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Abstract 

Spatio-temporal data models for describing complex lifelines and trajectories of 
persons, as well as events that affect their evolution, are prerequisites for the 
statistical analysis of their relationships. Such analyses are useful to develop a 
better understanding of urban dynamics and social transformations. This paper 
develops a spatio-temporal database model for handling personal trajectories 
along a time line (many complementary lifelines) allowing for the statistical 
analysis of any pre-defined event. It combines survival analysis, Cox regression 
and temporal GIS.  The combination of these aspects support an assessment of  the 
likelihood of any event to occur in the life of persons at risk, after a given time 
delay and under some specific conditions. Our model was implemented and tested 
using a geo-relational approach that also supports spatial and temporal reasoning 
at complementary levels of abstraction. It allows the cross-analysis of several 
multi-dimensional lifelines to form individual trajectories. The application 
example is based on an historical survey of personal biographies (spatially 
located) of 418 professional workers living in the Quebec Metropolitan Area in 
1995-96. 
Keywords: temporal GIS, multi-dimensional lifelines, event history analysis, 
individual trajectories 
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1 Urban Dynamics, Temporal GIS and Event History 
Analysis 

Modelling the evolution of urban systems implies the analysis of human activities 
at different levels of abstraction along their temporal and spatial dimensions. 
Understanding persons’ behaviour in a dynamic perspective and the constraints of 
their environment can provide clues about processes responsible for the evolution 
of cities. Such analysis, however, clearly implies integration of several multi-
dimensional episodes describing the behaviour (biography) of individuals. Within 
urban studies, space-time representations of individual trajectories have been 
widely studied using time-geography modelling and analysis concepts following 
Hägerstrand's seminal work (1967). Other investigations have explored time-
geography principles to analyse the multi-dimensional structure of spatial 
behaviour of people involved in specific activities (Taylor and Parkes, 1975; 
Goodchild and Janelle, 1984; Miller, 1991; Odland and Shumway, 1993; Whiters, 
1997; Janelle et al., 1998; Johnson, 2001). 

During the last decade, important progress was made in integrating the time 
dimension within GIS (Langran, 1989; Peuquet, 1994; Frank, 1994; Peuquet and 
Quian, 1996; Böehlen et al., 1999; Hornsby and Egenhofer, 2000). The statistical 
analysis of spatio-temporal processes, however, is still lagging far behind the 
development of GIS technology. Some of the temporal GIS models identified so 
far are based on an explicit description of spatial evolution with respect to change 
in status for identifiable entities (Claramunt and Theriault, 1996; Hornsby and 
Egenhofer, 1998 and 2000). These approaches aim at the modelling of transition 
patterns among events in an effort to identify recurring spatio-temporal processes. 
They provide an explicit description of changes in the geographic phenomena 
modelled. Analysis of basic transition primitives and their combination to record 
geographical change can reveal patterns that could further our understanding of 
evolution processes. Such an approach, requires exploratory analysis of successive 
events. To the best of our knowledge, database models are not currently linked to 
existing statistical analysis of successive events, survival analysis, and modelling 
of choice processes and therefore not ideally suited to theses types of assessments. 
In fact, because of the complexity of their data structures, they only allow 
computation of some basic descriptive statistics on transitions among successive 
states (E.g. mean values and frequencies). 

On the other hand, the literature is replete with existing statistical methods for 
modelling discrete choices and for performing temporal analysis of state 
transitions (logistic regression, log-linear models, survival analysis using Kaplan-
Meier techniques, Cox regression). These statistical approaches are linked to 
probability theory. Making assumptions on the error distribution of observations, 
they provide hypothesis tests based on the comparison of actual events to their 
theoretical distribution, in space and time. Thus, among a set of events, they could  
identify those which are unlikely to appear at random in the actual spatio-temporal 
configuration. Adding the power of inferential statistics to GIS applications would 
clearly enhance their usefulness for urban studies. It will allow scientists to assess 



the effect of data sampling procedures on the accuracy of simulation results. As 
well, it will provide strong guidelines to distinguish patterns of events which are 
significant from those which are not (Pötter and Blossfeld, 2001). 

Event history modelling is a specific type of longitudinal statistical analysis that 
focuses on the survival rate of a given status and considers various attributes of the 
observed individuals. It is used to estimate the probability of an event to occur, 
considering the time elapsed after some condition is met (Blossfeld and Rohwer, 
1995; Blossfeld, 1996; Le Bourdais and Marcil-Gratton, 1998). For example, 
event history analysis (Cox, 1972) can compute the likelihood of a woman to give 
birth to a child, after she gets married (or she starts a cohabiting union), taking 
into consideration her age and her income. This likelihood is the complement of 
her survival function for not having a child under the same conditions. 

