
Polygonization of Point Clusters through Cluster
Boundary Extraction for Geographical Data
Mining

Ickjai Lee and Vladimir Estivill-Castro

School of Electrical Engineering and Computer Science, The University of
Newcastle, NSW 2308, Australia, ijlee@cs.newcastle.edu.au,
vlad@cs.newcastle.edu.au

Abstract

Interpretability and usability of clustering results are of fundamental importance.
A linear time method for transforming point clusters into polygons is explored.
This method automatically translates a point data layer into a space filling layer
where clusters are identified as some of the resulting regions. The method is based
on robustly identifying cluster boundaries in point data. The cluster
polygonization process analyses the distribution of intra-cluster edges and the
distribution of inter-cluster edges in Delaunay Triangulations. It approximates
shapes of clusters and suggests polygons of clusters. The method can then be
applied to display choropleth maps of point data without a reference map or to
identify associations in the spatial dimension for geographical data mining.
Keywords: clustering, Delaunay triangulation, geographical data mining, cluster
boundaries, cluster polygonization

1 Introduction

Geographic Information Systems (GIS) analyse real world phenomena with many
data layers. Each layer captures some unique feature. Fast data gathering process
results in data-rich environments with many layers that exceed the capability of
human analysis (Miller and Han, 2001). Thus, sophisticated geographical data
mining tools become necessary for handling hundreds of different themes that
may contain thousands of data points. Among many other data mining techniques,
clustering is one of the most popular and frequently used approaches for finding
undetected or unexpected patterns of spatial concentrations residing in large
databases. That is, clustering provides answers for “where” and suggests leads into
“why” for post-clustering explorations. Thus, clustering is seen as a starting point

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

for a series of knowledge discovery processes using extensive spatial databases.
However, post-clustering processes have attracted less attention than clustering
itself despite their importance.

Identifying shapes (boundaries) of clusters is an intuitive way of reasoning
about clusters. If shapes of clusters of a set P of points match with a particular
feature data, then clusters exhibit a high association with the feature. Generally
however, it is difficult to extract the shape and as yet, there is no method that can
be considered as an absolute winner since most approaches are application-
dependent (Okabe et al., 1999). The convex hull CH(P) of P is one of the simplest
methods to extract a shape. Since CH(P) is the smallest convex set containing P, it
is an appropriate choice. In addition, it is unique for P. This is useful for data
mining where parameter tuning is laborious and time consuming. It is too crude a
method however, to capture shape details about P unless the points are all
arranged in a convex shape (in which , the vertices of CH(P) coincide with P, but
do not help in summarising P).). The �-shape (Edelsbrunner et al., 1983) (this is a
generalisation of CH(P)) overcomes the crudeness of CH(P). The value of the real
number � controls the desired level of detail. The set of � values leads to a whole
family of shapes capturing from crude to fine shapes of P. Boundary Shape
Matching (BSM) (Knorr et al., 1997) uses the �-shape to explore associations
among layers. However, several problems arise when the �-shape is used for
detecting spatial cluster boundaries in data-rich environments.

1. It is difficult to determine the best value � that produces neither too crude nor

too fine a shape (Knorr et al., 1997).
2. Several trial-and-error steps for tuning the value of � are necessary. In data-

rich environments, this is laborious and time consuming.
3. If P contains i clusters, then we need to tune � for as many as i times to find the

best shape of each cluster. Since clusters in P require different values for �, the
independent manipulation of values of � for clusters belonging to the same
layer not only increases required time but incorporates human bias.

4. The �-shape of a cluster c � P is not affected by the distribution of points p �
P\c. Clusters are truly the result of the characteristics in the entire distribution
sampled by P. Thus, although a point p � P\c does not belong to the cluster c,
it has some effect on the shape of c.

In this paper, we propose an automatic boundary extraction process for clusters

in point data and extend it to cluster polygonization. In contrast to the �-shape
approach, our approach minimises the need for parameter tuning. Instead, it
derives the shape of a cluster c from both the spread of points and the spread of
points in P\c. The proposed argument-free approach is well-suited for data-rich
environments. It approximates shapes of clusters using the Delaunay
Triangulation. Once the Delaunay Triangulation is constructed, the boundary
extraction process requires O(n) time. The algorithm can be used as post-
processing for Short-Long clustering (Estivill-Castro and Lee, 2000). Short-Long

clustering is based on the Delaunay Triangulation as an underlying graph and
detects various types of spatially aggregated concentrations.

