
Developing Lightweight, Data-Driven Exploratory 
Geo-Visualization Tools for the Web 

Erik Steiner, Alan MacEachren, and Diansheng Guo  

GeoVISTA Center, Department of Geography, 302 Walker, Penn State 
University, University Park, PA, USA, Phone: 814-865-7491; Fax: 814-863-7943 
Correspondence to: maceachren@psu.edu; www.geovista.psu.edu 

Abstract 

This paper details efforts to development a set of prototype, web-based geo-
visualisation tools. The focus is on design and implementation of lightweight tools 
that can run in standard web browsers and access data, stored in a remote 
database. The web geo-visualisation tools incorporate several standard exploratory 
spatial data analysis methods, including linked brushing and interactive animation. 
These tools are constructed using Macromedia Flash, a commercial software 
application that produces content for the web using a publicly available file 
specification called SWF. The advantages and disadvantages of Flash for geo-
visualisation are discussed. One advantage is that it supports links to remote 
databases. Accordingly, the use of XML as the communication syntax for the geo-
visualisation tool-to-database link is discussed. Two solutions to dynamic 
database access have been implemented, one using a stand-alone Java server and 
the other using Java servlet technology; the advantages and disadvantages of each 
approach are discussed.  
Keywords: interactive maps, visualisation, exploratory spatial data analysis, 
remote database access, web mapping 

1 Introduction 

Dramatic advances in 'mapping' have occurred during the past decade. Among the 
most fundamental are the change from maps that communicate a single message, 
statically, to maps that support exploration of multiple perspectives, dynamically. 
Although dynamic maps have been appearing on the WWW (world wide web – 
hereafter, simply web) for several years, most of the innovation in geo-
visualisation during this time has been directed to expert users working on desktop 
(or more powerful) computers. Technological and societal changes are making it 

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

              Symposium on Geospatial Theory, Processing and Applications, 
Symposium sur la théorie, les traitements et les applications  des données Géospatiales, Ottawa 2002



possible to extend from this base toward development of highly interactive geo-
visualisation tools designed to support non-expert needs as well as the web-
delivery of such tools.  

In this paper, a set of lightweight, data-driven geo-visualisation tools for the 
web that are being developed as part of a 'Digital Government' (DG) research 
initiative in the U.S are both described and demonstrated. The focus of our 
contributions to the wider DG effort is on dynamic maps and graphics to support 
visual delivery and analysis of federal statistical summaries (compilations of 
numerical data, such as those from the national Census, that are published in 
aggregate form).  

The initial section below provides some background for both the kinds of 
exploratory geo-visualisation tools being developed and for the DG project they 
are a part of. Next, the implementation of a web-based prototype using 
Macromedia Flash as the development platform is briefly presented. The 
prototype includes dynamic and linked exploratory geospatial data analysis 
methods (methods that are now relatively standard for systems targeted at expert 
analysts but, in the implementation presented here, are designed for use by non-
expert users). The subsequent  section outlines the mechanisms constructed to 
support data access from a commercial database (Oracle) through the Flash (map-
based) interface. We close with a brief discussion of possible extensions to these 
tools, some of the limitations encountered, and plans for application of an 
iterative, human-centred design approach to tool development and assessment.  

2 Background  

Interactive maps for the web have become quite commonplace, and substantial 
investments in both geospatial research and applications are being directed toward 
serving of geospatial data via the web; see (MacEachren, 1998) for a recent 
review. There have also been several successful web-implementations of 
exploratory geo-visualisation methods; see (Andrienko & Andrienko, 1999; 
Dykes, 1997; Harrower, MacEachren, & Griffin, 2000). Still, it remains a 
challenge to design web-based interactive geo-visualisation tools that meet 
professional cartographic design standards while being flexible enough to achieve 
the core geo-visualisation goal of supporting a multi-perspective approach to data 
exploration. This challenge generally requires that developers (and often users) 
master formal computer programming languages; and even the best of current 
tools impose serious limitations from the perspective of graphic design – 
limitations that are likely to impede the transitioning of multi-perspective geo-
visualisation methods from expert to non-expert user.  

The goal of our particular DG project is to develop 'quality graphics' that 
support the understanding and flexible analysis of statistical summaries produced 
by eight federal government agencies in the U.S. The research has a dual focus on 
provision of relatively sophisticated exploratory data analysis tools to support 



expert work in generating these statistical summaries (e.g., to support population 
projections by the Bureau of the Census) and to support access to derived 
information by the public (with the target audience here ranging from the ordinary 
citizen interested in health-environment issues to the university researcher 
conducting a demographic or economic analysis).  