Survival analysis uses Kaplan-Meier (product-limit) technique to estimate the 
length of time elapsed before occurrence of an event after a change in personal 
status enables it to occur. Using observed duration of elapsed time, event, survival 
analysis computes the base line hazard function of an event to occur. However, at 
survey time, the event would not have occurred for some enabled individuals. 
These are then called censored.  Because censored cases were at risk, they must be 
considered when estimating the proportion of individuals experiencing the event. 
Therefore, one cannot estimate hazard using only those objects experiencing a 
given event. The stochastic part of the phenomenon must also be considered 
explicitly to estimate the odds ratio (number of individuals experiencing the event 
divided by those who do not). It must be accumulated over time to model hazard 
evolution. When the event occurs for a person, he is generally no longer at risk. 
Thus, the number of persons at risk changes over time while hazard decreases or 
increases, depending on the nature of the event (E.g., death and marriage). 
Moreover, the chance that an event occurs depends partly on the attributes of each 
individual and the context in which he/she lives. For example, risk of death 
increases with age of the person, someone living in dangerous conditions is also 
more at risk. The marginal effect of the local context on hazard assessment 
(decrease in survival) is modelled using time regression based on exponential 
mathematical models: )...()ln( 22110)( nn XXXt eeth ����� ����

� . In this equation, 
hazard is modelled using two terms. The first part estimates the base hazard using 
time elapsed after enabling occurred (natural logarithm of t). The second one is 
specified using any number of independent variables (X) providing values specific 
to each observation. Coefficients are computed for observed data using maximum 
likelihood techniques. This defines the basis of Cox regression techniques (Cox, 
1972) available in most statistical software, like SPSS. 

Unfortunately, SPSS, like all other statistical software, can manipulate only flat 
files. It allocates columns to variables and rows to observed cases. For most 
applications in time regression (and survival analysis), the task of restructuring 
information to build this flat file is time-consuming and prone to errors. Moreover, 
computation of many attributes depends on the choice of reference events 
(enabling conditions and modelled event). While it is certainly feasible to integrate 
spatial context in survival analysis (even time-varying context), to the best of our 



knowledge, there is no existing example of such an application. This requires 
integration of data models that defines events, their ordering and semantics within 
a GIS environment. In addition, a  data manipulation language that allows for 
retrieval of transition sequences among events is required. We believe that such an 
improvement would open new frontiers for the application of GIS in urban 
studies. 

The objective of this paper is to present a GIS modelling strategy to efficiently 
generate event history tables compatible with most statistical software. The 
procedure is illustrated and tested using an historical  survey of 418 professionals 
living in the Quebec Metropolitan Area during 1995-96. The purpose of this 
survey was to collect detailed information about all significant events that 
occurred during their adult life (residential, familial and professional trajectories), 
with specific references to space and time. The following sections will discuss 
some lifeline modelling principles needed for this project (Section 2) and the 
linkage to temporal GIS (Section 3). Section 4 presents a geo-relational extension 
of our model. Section 5 discusses the  application of the survey and discusses 
some preliminary results. Finally, the conclusion assesses the overall efficiency of 
the procedure and outlines further work. 

2 Lifeline Modelling Principles 

Modelling individual trajectories within GIS might offer a better data support for 
the development of urban land-use and transportation models. An important 
achievement of recent urban modelling is the integration of the decision-making 
behaviours of urban actors. These include activity location and travel decisions 
which are intricately linked with household structures and professional profiles of 
persons (Hunt and Simmonds, 1992). Information about these contextual attributes 
is needed for temporal regression analysis (Ben-Akiva and Lerman, 1985) or 
computer-intensive micro-simulation. Temporal regression is also required for 
modelling complex systems, which integrate decision rules of many interacting 
individuals. 

During the last decades, individual trajectories generated patterns of events of 
increasing complexity. This is linked to many factors such as an escalation of 
divorces, extension of contractual short-term employment and increasing 
geographical mobility. This trend is highly related to the economic restructuring 
occurring in most countries since the mid seventies (Rose and Villeneuve, 1993; 
Séguin, 1994). Within cities, individual trajectories aggregate to yield 
demographic, professional and residential patterns that can be observed using 
census data. However, the processes by which personal biographies aggregate to 
form macro patterns cannot be derived from censuses. The latter give only the 
barest snapshot reports on complex situations (Thériault et al., 1999). 

 



Fig. 1. Schematic example of an individual history 

In our database schema, an individual history (Fig. 1) is formed by a set of 
complementary lifelines defining three trajectories (household, residential and 
professional career). An individual's history is altered when an event occurs 
modifying one of his lifelines, or in other words, the episodes of one of his 
lifelines. Let us remark that such an event may alter - simultaneously or afterwards 
- several episodes of many lifelines, leading to interdependent episodes. For 
example, finding employment could be a preliminary condition for renting an 
apartment. Other events can be anticipated and lead to prior adjustment: a 
household's move may anticipate a new child birth. Therefore, trajectories show 
interlocked evolution based on personal behavioural strategies. They are formed 
of partially or totally ordered episodes. Moreover, each of these trajectories is 
somewhat different in structure. A household composition changes with arrival or 
departure of any member. The residential trajectory depicts the succession of 
living places. The career pathway may describe successive mixes of potentially 
simultaneous occupational activities (Thériault et al., 1999). 

