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Abstract 

Generalisation is well recognised as a complex process that should trigger specific 
algorithms, on different types of objects in some logical or appropriate order. To 
guide the process (where and how to generalise) one solution is to distinguish 
characterisation from the generalisation process. Characterisation aims at finding 
and describing relevant 'working areas' that can be a part of an object or a set of 
objects. As a result, the choice of an appropriate algorithm(s) becomes easier and 
can be constrained by the detected properties of this new entity. This paper 
presents a method to both detect and  characterise building alignments in an effort  
to improve the use of generalisation algorithms namely typification and 
displacement. The first step consists of the identification of building alignments 
from straight-line templates. The second step characterises these alignments to 
retain only those that are perceptually regular. The characterisation is based on an 
analysis of the spatial location of buildings as well as on the properties of the 
buildings that belong to the alignment in question. To evaluate the regularity of 
the distribution, estimators are proposed for each property.. At the end a global 
quality estimator of the perceptual alignment- based on the aggregation of the 
estimators - is proposed. This global estimator is used to retain the best building 
alignments that will then be carefully generalised. The  results presented have 
been implemented in the Lamps2 GIS software. 
Keywords: pattern recognition, spatial Analysis, typification, generalisation 

 
 

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

              Symposium on Geospatial Theory, Processing and Applications, 
Symposium sur la théorie, les traitements et les applications  des données Géospatiales, Ottawa 2002



1 Introduction 

1.1 Why Detect Building Patterns?  

There are a number of approaches for automation of the generalisation process. 
For example one approach followed by the GIUZ laboratory of Zurich uses 
constrained algorithms in which internal conditions transform information while at 
the same time preserve some properties.  Another approach which separates the 
task of identification/characterisation from the task of transformation has been  
investigated at the COGIT laboratory for a number of years. Detecting building 
patterns is a well recognised characterisation issue.   The intent of this paper is to 
report on some of the findings related to the detection and  characterisation of 
selected groups of buildings, , and then  present  some specific algorithms that  
effectively generalise these building groups. –  

The generalisation of buildings concerns both the generalisation of each 
building - shape simplification, size dilation and local enlargement – and involves 
the contextual generalisation of a set of buildings - selection, typification, 
aggregation, displacement. Contextual generalisation usually occurs at a medium 
scale, whenever the main information to preserve no longer relates to each 
building but rather, illustrates that some buildings exist. The challenge is to 
preserve the appropriate  building characteristics while at the same time reduce the 
quantity. The detection of building patterns involves finding a relevant group of 
buildings that have some particular spatial location of interest and then in 
identifying the properties that should be preserved during the process. The 
operation of ‘reducing the number of buildings while preserving the properties of 
the group, is referred to as typification.  

1.2 What Makes a Pattern?  

When viewing a map, most people are able to conceptually group entities together. 
The action of grouping is usually based on some similarity in the criteria. Things 
that ‘look the same’ can be grouped together. This definition of perceptual groups 
comes from the Gestalt theory [Wertheimer 12]. A perceptible group consists of 
entities that have similar characteristics and do not exhibit too many differences. 
The separation between two groups generally occurs whenever there are sufficient 
inconsistencies in pattern regularity. For example, some are considered 'strong’ 
group members when they have an important regularity of some criteria, or are 
considered not strong when irregularities or inconsistencies occur. Others can be 
considered as ‘light’ either because there are some important irregularities or 
because the regularities are not ‘excellent’. All these qualitative and fuzzy 
definitions are intuitive to humans but are complex for computing purposes. 
Moreover, working on a classification rapidly illustrates that there is no  universal 
partitioning of entities in the mathematical sense or in any consistent 
computational process.  The grouping process is fuzzy in its definition and fuzzy 
in its borders.  



The aim of this research has been  to detect a particular case of building groups 
that can be referred to as  building perceptual alignments. The geometry of the 
buildings used for testing is 2D polygons, with 1 meter of geometric resolution. A 
building pattern is a set of close buildings that have a ‘well organised’ spatial 
distribution and that have some geometric similarities (shape, size, and 
orientation). Consequently not all groups of buildings are appropriate for testing; 
preferable are those that are spatially organised and share perceptual similarities. 
Amongst the possible spatial distributions, this study focuses on alignment 
(aligned along a straight line) as follows;  

1. It is a  frequent pattern  
2. It can be easily  perceived  and it structures the space  
3. It needs to be explicitly preserved during generalisation. 
 