The Flash-enabled tools described below are intended to support this dual 
focus. First, Flash is being used to provide both an environment for formal 
cognitive experimentation and for rapid prototyping. The rapid prototyping allows 
dynamic data exploration methods to be quickly implemented and assessed, before 
committing resources to final implementation as part of a suite of Java-based tools 
being constructed within GeoVISTA Studio (MacEachren et al., 2001) and/or 
Illumitek's nViZn. Second, we are experimenting with Flash as a final web-
delivery mechanism that supports user-friendly but flexible exploratory geo-
visualisation tools that can be used effectively by non-experts.  

In sections 3 and 4 below, we describe prototype, Flash-based, web geo-
visualisation tools we have implemented using a client-server approach. The first 
section focuses on design and implementation of interactive exploratory maps that 
run in standard web browsers and that support dynamic linking between visual 
representation forms and user construction of temporal and non-temporal 
animated sequences. Then, the next section details the process of linking these 
interactive maps dynamically to a remote database. 

3 Design of Dynamic Maps 

We have created several dynamic maps using Flash in an effort to determine 
capabilities and limitations of this. Here we illustrate, and describe briefly, three 
of these prototypes. 

3.1 Linked Geographic Brushing 

In our initial prototype, we implemented a choropleth map and scatterplot display 
using state-level data of the United States. The interface was designed in an earlier 
version of Flash (4.0) that supported data access only through loading URL 
Encoded text files. Later prototypes (discussed in sections 3.2 and 3.3) implement 
more sophisticated database support. With our initial tool, once the data are 
loaded, they are linked to their geographic entities (states) and to a scatterplot 
representation. This functionality is illustrated in Fig. 1 (below). The figure shows 
a screen capture from a custom dynamic application built using Flash's 
ActionScript (a scripting language that is similar, conceptually, to JavaScript 
while emphasising graphic applications). Flash's graphic design tools allow the 
designer to construct the visual elements from which the interface is composed, 
while ActionScript supports control of the global characteristics of the display 
objects (colour, size, location, transparency, etc.). In the case of the choropleth 



map shown, state elements were given a lightness value that corresponded to their 
data value, and in the case of the scatterplot, individual points were given 
positions according to their values on two separate attributes. 

 

Fig. 1. Prototype 1: Linked geographic brushing interface 

The prototype demonstrates the concept of linking a scatterplot and choropleth 
map dynamically, so that manipulation of one has an impact on the other. For 
previous research on the topic of linked geographic brushing; see (Dykes, 1997; 
Haug et al., 1997; Monmonier, 1989). Here, we implemented a one-way 
communication from the scatterplot to the map in which user interactions within 
the scatterplot are propagated to the map. Specifically, users can define class 
breaks on the x-axis of the scatterplot (the axis depicting the variable mapped) by 
dragging a vertical line that represents each break point. These breaks are then 
immediately propagated to the map display, with the colour assigned to each state 
altered to reflect its new class assignment. Thus users can define classes based on 
the characteristics of one variable’s relationship to another and evaluate the impact 
of those class break choices on the spatial pattern of that initial variable. An 
interactive version of the interface may be accessed at the following address: 
http://www.geovista.psu.edu/publications/Beijing01/SteinerICA01/loadusa/loadus
a5.html.  

Our success with the Flash 4.0 environment demonstrated the feasibility of 
developing linked displays that include lightweight and dynamic statistical maps 
(the example above involves a 93KB download to the web browser). One 



drawback that we encountered in our initial testing was a lack of flexibility related 
to loading new data into the interface. Flash 4.0 included very limited support for 
robust data structures. The highly customised nature of the individual components 
of this first prototype (scatterplot, choropleth map) also constrained the future 
application of these representation forms to new interfaces.  

3.2 User-Controlled Animation Sequences 

A second prototype interface we designed combines the linked brushing concept 
with user-controlled animation sequences and more sophisticated data access. The 
interface is designed to allow users to load and explore county-based thematic 
data attributes through a cartographic display. Variables are loaded using 
eXtensible Markup Language (XML) syntax (supported in Flash 5.0 and higher). 
XML is rapidly becoming a standard information exchange language; it is 
supported by commercial databases, with efforts to develop a geospatial variant 
(GML) well under way (Open GIS Consortium, 2000; Zaslavsky, 2000). Support 
for XML makes it possible for Flash to access a database efficiently. In our case, 
an Oracle database server stores the relevant datasets (see section 4 for details on 
database access issues). 