An individual’s lifeline is defined as a set of time-stamped episodes along one 
of his life dimensions (E.g. marital status, having children). These lifelines are 
described using episodes and events. The global status of an individual for an 
instant of time can be derived from an aggregation of his different lifelines. A 
lifeline has a form that is either linear or multi-linear. For example, some 
individuals may hold several jobs or residential locations simultaneously. Lifeline 
episodes constitute logical sequences related to life cycles. Studying these 
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evolution (or decision) patterns is certainly more relevant for urban planning than 
knowing the exact timing of events for each individual. 

Fig. 1 illustrates a complex mix of real world phenomena (persons, trajectories, 
lifelines, episodes and events). All these notions, including the individuals and 
trajectories themselves, are integrated in our model. The first basic modelling 
concept is the episode, which is used to describe individuals and their historical 
properties. An episode denotes an individual's homogeneous value along one 
modelling dimension, that is, a lifeline. An individual's history is composed of 
many lifelines that include partially ordered time-stamped (or not) episodes,   
using temporal periods. An episode shows some status that endures over a given 
period of time and corresponds to the individuals lifeline. Following Snodgrass 
(1999), we define a period as an anchored interval of time delimited by two time-
stamps (begins and ends). A time interval also indicates the length of the period 
(its duration). In the sense of Allen (1984), an episode - a property in Allen's 
terminology - is divisible. Therefore, if an episode holds over a period of time i, 
then all its properties hold during any subinterval of i. 

A second important modelling concept relates to events. An event models one-
to-many changes of episodes from one-to-many individuals' lifelines. Each 
episode is bounded by two events (begins and ends), potentially building 
multidimensional networks of ordered successive episodes or events. An event is 
time-stamped by either an instant or a period. An event using a period of time is 
indivisible. For example, if a marriage occurred in June 1999 (time granularity of 
a month), we cannot derive that this marriage happened on the 15th of June 1999. 

For prototyping purposes, our modelling concepts are specified using a 
relational database approach. However, these modelling concepts are general 
enough to be applied to other database models such as object-oriented models. 
Two relations constitute the main components of this database: events and 
episodes (Fig. 2). They are described as follows: 

An episode is defined as a tuple Episode (EpisodeId, EpisodeName, 
LifeLineDimension, SetOfIndividualId, SetOfRelatedIndividualId, EpisodeTime, 
QuestTime, EpisodeSpatial). EpisodeId uniquely identifies each episode. 
EpisodeName represents and names the class of episodes represented along a 
lifeline (E.g. single or married). LifeLineDimension indicates the dimension 
modelled by this lifeline (E.g. individual’s life, marital status, and occupation). 
SetOfIndividualId keeps the list of individuals to whom this episode belongs (E.g. 
the person answering the questionnaire, and his/her relatives actively involved in 
this episode). SetOfRelatedIndividualId lists the other persons linked to this 
episode (E.g. members of an individual’s household playing only a passive role). 
EpisodeTime models the temporal period over which this episode is valid. 
EpisodeSpatial indicates the spatial location of this episode. QuestTime keeps the 
date when the questionnaire was completed (important for surveys including 
persons answering at different times). 

 
 



Episode

PK EpisodeId N-Unsigned Integer

EpisodeName C-Variable Length(40)
LifeLineDimension C-Variable Length(40)

FK2 SetOfIndividuals: [Set] N-Unsigned Integer
FK1 SetOfRelatedIndividuals: [Set] N-Unsigned Integer

EpisodeTime : [List] T-Date
QuestTime T-Date
EpisodeSpatial : [List] C-Fixed Length(30)

Event

PK EventId N-Unsigned Integer

EventName C-Variable Length(40)
FK1 SetOfEpisodeIn: [Set] N-Unsigned Integer
FK2 SetOfEpisodeOut: [Set] N-Unsigned Integer

EventTime : [List] T-Date
QuestTime T-Date
EventSpatial : [List] C-Fixed Length(30)

in out

Individual

PK PersonId N-Unsigned Integer

FK1 LifeId N-Unsigned Integer
Name C-Variable Length(40)
SurName C-Variable Length(40)
Gender C-Fixed Length(1)
BirthDate T-Date

lives

Marital

PK,FK2 MaritalId N-Unsigned Integer

FK1 PersonId N-Unsigned Integer
Status C-Fixed Length(30)

during

has

Spouse

PK,FK1 SpouseId N-Unsigned Integer

FK2 PersonId N-Unsigned Integer
Order N-Unsigned Integer

during

is

Child

PK,FK2 ChildId N-Unsigned Integer

FatherName C-Variable Length(40)
MotherName C-Variable Length(40)