The remainder of this paper is organised as follows. Section 2 details our
boundary extraction and polygonization processes and analyses their complexity.
We discuss experimental results with both synthetic and real datasets in Section 3.
Section 4 provides three applications of cluster polygonization. Finally, the last
section draws concluding remarks.

2 Extracting Cluster Boundaries

Clustering quality is of central concern when clustering is used in mining for
associations. Although several spatial clustering methods have been proposed
within the data mining and the GIS disciplines, most peak-inference clustering
methods are based on global thresholds (Ester et al., 1996; Openshaw, 1987).
Thus, these approaches fail to detect some spatially interesting groups.

Fig. 1 illustrates one such example. This example exhibits regions with data
concentration in arbitrary shapes. These regions can be interpreted as clusters of
different densities. In particular, a region (“8-like” shape) surrounding two high
density regions (“ball-like” shapes) shows higher density in the study region.
However, peak-inference clustering may be unable to detect this distinction
without careful and laborious tuning of the global thresholds. This is because the
“8-like” shape is nearby the spherical clusters. When considered as clusters, the
intra-cluster distance of the sparse “8-like” shape is greater than the inter-cluster
distance between the “8-like” shape and the high density “ball-like” regions. Thus,
peak-inference clustering methods report three high density clusters (2 balls and
the helix region at the bottom) when global parameters are set for high density
regions (refer to Fig. 1(a)). Alternatively, the parameters may be set for low
density regions, and in such settings the output is two clusters: one large cluster
(for the merging of the “8-like” region and the two “ball-like” regions) and one
high density cluster for the helix region below (refer to Fig. 1(b)). The analyst
would have to contrast these two results to infer the “8-like” region that is also of
interest, and only after consuming time on parameter tuning and experimentation.
Fig. 1(a) and (b) demonstrate this effect with DBSCAN (Ester et al., 1996). The
DBSCAN approach requires two global thresholds MinPts and Eps. The value of
Eps defines a spherical neighbourhood for each point. Fixing the value of MinPts
to 4 and then tuning the other threshold Eps as originally suggested for the
method, we see that DBSCAN detects three high density clusters with Eps = 50,
but leaves the sparse “8-like” region undetected as depicted in Fig. 1(a). As we
increase the value of Eps, some points within the “8-like” are merged with the
“ball-like” clusters, breaking the “8-like” shape into many meaningless sub-
clusters. Finally, when the value of Eps is large enough so all the points within the
“8-like” shape are in the same cluster, then the “8-like” and the “ball-like” shapes
are all merged into a single cluster as shown in Fig. 1(b). Since this unsatisfactory
behaviour occurs with this simple visual example, we cannot expect peak-

inference clustering to be effective in scenarios that are more complex. Clustering
methods by partitioning (Ng and Han, 1994) utilise some objective function to
find spatial groups. Although these methods are suitable for facility location

(a) (b)

(c) (d)
Fig. 1. Clustering with different approaches with 600 data points (Cluster-1: �, Cluster-2: +,
Cluster-3: � , Cluster-4: �, Noise: �), (a) DBSCAN with Eps = 50 and MinPts = 4 (3 clusters),
(b) DBSCAN with Eps = 150 and MinPts = 4 (2 clusters), (c) Partitioning clustering
approaches (4 clusters), (d) Short-Long clustering (4 clusters)

problems, their results are convex clusters. Thus, they are less informative for
cluster reasoning. Fig. 1(c) shows 4 clusters detected by medoid-basedpartitioning.
Not only is the “8-like” region assigned to two clusters, but there seems to be a
degree of heterogeneity in the density of the proposed clusters.

Recently, the Short-Long criteria for edge analysis in proximity graphs result
in a clustering method (Estivill-Castro and Lee, 2000) overcoming drawbacks of
traditional clustering methods. This approach detects possible boundaries of
clusters, and as such, it is able to identify various types of spatial concentrations.
Fig. 1(d) demonstrates that the Short-Long criteria find the four regions of similar
concentration, despite the complexity of the “8-like” shape around the balls.
Clustering for massive datasets should remain efficient and effective while
minimising the number of user-supplied arguments for clustering. Efficient
clustering algorithms that demand tuning of several user-supplied arguments for
their best result remain unsuitable for mining vast amounts of data. Finding best
values for arguments is expensive in terms of time efficiency since this
necessitates several trial-and-error steps or pre-processing. Short-Long clustering
is a solid candidate for data mining and post-clustering analysis, since it needs
O(nlogn) time, produces quality clusters and requires minimum tuning of only one
parameter. For these reasons, Short-Long clustering is used as a basis for our post-
clustering analysis in this paper. However, our method for polygonization extends
in a straightforward manner to other clustering approaches.