The dynamic environment illustrated in Fig. 2 is designed to interpret the 
structure of an incoming XML file and, subsequently, dynamically construct 
 

 

Fig. 2. Prototype 2: XML-based map incorporating animation sequences 



visual and data elements from this code. In this prototype, once the data are 
processed by the Flash Player, they are stored locally and may be explored and 
visualised without further communication with the server.  

In prototype 2, three visual representation forms are generated upon data input: 
a choropleth map, a histogram display, and roll-over buttons for each variable. 
The number and names of the variables are defined based on the XML metadata. 
The prototype includes standard zooming and panning functions (for the map) and 
the three elements of the interface are dynamically linked. For example, if a user 
clicks or does a 'mouse over' on a variable button, the attribute selection is 
immediately propagated to the map and histogram; if the user interacts with the 
histogram, the changes are immediately propagated to the map.  

Flash is an object-oriented environment in which each display entity (e.g., 
county) controls aspects of its own display. Labels for the elements in the variable 
list (left column of the interface) are generated from metadata within the XML 
import file. On import, the data associated with each variable are distributed to the 
geographic entities (e.g., counties). When the user chooses a new variable (by 
mousing-over its label), each geographic unit now 'knows' to refer to the selected 
locally stored attribute. Thus, each map object accesses data simultaneously, 
without referring to the original dataset or making a new call to the server. 
Similarly, the histogram object recognises the shift to a new variable and will 
immediately update its form based on the user's selection.  

The histogram supports linked geographic brushing in the form of a moveable 
class break similar to the scatterplot described in the first prototype. The user may 
click and drag along the base of the histogram display to create a two-class 
representation of counties above and below a certain class break; see Fig. 3. Users 
can also define a break point for a single variable and then jump among the 
different variables to compare the spatial distributions of the variables based on 
this cut-off criterion. The dynamic interaction between a statistical distribution 
representation (histogram) and a cartographic representation (choropleth map) 
may allow users to explore geographic datasets in greater depth with the 
possibility of generating novel hypotheses.  

Users can visualise each individual variable alone or may choose to rapidly 
shift between variables to compare attribute values and distributions, an example 
of non-temporal animation. For more information on non-temporal animation, see: 
(DiBiase, et al., 1992; Egbert & Slocum, 1992; Peterson, 1993). Building such a 
sequence is accomplished by dragging variable labels from the list in the left 
margin to the slots in the “build animation sequence” row. As the animation is 
run, users can interact with the histogram display to produce a dynamic brushing 
effect with a single class break that is transmitted to each variable in the animated 
sequence. The same tools will work for temporal data sequences, although the 
drag-and-drop method for building sequences is not practical for long time 
sequences. In such cases, supporting drag-and drop for sequence end points (with 
other data accessed automatically) may be practical. 



 

Fig. 3. Prototype 2: Histogram-Map link with draggable class break 

This prototype demonstrates the feasibility of using dynamically-loaded XML 
files to create dynamic visual representation forms using Flash. While the 
interface remained lightweight (114KB), the data loading process proved to be a 
performance bottleneck (taking perhaps 5 seconds to load Pennsylvania). Once the 
data were loaded, however, the system response was immediate and satisfactory.  

3.3 U.S. by County - Interacting with Detailed Maps 

The first two prototypes described, dealt with both a limited number of data 
variables and limited number of geographic entities. To further explore the 
capabilities and limitations of Flash as an environment for web-based geo-
visualisation (particularly in support of the missions of our Digital Government 
partner agencies), we created a new application for county-level data of the entire 
United States.  

Generating a base map of the U.S. to accept the XML input was a labour-
intensive process. As explained in more detail below, it involves manual labelling 
of each geographic entity (more than 3000 here). Once completed, of course, the 
map is reusable. 

While we streamlined the previous ActionScript code to perform only 
absolutely necessary operations on the dataset, there was a substantial 
improvement of system performance with this county-based map. An XML file 



containing “fips” codes (a standardised coding scheme used in the U.S.) with a 
single attribute took about one minute to load and the system response once 
loaded was unsatisfactory for linked brushing and animation. This is a recent 
prototype and we are currently evaluating the application in an effort to speed up 
the processing. 