FK1 PersonId N-Unsigned Integer
BirthYear N-Unsigned Integer
Order N-Unsigned Integer

duringis

influences

relates

Home

PK,FK1 HomeId N-Unsigned Integer

Address C-Variable Length(40)
HomePrice N-Decimal(10,2)
SalePrice N-Decimal(10,2)
HldIncome N-Decimal(10,2)

during

 
Fig. 2. Relational schema for describing household and residential lifelines 

An event is defined as a tuple Event (EventId, EventName, SetOfEpisodeInId, 
SetOfEpisodeOutId, EventTime, QuestTime, EventSpatial). EventId uniquely 
identifies each event. EventName represents the class of events represented (E.g. 
marriage, birth). SetOfEpisodeInId gives the set of episodes which are terminated 
by this event. SetOfEpisodeOutId gives the set of episodes which are initiated by 
this event. As previously mentioned, an event can be linked to several episodes.  
Conversely an episode might be either terminated or generated by the conjunction 
of several events. These links provide means of selecting the previous and the 
following episodes, using their explicit sequence ordering. This could work even 
when time stamps are missing or when these episodes are non-immediate 
successors or predecessors. EventTime models the time when this event happens 
(using either temporal instants or periods). QuestTime indicates the date when the 
information was collected. EventSpatial keeps the spatial location of this event. 

Temporal and spatial attributes use multi-level data representations: a calendar 
of type (Year: Month) for temporal attributes EventTime, EpisodeTime and 
QuestTime; and, a spatial hierarchy of type (MunCode: Municipality: 
NeighbourhoodType: PostalCode: Longitude: Latitude) for spatial attributes 
EventSpatial and EpisodeSpatial. Such representations support reasoning at 
various levels of abstraction as introduced in Claramunt and Jiang (2000). As 
necessary, this primary structure can be extended using additional relations to 



handle specific attributes (thematic, temporal and spatial) that complement the 
semantics of the application (E.g. Child, Spouse, Home as illustrated in Fig. 2). 

3 Temporal GIS Modelling 

Lifeline histories are modelled at the basic individual level using events and 
episodes. Thanks to a graph structure linking successive episodes and events, this 
model also provides means to handle chronological time and historical sequences 
(ordered events) in the same structure. For example, SetofEpisodeIn points to 
every episode ended by the current event, while SetofEpisodeOut lists all those 
following it (Fig. 2). Additionally, because individuals move within the city, the 
same database schema can be used to analyse spatio-temporal patterns. 

In Fig. 2, the relational schema uses sets to model groups of individuals related 
through an episode (E.g. a newborn child and his parents). Lists are used to bound 
time periods (begin- and end-date) and to record multi-level spatial location. In an 
effort to map this relational schema to the software environment used for 
prototyping, (combination of MapInfo and MS Access) some minor adaptations 
were required (Fig. 3). Sets were replaced by intermediate tables (EpisodeIn and 
EpisodeOut), thus-allow for many-to-many relationships among episodes and 
events. Lists of individuals were mapped to tables (ActingIndividuals and 
RelatedIndividuals) and linked to episodes. EpisodeTime and EventTime were 
disaggregated in two fields giving their beginning and ending dates. Spatial lists 
(holding spatial locations) are defined using a Spatial table that maintains 
relationships with both episodes and events. Finally, the resulting mapping is 
monitored by an administration table (MapInfo_MapCatalog) that provides 
instructions for generating map symbols when specified tables and views are 
opened within MapInfo, using ODBC services. 

Events and episodes are stored into two tables using the fields EpisodeName, 
LifeLineDimension and EventName to distinguish their type, and to identify the 
lifeline to which the episode belongs. All geographical locations are recorded in a 
unique table, named Spatial. Therefore, several events and episodes can be related 
to a single location tuple as required. Time management is operated in two ways 
by four interrelated tables: Episode, Event, EpisodeIn, EpisodeOut. Date fields, in 
both Event and Episode tables, keep track of chronological time, using T-Date 
types. Links to EpisodeIn and EpisodeOut define multi-dimensional ordering of 
related episodes and events. All spatio-temporal features managed by these five 
general-purpose tables, greatly eases the implementation of spatio-temporal views 
and the formulation of spatio-temporal queries. 

 



Episode

PK EpisodeId N-Decimal(10,0)

EpisodeName C-Variable Length(40)
LifeLineDimension C-Variable Length(40)
EpisodeBeg T-Date
EpisodeEnd T-Date
QuestTime T-Date

FK1,I1 SpatialId N-Decimal(10,0)

Event

PK EventId N-Decimal(10,0)

EventName C-Variable Length(40)
EventBeg T-Date
EventEnd T-Date
QuestTime T-Date

FK1,I1 SpatialId N-Decimal(10,0)

Individual

PK PersonId N-Decimal(10,0)

FK1,I1 LifeId N-Decimal(10,0)
Name C-Variable Length(40)
SurName C-Variable Length(40)
Gender C-Fixed Length(1)
BirthDate T-Date

lives

Marital

PK,FK2,I2 MaritalId N-Decimal(10,0)

FK1,I1 PersonId N-Decimal(10,0)
Status C-Fixed Length(30)

during

has

Spouse

PK,FK1,I1 SpouseId N-Decimal(10,0)