2.1 The Short-Long Clustering Criteria

Short-Long clustering belongs to the family of graph-based clustering since it is
based on the Delaunay Triangulation DT(P) of P. In graph-based clustering, we
first build a proximity graph G. The graph has node-set N(G) and edge-set E(G).
An undirected edge e � E(G) has associated with it a set of two nodes {v, w}
while a directed edge has associated with it a pair of nodes (v, w) � N(G) �
N(G). Here, nodes represent data points and edges connect pairs of nodes to model
spatial proximity, interaction or adjacency. Clustering operations are then
performed on the graph. Graph-based clustering removes edges connecting points
in different clusters based on a certain criterion function and computes connected
components of the remaining graph G' � G to represent clusters.

For every node vi � N(DT(P)), Short-Long clustering classifies incident edges
into globally short, long or other edges. Then, it removes globally long edges
when analysis reveals they are inter-cluster links and eliminates short edges and
other edges when analysis reveals they are links (chains or bridges) between
clusters. The notions of ShortEdges(vi), LongEdges(vi) and OtherEdges(vi) for
edges incident to a node vi are defined as follows.

ShortEdges(vi)= { evi,vj : | evi,vj| < LocalMean(vi) m � MeanStDev(P)}, (1)

LongEdges(vi) = { evi,vj : | evi,vj| > LocalMean(vi) + m � MeanStDev(P)}, (2)

OtherEdges(vi) = AdjEdges(vi) - (LongEdges(vi) � ShortEdges(vi)), (3)

where AdjEdges(vi) denotes the set of edges incident to vi in DT(P),
LocalMean(vi) is the mean length of AdjEdges(vi), MeanStDev(P) is the average of
the standard deviation of lengths of edges in AdjEdges(vi), and m is a control
value. Criteria for ShortEdges(vi), LongEdges(vi) and OtherEdges(vi) are not
static, but rather dynamic over the study region, since LocalMean(vi) varies with
vi. This dynamic nature of the Short-Long criteria overcomes the static nature of
peak-inference clustering and partition-based clustering methods.

2.2 Cluster Polygonization Algorithm

Receiving a set of points with cluster identifier for each point is not enough for
post-clustering analysis. We need to obtain the boundaries of those clusters. There
are many possibilities for where the boundary might be, and following is a fast
and accurate way of resolving this problem. The following technique is
considered to be better than computing convex hulls or �-shapes for mining large
spatial databases. In the following, the assumption is made that a dataset P is
provided and each point p � P is labelled with a cluster identifier ID(p). This is
the input to the entire process. An illustration of a cluster polygonization process
appears in Fig. 2.

(a) (b) (c) (d) (e) (f)

Fig. 2. Polygonization through cluster boundary extraction (||P|| = 250), (a) A set P of
points, (b) DT(P), (c) 3 clusters found by Short-Long clustering, (d) Intra-cluster edges
after Phase 1 (inter-cluster edges are not shown), (e) After Phase 2 (the boundary extraction
process), (f) After Phase 3 (the polygonization process)

Fig. 2(c) depicts clusters after Short-Long clustering. Fig. 2(d) displays only
intra-cluster edges that approximate shapes of clusters (note that, inter-cluster
edges are ignored).. Directed cluster boundaries that represent cluster regions are
illustrated in Fig. 2(e). Sets of cyclic lists of edges, that are in counterclockwise
ordering, are external cluster boundaries and definine inner areas as cluster
regions, while sets of cyclic lists of edges, that are in clockwise ordering, are
internal cluster boundaries defining holes within corresponding cluster regions.
Fig. 2(f) depicts derived cluster regions. Details of the cluster polygonization
process are as follows. Phase 0 will compute the Delaunay Triangulation DT(P) of
P (this phase is omitted when using Short-Long clustering). Since the Delaunay
Triangulation is a planar graph embedded in the plane, in what follows we may