 

 

Fig. 4. Prototype 3: U.S. by county, loaded through large XML file 

Flash provides support for interpreting and constructing XML files to allow 
efficient and robust client-server communication with small datasets. Flash's basic 
XML parser allows the designer to build interpreters for the expected XML file in 
order to store attribute names, values, and metadata. The following section details 
the database side of the prototype designs we have implemented.  

4 Database Access 

To support access to and visual exploration of a wide range of data using the tools 
described above (and their extensions), we are building a database of 
demographic, health, and related statistics on a dedicated Oracle database server. 
The initial implementation of each example above relied on pre-processed data 
stored as XML files, with data embedded in the client application at download 
time. Creating a dynamic link between the web-based geo-visualisation client and 
the database server, in contrast, offers several advantages. Among them: 1) the 



user can freely select and focus on any interesting subset of data for exploration; 
2) with a centralised database, we eliminate many problems regarding consistency 
checks, maintenance, and updates of data; 3) through a standard interface (here we 
adopt the XML format as the communication syntax), the visualisation modules 
and database management are separated, which can ease the evolution of both 
components (e.g., allowing us to easily replace the Flash-based geo-visualisation 
modules with ones written in Java). Due to the limited ability for Flash 
applications to process data (particularly if we are to achieve the desired 
lightweight client that is sufficiently responsive for real-time interaction), we also 
need the server to do most of the data query and processing tasks and then serve 
the client with a small ready-to-visualise dataset.  

We evaluated two technical solutions to this dynamic connection. One is 
through Java Servlet technology. The other is to develop a dedicated Java server. 
While there are other ways to achieve the dynamic connection between Flash and 
a database (namely through ColdFusion MX, Macromedia newest server 
technology) we chose to test two available solutions in our lab. Both are described 
and compared below. 

4.1 Connection through Java Servlets 

A servlet is a Java class used to extend the capabilities of web servers. Servlets 
provide a component-based, server- and platform-independent method for 
building web-based applications, without the performance limitations of CGI 
programs. So, a servlet can be thought of as an 'applet' (a Java class for web 
browsers) that runs on the server side—without a 'face'. It works as follows (Fig. 
5).  

 
Fig. 5. Connection through Java Servlet 

The Flash client can send a request, such as: 
http://rangoon.geog.psu.edu/servlet/OracleConn?tablename=counties&statename=
Pennsylvania&attribute=pop1990,white,black  

Here, http://rangoon.geog.psu.edu/ is the HTTP address of the web 
server, OracleConn is the name of the servlet, tablename=counties &statename= 
Pennsylvania &attribute= pop1990, white, black is the parameter string for this request. 
The OracleConn servlet can parse these parameters and compose an SQL query:  

Select POP1990, WHITE, BLACK from COUNTIES where statename= 
‘Pennsylvania'.  



The servlet will then connect to the database through JDBC (Java Database 
Connectivity) APIs, execute the above query, and return the data. In our 
implementation, in addition to retrieving data, the servlet also pre-processes the 
data (e.g. calculates the mean value, median value, and other information) as 
required by the Flash client. Then the retrieved data and the derived information 
will be packed in XML format and passed to the client. From the Flash client's 
perspective, this request is exactly the same as downloading an XML file from the 
web server—it does not know or care how the file is generated. To be aware of 
which data are available in the database, the Flash client needs to retrieve 
associated metadata from the database before issuing any query requests. The 
metadata is also passed in XML format.  

4.2 Connection through a Dedicated Java Server 

Another choice for implementing the connection between the web geo-
visualisation tools and the remote database is to build a dedicated Java server. 
Adopting this strategy, we built a mini server that does not require embedding the 
service in a web server (as we did with the Java servlet). The communication 
protocol is still XML. With our own server, we have the flexibility and freedom to 
design a more complex protocol than the parameter string used by Java servlets. 
For this implementation, the Flash client will first build a socket connection with 
the server. Then all the communication (including query, metadata, and data) 
between the Flash client and the Data server will be achieved through XML 
messages sent back and forth through this socket. 

 

Fig. 6. Connection through a dedicated server. 