FK2,I2 PersonId N-Decimal(10,0)
Order N-Unsigned Integer

during
is

Child

PK,FK2,I2 ChildId N-Decimal(10,0)

FatherId N-Decimal(10,0)
MotherId N-Decimal(10,0)

FK1,I1 PersonId N-Decimal(10,0)
BirthYear N-Unsigned Integer
Order N-Unsigned Integer

during

is

Home

PK,FK1,I1 HomeId N-Decimal(10,0)

Address C-Variable Length(40)
HomePrice N-Decimal(10,2)
SalePrice N-Decimal(10,2)
HldIncome N-Decimal(10,2)

during

EpisodeIn

PK EpInId N-Decimal(10,0)

FK2,I2 EventId N-Decimal(10,0)
FK1,I1 EpisodeId N-Decimal(10,0)

follows

is

EpisodeOut

PK EpOutId N-Decimal(10,0)

FK1,I1 EventId N-Decimal(10,0)
FK2,I2 EpisodeId N-Decimal(10,0)

initiates

is

ActingIndividuals

PK ActingId N-Decimal(10,0)

FK1,I1 PersonId N-Decimal(10,0)
FK2,I2 EpisodeId N-Decimal(10,0)

is

involves

RelatedIndividuals

PK RelatedId N-Decimal(10,0)

FK1,I1 PersonId N-Decimal(10,0)
FK2,I2 EpisodeId N-Decimal(10,0)

is

involves

Spatial

PK SpatialId N-Decimal(10,0)

MunCode N-Decimal(6,0)
Municipality C-Variable Length(40)
NeighbType C-Variable Length(40)
PostalCode C-Fixed Length(6)
Longitude N-Floating Point
Latitude N-Floating Point

has

has

MAPINFO_MAPCATALOG

SPATIALTYPE N-Floating Point
U1 TABLENAME C-Variable Length(32)

OWNERNAME C-Variable Length(32)
SPATIALCOLUMN C-Variable Length(32)
DB_X_LL N-Floating Point
DB_Y_LL N-Floating Point
DB_X_UR N-Floating Point
DB_Y_UR N-Floating Point
COORDINATESYSTEM C-Variable Length(254)
SYMBOL C-Variable Length(254)
XCOLUMNNAME C-Variable Length(32)
YCOLUMNNAME C-Variable Length(32)

 
Fig. 3. Access-MapInfo expanded schema for household and residential lifelines 

4 Spatio-Temporal Views 

Manipulating several tables using a given query is not a straightforward and 
efficient task. Complex queries can be predefined using conventional relational 
views embedded in the database schema. Fig. 4 presents some examples of views 
integrating various components of respondents’ events and episodes with data 
about the respondent itself. Using views, one can model some specific schemas 
showing any type of episodes or events, providing an efficient link with the 
secondary tables of Fig. 3 (E.g. Home, Marital). Moreover, these views can 
integrate any spatial and temporal information in simple structures. Depending on 
the DBMS capabilities, these views can later be joined to build more complex 
views, thereby defining a comprehensive  system to solve queries. 

Table 1 details a list of tables and views involved in defining views for our 
application, indicating join relationships used. Respondent_Episodes and 
Respondent_Events views (Fig. 4) give, for each respondent of our survey, the list 
of his/her reported episodes and events. Using database triggers, these views 
automatically add the respondent's Age (EpisodeBeg-BirthDate) and the Duration 



of the episode (in months) to each tuple. They also indicate if, at survey time, the 
 

Table 1. Relational links defining spatio-temporal views of individual lifelines 

Resulting View From Tables / Views Relational / Sorting Conditions 
RespEpis [ActingIndividuals] As [c1] 

[Episode] As [c2] 
[Individual] As [c3] 
[Spatial] As [c4] 

[c1].[EpisodeId] = [c2].[EpisodeId] ^ 
[c2].[SpatialId] = [c4].[SpatialId] 
^ [c1].[PersonId] = [c3].[PersonId] 

IndivEvent [RespEpis] As [c1] 
[Event] As [c2] 
[EpisodeOut] AS [c3] 
[Spatial] As [c4] 

[c1].[EpisodeId] = [c3].[EpisodeId] ^ 
[c2].[EventId] = [c3].[EventId] 
^ [c2].[SpatialId] = [c4].[SpatialId] 

Couples [Spouse] As [c1] 
[Episode] As [c2] 
[RespEpis] As [c3] 

[c1].[SpouseId] = [c2].[EpisodeId] ^ 
[c2].[EpisodeId] = [c3].[EpisodeId] 
^ [c3].[Respondent] 

Respondent_Episodes [RespEpis] As [c1] 
[Episode] As [c2] 
[Individual] As [c3] 

[c1].[EpisodeId] = [c2].[EpisodeId] ^ 
[c1].[Respondent] 
^ [c1].[PersonId] = [c3].[PersonId] 
Order By [c1].[PersonId], [c1].[EpisodeBeg] 

