of
alphanumeric values. In standard logic, the constants of the language are used to
denote elements of the domain, but it is customary in the database context to
consider elements of the domain as the constants of the language also. Predicate
symbols R1,…, Rn denote real predicates among the individuals of the domain. In
this setting, a database instance is understood as a finite interpretation I of L. This
means that the tuples in the database are interpreted as true facts about the
universe, and negation of a fact can be derived if the corresponding tuple is not
found in the database. The naming of the domain elements is arranged such that
each element of the domain is named, and individuals with different names are
different.

Queries would be expressed in the relational calculus in the form q = {e1,…, em |
�} where e1,…, em are variables that are free in �. The semantics of a query is
given as an image of database instance I under q relative to d:

qd(I) = {�([e1,…, en]) | where � is the valuation over free variables of � with
range contained in d, and I satisfies � for �}. The underlying domain d, with d �
dom, is used to permit us to talk of different underlying domains. The set of all
constants occurring in I is contained in d.

The semantics of spatio-temporal version queries shall be given here in the form
of an object calculus. The calculus consists of 1) appropriate domains for
versioned geographical objects, 2) an alphabet and rules to use the alphabet to
build well-formed query expressions, and 3) specification of truth-values of the
calculus expressions with respect to the set of objects that exist in the database.

7 Basic Notions for the Object Calculus

A query q is expressed as q = {xi | �}, where � is an object calculus formula and xi
denotes a free variable in �. The calculus is designed such that the atoms in �
denote meaningful constructs in the geographical application domain. The
individuals of the domain are abstracted as complex values and objects.

The calculus is similar to the complex value calculus presented in (Abiteboul et
al. 1995), extended to incorporate object-oriented characteristics.

7.1 Domains

The domain of the calculus consists of the standard domains integer, string, bool
and float whose disjoint union is dom. Complex value domains are defined
recursively using the following abstract syntax: � = dom | [B1 : �,…, Bk : �] | {�},
where [B1 : �,…, Bk : �] denotes a tuple value, and{�}is a set value. Objects are
referred to using elements of obj, which is a finite set of object identifiers, obj =
{o1,…, on}.

Spatial objects are elements of the spatial domain, with spatial � obj. Given an
OID assignment � for spatial classes Point, Line and Area, a finite set of spatial
objects is denoted by �(Point)
 �(Line)
 �(Area). Temporal values are
contained in temporal domain temp, whose objects can denote time-stamps given
in valid time or transaction time. We assume versioned, the domain for the object
identifiers of versioned objects, with versioned � obj, and version, the domain
for the object identifiers of version objects, with version � obj. The domains
spatial, temp, version and versioned are pair-wise disjoint.

The underlying object model abstracts a changing geographical entity as a
versioned object, whose changing states are described as versions. Each object
version may have spatial, aspatial and temporal components. For example,
changing real world roads would be modelled using Versioned_Road class. An
object of Versioned_Road would consist of an ordered set of Road_Version
objects, each of which is an aggregation of values coming from the spatial,
temporal and aspatial domains. Objects of Versioned_Road and Road_Version
come from versioned and version, respectively.

7.2 Predicates for Version Queries

Relationships between objects are modelled as predicates P(o1,…, on). For the
purposes of defining the semantics of queries, for a given predicate P, it is
sufficient to know whether P holds for some valuation of the object variables
standing for o1,…, o2.

To formulate spatial and temporal selection conditions we assume a set of
spatial predicates SP and temporal predicates TP. Comparisons between numeric
and textual values are included in the calculus operations. The definition of spatial
and temporal relationships is discussed in e.g. (Egenhofer et al., 1991, Allen,
1984, Halpern et al. 1991).

SP = {D, SM, SO, COV, COVB, I, CON, SE}
TP = {B, TE, TM, TO, D, S, F, AS, AE}

Spatial predicates SP refer to spatial operators disjoint (D), spatial_meet (SM),
spatial_overlap (SO), covers (COV), covered_by (COVB), inside (I), contains
(CON), and spatial_equal (SE). Temporal predicates correspond to temporal
operators before (B), temporal_equal (TE), temporal_meet (TM),
temporal_overlap (TO), during (D), starts (S), finishes(F), at_start (AS) and at_end
(AE).

8 The Object Calculus

The object calculus for expressing version queries is based on the complex value
calculus of (Abiteboul et al. 1995), extended with some object-oriented notions.

The alphabet of the object calculus (as that of any formal language) consists of
constants, variables, logical connectives and quantifiers, and of rules that govern
the formulation of well-formed formulas.

Constants and variables For each domain, a countable finite set of constants
and variables of that domain is assumed.