refer to points p � P as nodes, and to edges e = {pa, pb} as sides of the Delaunay
triangles. Phase 1 labels each Delaunay edge in DT(P) with either intra-cluster
edge or inter-cluster edge based on cluster identifiers provided by a clustering
method (in this case Short-Long clustering). Intra-cluster edges are those that
expand endpoints with the same cluster identifier while inter-cluster edges are
those that connect endpoints in different clusters. That is, two endpoints of intra-
cluster edge e = {pa, pb} satisfy ID(pa) equals to ID(pb). Phase 2 extracts and
orients boundary edges. Each intra-cluster edge e is analysed. Because we have a
triangulation (a planar subdivision into triangles), each edge in DT(P) belongs to
at least one Delaunay triangle or at most to two in DT(P). For each intra-cluster
edge e after Phase 1, the intra-cluster edge analysis proceeds as follows. Let the
edge e = {pa, pb} be an intra-cluster edge in DT(P).

�� Simple case: The intra-cluster edge e = {pa, pb} is in only one Delaunay triangle

(external Delaunay edge or hull edge (Okabe et al., 1999)).

1. Sub-case: Triangle in a cluster --- The third node pc of the triangle <pa, pb, pc> has
the same cluster identifier as nodes pa and pb. Then, edge e is labelled as a
boundary edge and oriented (because DT(P) is a planar embedding) such that pc
is on its left (the interior of the triangle) and the exterior is on its right. Fig. 3(a)
illustrates this sub-case.

2. Sub-case: No triangle --- The third node pc of the triangle <pa, pb, pc> does not
have the same cluster identifier as pa and pb. Then, e is not labelled as a boundary
edge (it will be removed). That is, e is not placed in the output of this phase
because there is no area (region or triangle) of the cluster of pa and pb delimited
by e. Fig. 3(b) illustrates this sub-case.

�� Complex case: The edge e = {pa, pb} is shared by two Delaunay triangles with
opposing nodes pc and pd (internal Delaunay edge (Okabe et al., 1999)).

1. Sub-case: Two triangles in a cluster --- The third nodes pc and pd of triangles <pa,
pb, pc> and <pa, pb, pd> are both in the same connected component (cluster) as pa
and pb. It follows that e is removed and it will not be included in the output as a
boundary edge since clearly it is inside the quadrilateral <pa, pc, pb, pd>. Of
course, his quadrilateral is inside the cluster. Fig. 4(a) illustrates this subcase.

2. Sub-case: Triangle in a cluster --- One of the third nodes pc or pd is in the cluster
of pa and pb but the other is not. Without loss of generality, we assume pc is in the
cluster of pa and pb (recall that ID(pa) = ID(pb)) while pd is not (i.e. ID(pd) �
ID(pa)). Then, edge e is a boundary edge since the triangle <pa, pb, pc> is in the
cluster but the triangle <pa, pb, pd> is not. Then, the boundary edge e is oriented
(because DT(P) is a planar embedding) in such a way that pc is on its left (the
interior) and pd (the exterior) is on its right. Fig. 4(b) and (c) illustrate this sub-
case.

3. Sub-case: No triangle --- Both, pc and pd are not in the same cluster as pa and pb.
Again e is removed. There is no area of the cluster of pa and pb, thus, e can not be
in the boundary. Fig. 4(d) illustrates this sub-case.

(a) (b)

Fig. 3. The two sub-cases of the simple case with pa = 1, pb = 2 and pc = 3 (only intra-
cluster edges are drawn), (a) triangle in a cluster, (b) no triangle

(a) (b) (c) (d)

Fig. 4. The sub-cases of the complex case. Here pa = 1, pb = 2, pc = 3 and pd = 4 (only
intra-cluster edges are shown), (a) illustration of the first complex sub-case, two triangles in
a cluster, (b) and (c) are the second sub-case triangle in a cluster, (d) no triangle.

After the intra-cluster edge analysis, the output of this phase is a set of lists of
oriented edges in no particular order (see Fig. 2(e)). Phase 3 (polygonization)
constructs a list of edges such that traversing the list of edges corresponds to
navigating along the boundary of a cluster. Because of the orientation of the
previous phase, the interior of the polygon will be on the left while the exterior
will be on the right. The list will be circular, eventually returning to the same
node. A polygon with holes will be made of several of these lists. We now prove
that cluster polygonization is always possible from the output of Phase 2.

Lemma 2.2.1 For every node pa attached to an oriented edge e in the output of

Phase 2, the following holds.