Respondent_Events [IndivEvent] As [c1] 
[Event] As [c2] 
[Individual] As [c3] 

[c1].[EventId] = [c2].[EventId] ^ [c1].[PersonId] = 
[c3].[PersonId] 
^ [c1].[Respondent] 
Order By [c1].[PersonId], [c1].[EventBeg] 

Episodes_Before_Event [RespEpis] As [c1] 
[Respondent_Events] As [c2] 

[c1].[PersonId] = [c2].[PersonId] ^ 
[c1].[EpisodeEnd] <= [c2].[EventBeg] 
Order By [c1].[PersonId], [c2].[EventBeg], 
[c1].[EpisodeBeg] 

Episodes_After_Event [RespEpis] As [c1] 
[Respondent_Events] As [c2] 

[c1].[PersonId] = [c2].[PersonId] ^ 
[c1].[EpisodeBeg] >= [c2].[EventEnd] 
Order By [c1].[PersonId], [c2].[EventEnd], 
[c1].[EpisodeBeg] 

 
 



  

Couples

PersonId N-Decimal(10,0)
Spouse N-Decimal(10,0)
EpisBeg T-Date
EpisEnd T-Date
Duration N-Unsigned Integer
Ended L-True or False
Age N-Decimal(10,2)
CoupleOrder N-Unsigned Integer
EpisodeId N-Decimal(10,0)

RespEpis

PersonId N-Decimal(10,0)
EpisodeId N-Decimal(10,0)
Respondent L-True or False
EpisodeName C-Variable Length(40)
LifeLineDimension C-Variable Length(40)
EpisodeBeg T-Date
EpisodeEnd T-Date
Duration N-Unsigned Integer
Ended L-True or False
Age N-Decimal(10,2)
SpatialId N-Decimal(10,0)
MunCode N-Decimal(6,0)
Municipality C-Variable Length(40)
PostalCode C-Fixed Length(6)
NeighbType C-Variable Length(40)
Longitude N-Floating Point
Latitude N-Floating Point
QuestTime T-Date

IndivEvent

PersonId N-Decimal(10,0)
EventId N-Decimal(10,0)
Respondent N-Decimal(10,0)
EventName C-Variable Length(40)
EventBeg T-Date
EventEnd T-Date
Duration N-Unsigned Integer
Ended L-True or False
EpisodeId N-Decimal(10,0)
Age N-Decimal(10,2)
SpatialId N-Decimal(10,0)
MunCode N-Decimal(6,0)
Municipality C-Variable Length(40)
NeighbType C-Variable Length(40)
PostalCode C-Fixed Length(6)
Longitude N-Floating Point
Latitude N-Floating Point

Episode

Individual
Actingindividuals

EpisodeOut Event

Spouse

Spatial

Respondent_Events

PersonId N-Decimal(10,0)
Gender C-Fixed Length(1)
BirthDate T-Date
EventId N-Decimal(10,0)
EventName C-Variable Length(40)
EventBeg T-Date
EventEnd T-Date
Ended L-True or False
Age N-Decimal(10,2)
EpisodeId N-Decimal(10,0)
SpatialId N-Decimal(10,0)
MunCode N-Decimal(6,0)
Municipality C-Variable Length(40)
NeighbType C-Variable Length(40)
PostalCode C-Fixed Length(6)
Longitude N-Floating Point
Latitude N-Floating Point

Respondent_Episodes

PersonId N-Decimal(10,0)
Gender C-Fixed Length(1)
BirthDate T-Date
EpisodeId N-Decimal(10,0)
EpisodeName C-Variable Length(40)
LifeLineDimension C-Variable Length(40)
EpisodeBeg T-Date
EpisodeEnd T-Date
Duration N-Unsigned Integer
Ended L-True or False
Age N-Decimal(10,2)
SpatialId N-Decimal(10,0)
MunCode N-Decimal(6,0)
Municipality C-Variable Length(40)
NeighbType C-Variable Length(40)
PostalCode C-Fixed Length(6)
Longitude N-Floating Point
Latitude N-Floating Point

 
Fig. 4. Spatio-temporal integrated views of respondents’ episodes and events 

episode was Ended, or still happening. Using time-stamps to order each 
respondent's episodes and events, the next step defines multi-dimensional links 
among lifelines (Fig. 5; Table 1). Two multi-dimensional views 
(Episodes_Before_Event and Episodes_After_Event) show respectively, for each 
respondent, the list of all episodes that started before any event occurred during 
his entire life and all those that started after the event. In the view 
Episodes_After_Event, the field TransTime indicates elapsed time (in years) 
between the event and the episode ([c1].[EpisodeBeg]-[c2].[EventEnd]). If an 
episode was not ended at survey time ([c1].[EpisodeBeg]>=[c1].[QuestTime]), it 
is called Censored. 