This latter point is relevant since the number of operations tend to remove 
contextual regularity (such as displacement and object removal).  Other objects 
such as roads, have not been integrated, as the detection of patterns was to be 
based on a single object category. Further, the approach was to study the 
relationship of buildings with roads after the identification of perceptual 
alignments.  Roads were then subsequently considered as an object resource with 
which to reinforce the process.  Thus, in summary, the proposed mechanism is to 
look for buildings that are close to one another and that are aligned, in a regular 
manner i.e. their distance is regular or consistent along a line.  Additionally they 
should exhibit similarities in terms of shape, size and orientation. 
A group of aligned buildings (i.e. building alignment) is therefore considered a 
prerequisite condition but is not all encompassing vis-à-vis ‘building perceptual 
alignment’. The term 'perceptual' implies the regularity of the alignment. 
According to these definitions, however, it is clear that a perfect perceptual 
alignment does not exist.  As a result, it is necessary to allow some flexibility in 
the definition of regularity and to try to quantify it as much as possible. The 
difficulty of such an exercise involves aspects about resolving the thresholds (i.e. 
what is the limit between nearly regular and not regular) and determining the 
aggregation of independent criteria (e.g. size and shape) that characterise the 
global ‘quality’ of the building perceptual alignment.  

1.3 Previous Work in the Generalisation Field 

Amongst previous related research, work has been undertaken in both the area of 
generalisation and pattern recognition. In these areas, works that compliment this 
particular research endeavour can be categorised into two sets and are as follows  

�� Research on detection of building structures for building typification; 
�� [Hangouët 98] detects buildings aligned along roads, 
�� [Regnauld 98] detects close buildings organised along a graph using 

Minimum Spanning tree (MST), 



�� [Boffet and Rocca-Serra 01] detect and aggregate triplets of buildings to 
constitute building alignment using a bottom-up approach, 

�� Research on building typification; 
�� [Sester 00] randomly removes some buildings and relocates the remaining 

ones as regularly as possible by means of attraction forces computed in an 
iterative way using  neural networks, 

�� [Ruas 99] groups buildings by means of a network (Delaunay triangulation) 
and progressively removes the ‘worst building’ by means of a cost function 
based on size, density and directional proximity. 
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Fig. 1. Some existing methods for building removal 

The  method proposed here builds on a selection of work, see [Regnauld 98] 
and [Boffet and Rocca-Serra 01].. The challenge is to propose a method less 
complex than [Regnauld 98] (i.e. without requiring the computation of MST) but 
more robust than [Boffet and Rocca-Serra 01]. 

1.4 How to Detect Building Perceptual Alignments?   

To detect a straight line alignment pattern, one can either group objects by means 
of a spatial structure such as MST, Delaunay or Voronoï, and determine if straight 
alignments exist within these linked objects, or one can use the straight line to 
directly group the objects. This latter method has been chosen as it provides 
hypothetical straight line alignments without requiring the development of 
complex spatial structure analysis tools.  

The proposed method is divided into two steps:  

1. The first step (section 2) aims at identifying aligned buildings within an urban 
block (a close cycle of streets). The result is a set of aligned buildings that are 
potential candidates for becoming building perceptual alignment. At this stage, 
the distance between buildings may or may not be regular.  



2. The second step (section 3) qualifies the potential candidates according to their 
various regularities; eliminates the ones that are clearly not regular and, 
quantifies the quality of the retained candidates.  

Section 2 and 3 below address each of these steps.  The implementation has been 
achieved using the GIS Lamps2 of Laser Scan. 

2 The Detection of Straight Line Building Alignment 

This section presents the methodology used and identifies straight line alignments 
of buildings. A top-down method has been developed. Straight lines are 
predefined patterns used to detect the alignment. Starting from a geometric 
description of alignment, we determine which buildings are concerned by their 
structure (2.1). Further, the structures identified are assessed and the incomplete 
ones are recomposed (2.2). The intent is to use an exhaustive search of all 
alignment possibilities by means of a one-line template that takes 'all' orientations 
from a single anchor point, located on the xmin and ymin of the urban block.  

2.1 The Detection of Potential Alignments Based on Projection 

It is worth noting that the orthogonal projection of aligned points gives close 
projected-points on a straight line of projection (Fig. 2).  As such, the centroid of 
all buildings of the urban block is projected on an 'exhaustive' set of straight lines. 
Then on each line, groups of very close projected-points are searched. These 
groups of points represent the potential alignments. The relation between a 
projected point and its building is maintained throughout  the process: thus, a 
projected point is linked to one single building.  

Questions raised by this choice are: 

�� Which straight lines are to be used for this projection?  
�� How should the distribution of projected-points be assessed? 
�� How should the  point clusters be filtered to detect the aligned buildings? 