Terms are interpreted as standing for an individual of the domain. Constants
and variables are terms. An object variable stands for an object, and a tuple
variable denotes a complex value that is a tuple. A field A of a tuple variable x (of
sort [A : dom]) is referred to as x.A.

Atomic formulas:
a) A predicate P(t1,…, tn) is an atom (t1,…, tn are terms).
b) Atoms for simple values: t = t' and t < t' are atoms (t and t' are terms).
c) Atoms for complex values: t
 t', t � t', t and t' are terms and the appropriate

sort restrictions apply (
,� are many sorted).
d) Object-oriented characteristics of the calculus are supported by 1) value

equality o = o', and 2) identity equality o =id o' for object variables o and o'. To
compare values returned by methods we have: t = m(t1,…, tn) and m1(t1,…, tn) =
m2(t1,…, tm) where t, t1,…, tn ,…,tm are terms and m, m1 and m2 denote method
names. The value of m(t1,…, tn) is obtained by evaluating the implementation of m
under a variable assignment �. that associates values to t1,…, tn. The method
signature reveals the type of the value which m returns.

Formulas are created from atomic formulas using the logical connectives �, �,
�, � and quantifiers � and �.

8.1 Semantics of the calculus

The truth-value of an atomic formula is defined like the standard relational
calculus. For example, an equality atom � = (s = s') is true in an interpretation I if
the valuations of the two variables are equal, i.e. �(s) = �(s'). We say that I
satisfies � for �, relative to d, denoted by I ⊨d�[�]. If � is formed using logical
connectives for example if � = (� � �), I ⊨d� if I ⊨d�[�'] and I ⊨d� [�'], where
�' is a restriction of � to free variables of the formula. For other forms of �, we
shall only discuss the interesting features that are related to complex values and
objects. Given a database instance I, I(C) denotes an instance of class C, and I(P)
denotes an instance of relation P. The truth of a formula � in I is given as follows:

(a) � = C(o) is true if �(o)
 I(C) and � is a valuation of object variables.
(b) � = (s = s') is true if �(s) = �(s'). s,s' denote variables of any domains (value

equality)
(c) � = (s =id s') is true if �(s) = id �(s'). s,s' denote variables of object domains

(identity equality)
(d) � = (s = m(s1,…,sn)) if �(s) = m(�(s1),…, �(sn)) and �(s) complies with the

method signature of m under �, especially we require that �(s) is of the correct

type. Similarly, m1(s1,…, sn) = m2(s1,…, sm) if m1(�(s1),…, �(sn)) = m2(�(s1),…,
�(sm)) and the values returned by m1 and m2 are of the same type.

(e) � = (s�
 s') and �(s)
 �(s')
(f) � = (s�� s') and �(s) � �(s')
(g) � = P(o1,…,on) if [�(o1),…, �(on)]
 I(P)

9 The Semantics of Version Queries

The version queries are formalised as q = {x | � }, where � is an object calculus
formula and x is free in �. For example, to select a versioned object from the
database we use a query language statement "select versioned" which corresponds
to a query {r | �(r)}, where r is a variable ranging over versioned, and r is free in
�.

The object calculus formulation of some of the queries discussed in section 0
requires a sample database schema and a set of objects of the schema classes. Let
Versioned_Road, Road_version, Versioned_landuse, Landuse_version and Line
denote classes of a schema S. A database instance I consists of objects belonging
to classes of S. Methods M are used to extract attribute values and versions of
objects. A method definition is given as a signature m : c � �1 � … � �n-1 � �n,
where c is a class name and �i is a type over C, the set of all class names
(Abiteboul et al. 1995). This signature is associated with class c; we say that
method applies to objects of class c. �1,…,�n-1 denote parameter types and the
method returns a value whose type is �n. A coded definition of m is the piece of
program code to implement the method.

For example, for class Road_version with attributes aspatial, spatial and
temporal, method spatial gets the value of the spatial attribute: spatial :
Road_version � Spatial. Temporal component is returned by a method whose
signature is temporal : Road_version � Temporal. Method version(Versioned,
{int}) � {version} extracts versions of an instance of a versioned class The
method returns a set of versions specified by a set of integers as a method
parameter.

A query "Has Road A moved in the last two years?" would be formulated as an
SQL-like query as follows:

select version
from Versioned_Road, Road_version
where root = “road-A” and version.temporal during last (“year”, 2, now,
“interval”)

This query extracts the versions of Road A, whose time stamp indicates that the
version existed during a time interval specified by last (“year”, 2, now, “interval”),
for example [1.1.1999,31.12.2000], if the query was performed at 31.12.2000.

The query extracts versions whose spatial components have to be compared to
determine whether a change occurred during the specified interval of time.