For example, our server runs on the machine rangoon.geog.psu.edu at port 
2001. The Flash client first builds a socket connection to this server. Then it can 
issue a query such as:  

<select>pop1997, white, black</select> <from>COUNTIES</from>  

<where> <statename>Pennsylvania</statename> </where> <order> pop1997 </order>  

<derive> mean, median </derive>  



The communication protocol can be more complex than this; this is dependent 
upon the agreement between the client and the server. The server then parses the 
above request into a SQL statement:  

Select pop1997, white, black from COUNTIES where statename = 
‘pennsylvania' ORDER BY pop1997  

Once parsed, the server will calculate the mean and median values of the data 
(as <derive> tag pair required) and pass it to the client in XML format.  

4.3 Comparison of Two Techniques 

There are both advantages and disadvantages for the two alternative forms of 
client-server connection described above. These are outlined for each below.  

With a Java servlet, it is easy to implement and deploy a new service. However, 
the request-response communication is limited to a parameter string. Thus, it is 
hard to express a complex request. The servlet methods seem suitable for usability 
experiments, each of which can be simple and often need quick implementation. 
Another advantage of a Java servlet is that it is embedded in web servers and can 
be accessed easily through standard http protocol and the standard port 80, which 
is accessible through almost any firewall. As security issues become increasingly 
important in universities and government agencies, this advantage may become an 
overriding one.  

A stand-alone Java server, while being no more difficult to build than a servlet, 
makes flexible and complex services possible. One example where this is 
important would be a collaborative environment in which distributed users could 
interact and observe interactions on the same dataset. A drawback of this approach 
is that many firewalls are configured to limit access to a small number of standard 
ports (ftp, http, etc.), which means the server used in the example above (port 
2001) cannot be accessed outside of the local firewall.  

5 Discussion 

The DG project reported here is focused on improving the quality of maps and 
graphics available in geo-visualisation tools for the web and on addressing the 
usability of these tools through implementing and assessing a series of interface 
prototypes. Our broad goals are to support sophisticated exploratory graphics for 
experts and comparable statistical summaries in a form that is accessible to, and 
usable by, non-expert public users through web-based interfaces. We have now 
implemented several prototype interfaces in Flash (the three above are 
representative). We are now moving on to the tasks of assessing the effectiveness 
of specific geo-visualisation concepts and to determining the extent to which Flash 
can support both rapid prototyping and cognitive experimentation.  

Developing flexible and robust geo-visualisation tools for the web is a 
challenge. Meeting this challenge often requires trade-offs between tool 



functionality and ease of construction. Developing effective map-based interactive 
graphics 'from scratch' using a formal programming language such as Java or C++ 
requires considerable programming skill. Such development is often hampered 
(even for those with such skill) by the limitations of these languages when faced 
with implementing subtle display variations needed to support good cartographic 
design. Furthermore, public access to these tools is limited by web browser 
versions and the presence of special plug-ins on the end-users' machine. 

The web increasingly supports vector-based interactive display formats in SVG 
(Scaleable Vector Graphics) and SWF. SVG is an XML-based open standard for 
displaying vector graphics (not currently accompanied by high-level authoring 
tools that incorporate interactivity). An open XML standard is promising for the 
flexible display of vector graphics, but at this point, the feasibility of rapid-
prototype SVG maps and devices is questionable. SWF and its accompanying 
authoring environment (Macromedia Flash) offer a lightweight tool (~15% of 
SVG file size) who's plug-in is supported on the majority of computers (estimates 
suggest that 95% of current users have at least the 4.0 plug-in installed in their 
web browser; most computers now come pre-installed with the plug-in). 

Designing in Flash holds some distinct advantages over existing development 
techniques in both prototyping and producing functional geo-visualisation 
interfaces, not the least of which is design time. Flash designers with limited 
programming knowledge can produce functional and graphically rich interfaces 
very quickly for prototyping and for testing conceptual extensions. The 
ActionScript programming interface is intuitive enough for inexperienced 
programmers, while flexible enough to support complex object-oriented 
development by expert designers. These qualities make Flash well suited to 
graphics prototype development and may support sophisticated geospatial 
products in the future. Flash also dramatically improves the graphical flexibility of 
the designer to apply existing cartographic theory to interactive displays. 
Furthermore, Flash applications are lightweight and run on the web through the 
small plug-in that has achieved very wide distribution. The transition from 
development environment to the web is as simple for designers as choosing 
'Publish' from the Flash-authoring interface. Finally, our examples illustrate the 
ability of Flash to support a database connection through a dedicated server or a 
Java servlet. Once a connection has been made to the database, the data may be 
stored locally and thus support multi-perspective interactions without further 
database queries.  