 



RespEpis

Episodes_Before_Event

PersonId N-Decimal(10,0)
Gender C-Fixed Length(1)
BirthDate T-Date
EventId N-Decimal(10,0)
EventName C-Variable Length(40)
EventBeg T-Date
EventAge N-Decimal(10,2)
EventMunic C-Variable Length(40)
EventNeighb C-Variable Length(40)
EventPcode C-Fixed Length(6)
EventLong N-Floating Point
EventLat N-Floating Point
Epis1Id N-Decimal(10,0)
Epis1LifeL C-Variable Length(40)
Epis1Name C-Variable Length(40)
Epis1Beg T-Date
Epis1End T-Date
Epis1Dur N-Decimal(10,2)
Epis1Age N-Decimal(10,2)
Epis1Ended L-True or False
Epis1Munic C-Variable Length(40)
Epis1Neighb C-Variable Length(40)
Epis1Pcode C-Fixed Length(6)
Epis1Long N-Floating Point
Epis1Lat N-Floating Point
TransTime N-Decimal(10,2)
Censored L-True or False

SpatialRespondent_Events

Episodes_After_Event

PersonId N-Decimal(10,0)
Gender C-Fixed Length(1)
BirthDate T-Date
EventId N-Decimal(10,0)
EventName C-Variable Length(40)
EventEnd T-Date
EventAge N-Decimal(10,2)
EventMunic C-Variable Length(40)
EventNeighb C-Variable Length(40)
EventPcode C-Fixed Length(6)
EventLong N-Floating Point
EventLat N-Floating Point
Epis2Id N-Decimal(10,0)
Epis2LifeL C-Variable Length(40)
Epis2Name C-Variable Length(40)
Epis2Beg T-Date
Epis2End T-Date
Epis2Dur N-Decimal(10,2)
Epis2Age N-Decimal(10,2)
Epis2Ended L-True or False
Epis2Munic C-Variable Length(40)
Epis2Neighb C-Variable Length(40)
Epis2PCode C-Fixed Length(6)
Epis2Long N-Floating Point
Epis2Lat N-Floating Point
TransTime N-Decimal(10,2)
Censored L-True or False  

Fig. 5. Multi-dimensional lifeline transitions among episodes through each event 

5 Application of  the Quebec Metropolitan Area 

In our application example, 418 respondents reported 5,541 events and episodes. 
Episodes are distributed into four lifelines (Family, Individual, Marital and 
Residential), 10 episode types and 12 event types (Table 2). For each respondent, 
an episode and an event were assigned to the interview because its timing is 
needed to distinguish censored events and ongoing periods. Building multi-
dimensional sequences of periods preceding and following each event during the 
life of each individual, generated 22,676 tuples in view Episodes_Before_Event, 
and 44,839 tuples in view Episodes_After_Event. This last view provides relevant 
data and logical structure to generate the flat files needed for time regression in 
SPSS. 

Table 3 presents a relational-like query selecting sequences of episodes and 
events according to the following criteria: Among people who were tenants when 
their first child was born, distinguish those who decided to buy a house afterwards 
from those who did not; then compute how long they postponed their decision and 
to which distance they moved. 

Table 2. Typology of episodes and events 

Episodes Events 
Lifeline EpisodeName Count EventName Count 
Family Child 750 Alone 234 
Family Child Departed 102 Birth 418 



Individual Interview 418 Buy 646 
Individual Life 418 Child Adoption 3 
Individual Self 418 Child Arrival 64 

Marital Couple 533 Child Birth 683 
Marital Separated 174 Child Departure 102 
Marital Single 234 Inhabit 169 

Residential Owner 646 Interview 418 
Residential Roomate 169 Leaving Parent 418 
Residential Tenant 1679 Rent 1679 

   Separation 174 
   Union 533 

 

Table 3. Relational-like query to generate the event history flat file for SPSS 

Query command Notes 
Select *, 
Distance([c1].[Longitude],[c1].[Latitude],[c2].[Epis2Long],[c2].[Epis2Lat
],”Km”) “DIST” 

From [Respondent_Episodes] As [c1], [Episodes_After_Event] As [c2] 
Where [c1].[PersonId]=[c2].[PersonId] 
And (( [c2].[EventName] = "Child Birth" and [c2].[Epis2Name] = 
"Owner" ) 
  or ( [c2].EventName = "Child Birth" and [c2].[Epis2Name] 
= "Interview" )) 
and ([c1].[EpisodeName]="Tenant") 
and ([c1].[NeighbType] in ("City Core","Old Suburbs","New 
Suburbs","Urban Fringe")) 
and {[c2].[EventEnd] .TDuring. [c1].[EpisodeBeg;EpisodeEnd]} 

Group By [c1].[PersonId], [c1].[EpisodeId] 
Order By [c1].[PersonId], [c1].[EpisodeId], [c2].[Epis2Beg] 
Object [Line, 
[c1].[Longitude]:[c1].[Latitude];[c2].[Epis2Long]:[c2].[Epis2Lat]] 
Into Event_History_Table 
 