The following calculus query gets all versions of Road A:

{v | �r (Versioned_Road(r) � name(r) = "road-A" � v
 versions(r)}

We restrict the query result further by requiring that the temporal value
associated with the version overlaps a temporal constant tc1, where tc1 denotes a
time interval starting two years ago and ending now.

{v | �r (Versioned_Road(r) � name(r) = "road-A" � v
 versions(r) �
D(temporal(v),tc1))}

Here variable r denotes an object for which predicate Versioned_Road(r)
should hold. Answer to the query is obtained by a valuation for r such that r
denotes an object from the Versioned_Road class. Let o be such an object. The
query also requires that the method name applied to o returns "road-A". A free
variable v is used to denote an object that belongs to the set of versions of o.
Finally, temporal predicate D (for "during") is used to determine whether the
temporal component of version v takes place during the time interval denoted by a
temporal constant tc1. Once we have found a valuation for r and v such that the
formula holds, we have an answer to the query.

In a similar manner, "Where was Road B two years ago?" would be formulated
SQL-like as

select spatial
from Versioned_road, Road_version
where root = “Road B” and version.temporal temporal_overlap last
(“year”, 2, now, “instant”)

This query extracts the spatial component of the version of Road B that existed
two years ago. This is a direct answer to the original query, given as a spatial
object.

Formally:

{s | �r,v (Versioned_Road(r) � name(r) = "Road B" � v
 versions(r) �
D(temporal(v), tc1) � spatial(v) = s)}

A query "Did any land use changes occur in this drainage basin between Jan 1,
1980 and Dec 31, 1989?" might be interpreted as involving a change in the area
extent of the land use areas, or a change in their classification attribute, or whether
the particular area object disappeared or new areas were born. The following query
finds versions of a land use area 12345 where the value of its the classification
attribute changes. The select condition first specifies that we are interested in areas
that lie inside "this drainage basin"; that area is referred to using a spatial constant
"REF". A negated aspatial clause is then used to specify that the versions whose
classification attribute values are different looked for.

select versioned, version_1, version_2

from Versioned_Landuse, Landuse_version, Landuse_version
where versioned.id = "12345" and

version_1.spatial inside “REF” and
 version_2.spatial inside “REF” and
 not (version_1.classification = version_2.classification)

In this query, the class Versioned_Landuse, and methods defined similarly as in
the previous example are assumed. Spatial constant sc1 represents the reference
area REF. I is a spatial predicate for "inside". The query is formalised as:

{v1, v2 | �r1, v1, v2, s1, s2 (
Versioned_Landuse(r1) � id(r1) = "12345" �
v1
 versions(r1) � v2
 versions(r2) � �(v1 =id v2) �
spatial(v1) = s1 � spatial(v2) = s2 �
I(sc1, s1) � I(sc1, s2))}

10 Concluding Remarks

The purpose of specifying a formal semantics for SQL-like spatio-temporal queries
is to aid in understanding the meaning of the queries better, and to outline a
solution for their implementation. The semantics of spatio-temporal version
queries is developed here using an object calculus. The alphabet of the calculus
consists of concepts that can be easily implemented: classes, objects and methods.
Given a set of database objects, the answer to a query is obtained by finding a
proper valuation for query variables such that the query criteria are fulfilled.

A question then arises, what can we describe using the calculus. The calculus
can be used to refer to objects from different classes, and methods to extract their
values and other characteristics. Predicates can be used to make statements about
relationships between objects Spatial predicates denote spatial conditions between
object versions, and temporal predicates are used for evaluating temporal
relationship between them. It is thus possible to describe the relationships between
versions of objects in terms of their spatio-temporal characteristics, and determine
the semantics of such a description with respect to what data exists in a database.
What first-order predicate calculus cannot do is to state something about sets of
objects as a whole. For that purpose, we should be able to quantify over predicates,
not just individual elements of domains.

The formalisation of queries and their semantics provides a framework for
research that allows the development of models of discrete change further, for
example, to model complex mutations of objects.

Acknowledgements

This work has been carried out under supervision of Professor Tapani Sarjakoski,
whose advice and support is gratefully acknowledged. The author is indebted to
the anonymous reviewers for the comments that helped in shaping the contribution
of the paper.