�� The degree of pa is even.
�� The indegree of pa equals the outdegree of pa.
�� It is possible to alternate the incoming edges and the outgoing edges either

clockwise or counterclockwise in the planar embedding representing the output
of Phase 2.

Proof. Because we started from a triangulation and the output of Phase 2 is

edges who belong to one and exactly one triangle in the cluster, the output of
Phase 2 is equivalent to a union of disjoint triangles (the triangles share edges but
not their interiors). Note that, when Phase 2 removes intra-cluster edges, it
performs the union of two regions that are the union of triangles and thus the new

region is the union of triangles. The point pa must belong to a triangle in the union
because it is attached to an oriented edge e. Let T be the sequence of triangles
clockwise around the point pa. This sequence T of triangles corresponds to a
sequence of edges E. These edges are all incident to pa with e oriented. Without
loss of generality, assume e is an incoming edge and that the sequence E = <e,
e1,…, ek> is the sequence of edges in the triangulation incident to pa when
travelling clockwise around pa. Because e is incoming, the triangle determined by
<e, pa, e1> must be exterior. If e1 is oriented, then it must be outgoing and the
triangle <e1, pa, e2> must be interior. If e1 is not oriented, it is because the next
triangle <e1, pa, e2> is exterior. Continuing in this way, we see that the triangles in
T alternate between a few that are interior and a few that are exterior. In any case,
when the triangles swap from interior to exterior, the edge incident to pa is
incoming and when they swap back the edge must be outgoing. The sequence of
triangles around node pa,, however is finite, so when completing the clockwise
traversal we see that the lemma is satisfied.

The previous lemma proves that the graph after Phase 2 is Eulerian and it is
now a matter of traversing the graph within the planar embedding to extract the
circular (cyclic) lists of edges (equivalently nodes) that constitute the polygons.

2.3 Polygonization Requires Linear Time

For a set P of two dimensional points, the number of edges in DT(P) is linear in P
(Okabe et al., 1999). Thus, storing DT(P) requires linear space. To compute the
connected components of a graph is linear in the sum of both number of edges and
number of nodes. Thus, Phase 1 requires O(n) time where n is the number of
nodes in DT(P). The boundary extraction process in Phase 2 tests if every intra-
cluster edge e is a boundary edge. It performs constant work for each edge. Thus,
this is linear as well. Therefore, polygonization of clusters requires linear time for
Short-Long clustering. However, if other clustering methods do not use the
Delaunay Triangulation as an underlying proximity graph, then we need to
compute DT(P), which requires O(nlogn) time.

3. Performance Evaluation

We present results from experiments with synthetic datasets and real datasets that
illustrate the robustness of our approach. In Short-Long clustering, we use m = 1
as the default control value for all datasets. In addition, in all experiments, clusters
whose sizes are less than 1% of the total number of points are considered as noise.

(a) (b) (c) (d)

Fig. 5. Synthetic dataset I (||P|| = 8000), (a) points with DT(P), (b) 6 clusters, (c) cluster
boundaries, (d) cluster regions

(a) (b) (c) (d)

Fig. 6. Synthetic dataset II (||P|| = 8000), (a) points with DT(P), (b) 8 clusters, (c) cluster
boundaries, (d) cluster regions

(a) (b) (c) (d)

Fig. 7. Synthetic dataset III (||P|| = 8000), (a) points with DT(P), (b) 12 clusters, (c) cluster
boundaries, (d) cluster regions

(a) (b) (c) (d)

Fig. 8. Real Dataset representing sexual offences (||P|| = 1695), (a) points with DT(P), (b) 9
clusters, (c) cluster boundaries, (d) cluster regions

Fig. 5 and Fig. 6 illustrate our approach applied to two datasets of the
CHAMELEON's benchmark suite (Karypis et al., 1999). Cluster boundaries are
successfully derived. Fig. 5(c) depicts boundaries for the first dataset and Fig. 6(c)
for the second set, respectively. Boundaries reveal shapes of clusters more easily
than human inspection of the dataset or of the clustered data. Cluster regions
depicted in Fig. 5(d) and Fig. 6(d) reveal holes within clusters. Note that, visual
inspection is insufficient to find holes in the regions of clusters, when presented
simply as clusters (Fig. 5(b) and Fig. 6(b)). However, the holes become visually
apparent with polygonization (Fig. 5(d) and Fig. 6(d)). Fig. 7 depicts a dataset
containing many heterogeneous clusters: small and large clusters, non-convex
clusters, clusters with heterogeneous densities, clusters inside clusters and clusters
linked by multiple bridges. Cluster boundaries and regions shown in Fig. 7(c) and
Fig. 7(d) illustrate the robustness of our approach. Real datasets representing
geographical phenomena are more complex than synthetic datasets, thus it is more
difficult to extract cluster boundaries. A real dataset shown in Fig. 8 indicates