Although Flash has many features that make it attractive for web-based geo-
visualisation applications, we have also encountered some serious limitations. The 
main drawback of designing geo-visualisation applications in Flash is the inability 
of the software to recognise any existing spatial data formats. The geographic base 
for the maps produced in these three prototypes required a time-consuming 
manual step—assigning a label to each display object (county). Now that the 
geographic boundaries for U.S. states and counties have been transformed for use 
with Flash, we are able to prototype county- and state-based data. However, each 
new ‘geography’ requires tedious manual encoding. While the format for Flash 
SWF export files used in web browsers is public, the Flash software and its 



ActionScript language is not; and it does not support automated import of objects 
and conversion to movie clips (the format required in order to program subsequent 
behaviours). We also observed a considerable processing slow-down for loading 
and displaying large datasets. This limitation may become increasingly restrictive 
as we begin to evaluate our county-based US map (3000+ entities) while adding 
further interactive controls and animation. The most recent release of Flash 
(FlashMX) and its associated plug-in appear to dramatically improve XML 
parsing speed. Unfortunately, these tools were not available to test at the time of 
our experimentation. 

Despite the disadvantages listed here, Flash-based geo-visualisation is proving 
useful for our cognitive and usability experiments. We are currently running a 
cognitive map animation experiment and a usability assessment of conditioned 
choropleth maps with two additional prototypes. Designing and testing rapid 
prototypes in an environment such as Flash has the potential to speed up 
development and improve the graphical integrity of exploratory geo-visualisation 
tools generally. The rapid prototypes allow us to explore the viability of geo-
visualisation concepts and assess implementation feasibility before committing 
scarce resources to their development in a more robust and extensible Java 
environment.  

Acknowledgements and Disclaimer  

This paper is based upon work supported by the National Science Foundation 
under Grant No. 9983451. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science Foundation. Thanks go to 
Luis Mejias for his considerable efforts in building the geographic database of the 
U.S.   

References 

Andrienko GL, Andrienko NV (1999) Interactive maps for visual data exploration. 
International Journal of Geographic Information Science 13(4):355-374 

DiBiase D, MacEachren AM, Krygier JB,  Reeves C (1992) Animation and the role of map 
design in scientific visualisation. Cartography and Geographic Information Systems 
19(4):201-214, 265-266 

Dykes JA (1997) Exploring spatial data representation with dynamic graphics. Computers 
& Geosciences 23(4):345-370 

Egbert SL,  Slocum TA (1992) EXPLOREMAP: An exploration system for choropleth 
maps. Annals of the Association of American Geographers 82(2):275-288 

Harrower M, MacEachren AM,  Griffin A (2000) Design, implementation, and assessment 
of geographic visualisation tools to support earth science education. Cartography & 
Geographic Information Systems 27(4):279-293 



Haug D, MacEachren AM, Boscoe F, Brown D, Marrara M, Polsky C,  Beedasy J (1997) 
Implementing exploratory spatial data analysis methods for multivariate health 
statistics. In:  Proceedings of GIS/LIS '97, Cincinnati, OH, Oct. 28-30, 1997 

MacEachren AM (1998) Cartography, GIS and the world wide web. Progress in Human 
Geography 22(4):575-585 

MacEachren AM, Hardisty F, Gahegan M, Wheeler M, Dai X, Guo D,  Takatsuka M 
(2001) Supporting visual integration and analysis of geospatially-referenced statistics 
through web-deployable, cross-platform tools. Paper presented at the Proceeding, 
dg.o.2001, National Conference for Digital Government Research, Los Angeles, CA, 
May 21-23 

Monmonier, M (1989) Geographic brushing: Enhancing exploratory analysis of the 
scatterplot matrix. Geographical Analysis, 21(1):81-84 

Open GIS Consortium (2000) OpenGIS Web Map Server Interface Implementation 
Specification 

Peterson, MP (1993) Interactive cartographic animation. Cartography and Geographic 
Information Systems 20(1):40-44 

Zaslavsky, I (2000) A New Technology for Interactive Online Mapping with Vector 
Markup and XML. Cartographic Perspectives 37:12-24 

 