References

Abiteboul A, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley
Allen JF (1984) Towards a general theory of action and time. Artificial Intelligence

23(2):123-154
Armstrong M (1988) Temporality in spatial databases. Proceedings GIS/LIS’88, San

Antonio, Texas, pp 880-889.
Cattell R, Barry DK, Berler M, Eastman, J, Jordan D, Russell C, Schadow O, Stanienda T,

Velez F (2000) The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers
Chomicki J (1994) Temporal query languages: a survey. In: Proceedings of the First

International Conference Temporal Logic. Bonn, Germany, pp 506-534
Claramunt C, Theriault M (1995) Managing time in GIS: an event-oriented approach. In:

Proceedings of the International Workshop on Temporal Databases. 17-18 September
1995, Zürich, Switzerland, pp 23-42

Clementini E, Di Felice P (1993) An object calculus for geographic databases. In:
Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing: States of
the Art and Practice, Indianapolis, IN, pp 302-308

Easterfield M, Newell R, Theriault D (1990) Version management in GIS – applications
and techniques. In: First European Conference on Geographical Information Systems.
Amsterdam, The Netherlands, pp 288-297

Egenhofer M (1994) Spatial SQL: a query and presentation language. IEEE Transactions
on Knowledge and Data Engineering 6(1): 86-95

Egenhofer M, Franzosa R (1991) Point set topological relations. International Journal of
Geographical Information Systems 5(2):161-174

El-Geresy B, Jones C (2000) Spatio-Temporal Models and Queries in GIS. In: Atkinson P,
Martin D (eds) Innovations in GIS 7, Taylor and Francis, pp 27-39

Elmasri R, Navathe S (1989) Fundamentals of Database Systems. Menlo Park, CA,
Benjamin/Cummings

Frank AU, Raper J, Cheylan, J-P (eds) (2000) Life and Motion of Socio-Economic Units.
GISDATA Volume 8, London, Taylor & Francis.

Gallaire H, Minker J, Nicolas J-M. (1984) Logic and databases: a deductive approach.
ACM Computing Surveys 16(2):153-185

Griffiths T, Fernandes A, Paton N, Mason K, Huang B, Worboys M (2001) Tripod: A
Comprehensive Model for Spatial and Aspatial Historical Objects. In: 20th
International Conference on Conceptual Modeling. Yokohama, Japan, pp 84-102

Halpern J, Shoham Y (1991) A propositional modal logic of time intervals. Journal of the
ACM 38(4):935-962

Herring J (1987) TIGRIS: Topologically integrated geographical information system.
Proceedings of AUTO-Carto 8. March 1987, Baltimore, MD, pp 282-291

Hornsby K, Egenhofer M (1997) Qualitative representation of change. In: Hirtle S, Frank A
(eds) Spatial Information Theory: A Theoretical Basis for GIS, Proceedings of the
International Conference COSIT ‘97. pp 15-33

Hornsby K, Egenhofer M (1998) Identity-Based Change Operations for Composite Objects.
In: Proceedings of the 8th International Symposium On Spatial Data Handling.
Vancouver, Canada, pp 202-213

Kemp Z, Thearle R (1992) Modeling relationships in spatial databases. In: Proceedings 5th
International Symposium on Spatial Data Handling. Charleston SC, pp 313-322

Kemppainen H (2001) A data model and query language for versioned spatio-temporal
objects. Submitted to Geoinformatica (under review)

Langran G (1989) A review of temporal database research and its use in GIS applications.
International Journal of Geographical Information Systems 3(3): 215-232

Langran G (1992) Time in Geographic Information Systems. Taylor & Francis
Medak (1999) Lifestyles – an algebraic approach to change in identity. Spatio-Temporal

Database Management, International Workshop STDBM’99. Edinburgh, Scotland pp
19-38

Peuquet D (1994) It's about time: a conceptual framework for the representation of
temporal dynamics in geographic information systems. Annals of the Association of
American Geographers 84(3):441-461

Peuquet D (2001) Making space for time: issues in space-time data representation.
GeoInformatica 5(1):11-32

Snodgrass R (1992) Temporal Databases. International Conference GIS - From Space to
Territory: Theories and Methods of Spatio-Temporal Reasoning. Pisa, Italy, pp 22-64

Tryfona N (1998) Modeling Phenomena in Spatiotemporal Databases: Desiderata and
Solutions. In: Database and Expert Systems Applications, 9th International
Conference, DEXA '98. Vienna, Austria, pp 155-165

Wachowicz M, Healey R (1994). Towards temporality in GIS. In: Worboys MF (ed)
Innovations in GIS 1. Taylor and Francis, London, pp 105-115

Worboys MF (1992) A Generic Model for Planar Geographic Objects. International Journal
of Geographical Information Systems 6(5): 353-372

Worboys MF (1994a) A unified model of spatial and temporal information. The Computer
Journal 37(1):26-34

Worboys MF (1994b) Object-oriented approaches to geo-referenced information.
International Journal of Geographical Information Systems 8(4):385-399