locations of sexual offences that occurred in 1997 around urban areas of
Queensland,Australia. A large cluster is spread around Brisbane, the capital city of
Queensland and several crime concentrations are discovered around the suburbs of
Brisbane. Although shapes of clusters are heterogeneous, irregular and complex,
our approach provides cluster boundaries for crime cluster regions. Altogether,
these experimental results demonstrate that our approach effectively approximates
shapes of clusters.

4 Applications

4.1 Choropleth Mapping with Cluster Boundaries

One of the difficulties of presenting point data is to manage privacy. Another
problem with point data is that theoretically, the probability of an event at a point
is zero. To resolve the privacy problem or to make inferences on regions rather
than locations, point data are often aggregated based on polygonal maps. For
example, one way of presenting discrete point data is to use choropleth maps.
These maps display point data related to a specific topic with respect to a
boundary map such as political or administrative area map. The display of a
choropleth map fills polygons of the reference areas with colours or gray tones
according to densities (the number of points per unit of area). One key aspect
about choropleth mapping is that its visual presentation is dependent on the base
map used for plotting. Dent (1999) warns that distributions of continuous
geographical phenomena are not governed by political or administrative
subdivisions. Thus, choropleth mapping of points with political or administrative
layers is less informative. Using the set of cluster regions of P as a basic area map
overcomes the problem of traditional choropleth maps, since boundaries of cluster
regions are derived from the distribution of P. Thus, it minimises artificial
constraints on choropleth mappings, which is important in exploratory spatial
analysis.

(a) (b) (c) (d)

Fig. 9. Choropleth maps with cluster regions, (a) synthetic dataset I, (b) synthetic dataset II,
(c) Synthetic Dataset III, (d) real dataset

Fig. 9 displays choropleth maps for the datasets discussed in Section 3. Here,
the densest cluster is in black (RGB(0,0,0)) and the sparest cluster is in light gray
(RGB(200,200,200)). Intermediate clusters are shaded with gray tones in

proportion to their respective densities. Visual inspection of the original datasets
(see for example Fig. 5) is insufficient to report relatively dense or sparse clusters.
In Fig. 5, one can hardly see any difference in density. The datasets seem too large
for such visual inspection. However, the choropleth map in Fig. 9(a) clearly
indicates that two clusters on the left-hand side are relatively dense. A pattern that
shows density decreasing from left to right is now clearly visible. By contrast, Fig.
9(b) indicates that density among clusters does not have a global pattern. The
denser clusters of synthetic dataset II are randomly mixed with other clusters.
Since this spread is not easily recognised from Fig. 6, the corresponding
choropleth map is more informative. Fig. 9(c) shows that clusters are either high
density or low density. Thus, we can easily find three high concentrations. Fig.
9(d) reveals that most densities of clusters are about the same although there are
substantial discrepancies in the cluster sizes.

4.2 Cluster Associations

Clustering for data mining is to summarise the distribution of P in an effort to
suggest a manageable number of patterns of concentrations for further
explorations. Thus, clusters are representatives of the phenomena recorded with
locations in P and suggesting interesting groups. Several approaches (Knorr et al.,
1997; Estivill-Castro and Murray, 1998) have been proposed to detect associations
among geographical layers using clusters in data-rich environments. Boundaries of
clusters and representatives of clusters (medoids or means) are the most popular
candidates for reasoning with clusters. However, these candidates are summaries.
They constitute only partial information about clusters, thus we need special care
when we use these information when mining for associations.