Computing moving distance 
Using Spatio-temporal views 
Restricting to each person’s life 
Buying home after child’s birth 
Censored: still tenants at survey time 
Respondent was tenant at that time 
Respondent was living in Quebec 
CMA 
Birth date is during residential episode 
Retaining only one child birth by 
person 
Ordering to retain the first set (child-
buy) 
Generating a line between locations 
Generating the event history table 

In Table 3, the relational-like query uses a join between the view 
Respondent_Episodes and the table Episodes. The view Respondent_Episodes 
gives the home location of some tenants when the first child was born. This 
describes the neighbourhood where the 151 respondents who were tenants when 
their first child was born were living at that time (City core, Old Suburbs, New 
suburbs, Urban fringe). This gives an indication of their relative location within 
the Quebec Metropolitan Area. Knowing which ones did not change their housing 
tenure afterwards (Censored), and which ones did, we can test the hypothesis of a 
relationship linking neighbourhood types where young parents live and their 
decision to buy a home less than five years later (Table 4). The chi-square test 
indicates that no significant relationship was found between these two facts in our 
sample of tenants (probability = 0.566). Therefore, willingness to purchase a 
house after the first child’s birth seems invariant across the city. 



 

Table 4. Cross-tabulation of home location of tenants and their decision to buy a home 

Type of living neighbourhood when the first child was born  
City Core Old suburbs New suburbs Urban fringe  

Decision to buy a 
home within 5 
years after the first 
child is born 

Count Expect
ed 

Count Expect
ed 

Count Expect
ed 

Count Expect
ed 

Sum 

Did buy a home 33 34.8 64 60.5 7 8.3 1 1.4 105 
Did not buy a home 17 15.2 23 26.5 5 3.7 1 0.6 46 
Sum 50 50 87 87 12 12 2 2 151 

566.0;3;032.22
��� yprobabilitdf�  

Table 5 shows the result of a Cox regression estimating attributes influencing 
the decision of tenants to buy a home after the first child is born. According to the 
overall chi-square test, the relationship is highly significant. Three factors were 
found to have a significant influence (Wald’s statistics) on the willingness to buy a 
home: decade of birth of the first child (PeriodB: odds ratio increasing with time), 
distance at which people are ready to move in order to access home ownership 
(Dist: odds ratio increases with distance), and duration of their stay in the new 
home (Epis2Dur: odds ratio increases with expected duration of stay). 

Table 5. Attributes influencing tenants for buying a new home after the first child is born 

 
B SE Wald df Sig. 

Odds 
Be  

EPIS2DUR : Duration of stay at destination home 
(Years) 

0.137 0.019 50.650 1 0.000 1.147 

DIST : Distance from child birthplace to new home 
location (Km) 

0.007 0.002 12.545 1 0.000 1.007 

PERIODB : Decade of birth of the first child 26.687 3 0.000  
1960-69 -2.115 0.734 8.311 1 0.004 0.121 
1970-79 -1.574 0.485 10.530 1 0.001 0.207 
1980-89 -0.267 0.426 0.393 1 0.530 0.765 

Reference  1990-95 0.000  1.000 
0001.0;5;314.612

��� yprobabilitdf�  

Table 5 can be used to build a mathematical expression for the likelihood of 
tenants to buy a home (Censored=0) at time TransTime after their first child is 
born (EVENTNAME=”Child Birth”): 

)80267.070574.160115.2007.02137.0()ln( 0)( PeriodPeriodPeriodDISTDUREPISTRANSTIME eeth �����

�
��

, using respondent’s spatio-temporal attributes. This function has two parts: 
)ln( 0 TRANSTIMEe �� � , the base line hazard function related to elapsed time after 

the first child is born ( see Fig. 6), 
 and )80267.070574.160115.2007.02137.0( PeriodPeriodPeriodDISTDUREPISe ���� , the marginal 

effect of independent variables on respondent’s decision to buy a home. Moving 
distances come from measurement of moving paths from the location of previous 
home to that of the newer (Fig. 6). 



 
Cummulative proportion of
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Elapsed time before buying home after birth of first child (Years)
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Fig. 6. Likelihood function of buying a home and moving paths of house places 

6 Conclusion 

This paper introduces a GIS database approach illustrated by an application 
example that clearly demonstrates the interest of analysing event histories at the 
individual level using temporal statistical methods. Moreover, integrating events 
and episodes management within GIS provides efficient means for integrating 
geographical criteria into the modelling of people’s decision. This goes far beyond 
the mere mapping of individual evolution path over space. Because, they isolate 
space-time attributes in specialised tables, the geo-relational schemas of this 
application can be readily used in many other temporal GIS applications needing 
to relate successive events occurring along lifelines. 

Further work is needed to extend the concept of view towards spatial and 
temporal operators. Integrity constraints have to be enforced to check the 
convergence of chronological and ordered temporal information handled in the 
database. A user-friendly query interface has to be developed for better 
manipulation of data. Finally, adding dynamics would improve mapping of 
results. 
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