(a) (b) (c)

Fig. 10. Cluster associations, (a) layer 1, (b) layer 2, (c) overlay of layer 1 and layer 2

Fig. 10 illustrates the problem of using such partial information. Consider two
layers shown in Fig. 10(a) and Fig. 10(b). Layer 1 displayed in Fig. 10(a) has a
small cluster while the Layer 2 depicted in Fig. 10(b) has two clusters small and
large. Black dots represent medoids of clusters. Although the small cluster in
Layer 1 has a high association with the large cluster in Layer 2 (since the small
cluster lies within the large cluster), traditional approaches fail to detect this
association. Association analysis using boundary matching (Knorr et al., 1997)
does not succeed in detecting this correlation, since boundaries of the small cluster
in Layer 1 do not match with those of the large cluster in Layer 2. This aspect is
shown in Fig. 10(c). Similarly, association analysis using medoids (Estivill-Castro

and Murray, 1998) is unable to report this association, since the medoid of the
small cluster in Layer 1 is closer to the medoid of the small cluster in Layer 2 than
that of the large cluster in Layer 2. We can detect this relationship by computing
intersection area of cluster regions. The intuition of this approach is that two
clusters exhibit a high association if most phenomena in Layer 1 take place where
concentrations of phenomena in Layer 2 occur. The small cluster in Layer 1
intersects with the large cluster in Layer 2, while it does not intersect with the
small cluster in Layer 2. Thus, it is more associated with the large cluster in Layer
2 rather than the small one.

5 Final Remarks

Clustering methods are becoming more sophisticated and effective. Post-
clustering processes that seek to identify possible lures (positive associations) are
now in demand. Detection of cluster boundaries is a natural choice for reasoning
about clusters such as matching boundaries with various feature data,
polygonizing clusters and mining for associations. We propose an automatic
cluster boundary extraction method that is well-suited for data-rich environments.
In this approach, shapes of clusters are governed by data, not by users. The
automatic approach derives the shape of a cluster not only from the distribution of
points in the cluster, but also from that of points in different clusters. Thus, this
approach is more informative and less biased since it is data-driven, which is very
important in exploratory spatial data analysis (Openshaw, 1987). The cluster
boundary extraction has been extended to cluster polygonization that has potential
as a tool for spatial analysis and mining. Choropleth mapping with cluster regions
as a base map exhibits unbiased visualization. Further, intersecting polygonized
cluster regions enables us to find positive associations among layers with ease. As
a results a supporting application has been developed. The application is
implemented in the C++ programming language using LEDA (Library of Efficient
Data types and Algorithms) version 4.2. The application supports visualization of
cluster boundaries, polygonized cluster regions and choropleth maps.

References

Dent BD (1999) Cartography: Thematic Map Design. McGraw-Hill, Boston.
Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the Shape of a Set of Points in the

Plane. IEEE Transactions on Information Theory 29(4):551-559
Ester M, Kriegel H-P, Sander J, Xu X (1996) A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise. In: Simoudis E, Han J, Fayyad UM
(eds) Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining. AAAI
Press, pp 226-231

Estivill-Castro V, Lee I (2000) AUTOCLUST: Automatic Clustering via Boundary
Extraction for Mining Massive Point-Data Sets. In: Abrahart J, Carlisle BH (eds) Proc.
of the 5th Int. Conf. on Geocomputation.

Estivill-Castro V, Murray AT (1998) Discovering Associations in Spatial Data - An
Efficient Medoid based Approach. In: Wu X, Ramamohanarao K, Korb KB (eds) Proc.
of the 2nd Pacific-Asia Conf. on Knowledge Discovery and Data Mining. LNAI 1394,
Springer, pp 110-121

Karypis G, Han E, Kumar V (1999) CHAMELEON: A Hierarchical Clustering Algorithm
Using Dynamic Modeling. IEEE Computer: Special Issue on Data Analysis and
Mining 32(8):68-75

Knorr EM, Ng RT, Shilvock DL (1997) Finding Boundary Shape Matching Relationships
in Spatial Data. In: Scholl M, Voisard A (eds) Proc. of the 5th Int. Symposium on
Spatial Databases. LNCS 1262, Springer, pp 29-46

Miller HJ, Han J (2001) Geographic Data Mining and Knowledge Discovery: An Overview.
Taylor & Francis, New York

Ng RT, Han J (1994) Efficient and Effective Clustering Method for Spatial Data
Mining. In: Bocca JB, Jarke M, Zaniolo C (eds) Proc. of the 20th Int. Conf. on
Very Large Data Bases. Morgan Kaufmann, pp 144-155

Okabe A, Boots BN, Sugihara K, Chiu SN (1999) Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. John Wiley & Sons, West Sussex

Openshaw S (1987) A Mark 1 Geographical Analysis Machine for the automated
analysis of point data sets. Int. Journal of GIS 1(4):335-358