2.1.1 Straight Lines Choice 

To find all the potential candidates, each urban block is assessed using a set of 
straight lines defined by an angle � and an anchor-point. The angle � varies from 
0 to 180 degrees with a 1 degree step. The complete scan highlights all 
alignments. 
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Fig. 2. Straight line assessment  of an urban area 

2.1.2 Study of Distribution of Projected-Points on a Straight Line � 

Each straight line holds a set of projected points amongst which some clusters 
may exist. To detect the clusters a simple method has been chosen that consists of 
gathering the projected-points together in equal size packs from the anchor-point 
and assessing  the proximity within each pack.  The greatest distance between two 
successive points in each pack - called �max - represents the proximity inside the 
pack. Other methods could also have been used for this step such as an ascending 
hierarchical classification method.  

The size of the packs refers to the number of successive points per pack. An 
alignment should likely be composed of at least 4 buildings. As alignments often 
involve a limited number of buildings, we have experimentally chosen to study 
structures of 4, 5 and 6 points. Consequently, for a single straight line, three 
collections of packs are generated corresponding to size 4, 5 and 6.   
 

2.1.3 Selection of the Best Packs 

At this stage, there are 180 * 3 collections of packs to assess (line
�
�= (coll4 {packi, 

�maxi}, coll5 {packj, �maxj}, coll6 {packk, �maxk})). Most of these do not present 
any alignment. To filter the best lines, the minimum value of �max - �max min - 
per collection and per line is computed. This value represents the “efficiency” of 
the line to identify the clusters. It is used to order the line by efficiency. 
Experimentally,  it is apparent that all lines and collections that have a �max min 
bigger than 3 meters can be rejected. 

The same alignment, however, can still occur in different packs:  

�� An alignment of 6 buildings will be described for the same �, 3 times in a 
collection of 4 points, 2 times in the collection of 5 points and 1 time in the 
collection of 6 points 

�� An alignment may be described with successive ��values. 
 



Based on point’s identifier, a first filter is done for each line to retain only the 
longest pack representing the same points. A second filtering - based on the 
buildings identifier- is done between lines to reject redundant alignments. We will 
see later on that the alignments are not perfect and at this stage are considered 
only a 'potential alignment'. To view alignments, a set of segments between the 
centroid of the consecutive buildings is created (Fig. 3, left). To find a better 
geometry of the straight-line alignment, the adjustment of the alignment is 
measured  using a classical regression between centroids.  A set of alignments of 
different sizes is obtained (Fig. 3, right).  

 

 
Fig. 3. Adjustment of alignments with regression  (black :6, white:5, gray:4) 

At the end of this step some overlapping or incompleteness still exists and  
should be corrected.  

2.2 The Filtering and Composition of Alignments 

The first step determined that a number of potential alignments are incomplete.  
As such the potential alignments and filter overlapping must be extended. 

Only small alignments (maximum 6 buildings) are detected but larger ones 
have to be detected in their entire size (case 1). Alignments are extended to catch 
buildings using an iterative buffer at the extremity (of 10m) (Fig. 4). Moreover 
some buildings fall 'under' alignment, but are not actually a component of it (case 
2). This can result either from the packs filtering or from a certain deviation of the 
centroid. Those buildings are caught by a buffer of 10m on both sides of the 
alignment (Fig. 4). 

 

(2) (1)
 

Fig. 4. Situation of alignments: recuperation and extension 



After the extension of alignments some alignments could not be merged (Fig. 
5): if they have the same general orientation, they are merged and the adjustment 
of the alignment geometry is re-computed. 

 

 
Fig. 5. Situation of alignments: merging 

All the identified alignments are  added to the database. The 
“alignment” class is created with two particular attributes: the slope 
of the regression and the list of component-buildings. The 
association between one object 'alignment' and the object 'buildings' 
is a composition relationship (cardinality 1:n). 

 

 
 

Fig. 6. Examples of results on two different urban blocks (in 0-90° only) 

In Fig. 6 it’s apparent that an alignment is not always a perceptual structure 
since the inter-distances are large and irregular and/or because the buildings that 
belong to the alignments are different one from another. The alignments now have 
to be characterised to become building perceptual alignments. 

3 From Alignments to Perceptual Alignments 

The detected alignments must be qualified and ranked according to their 
importance.  Some alignments will be rejected while others will be preserved and 
qualified for the typification process.  Some visual criteria, based on principles of 
perception, are defined to describe potential alignments (3.1). The selection of the 
“best” alignments is based on regularity of all perceptual criteria. Results and 
required improvements are proposed in section 4.  



3.1 The Criteria of Characterisation 

Perceptual criteria are used to select and to describe the alignments. Two kinds of  
criteria were selected: 

�� The position of objects (which represent the quality of the pattern); in other 
words, the proximity and the alignment of their sides and centre. 

�� The similarity between objects (which represent the quality of the component 
of the pattern) and refers to the shape, the size and the orientation of buildings. 

 
At this stage measures are not aggregated, they are simply listed.  

3.1.1 The Position of Objects 

Proximity: The proximity which is the projection (minimal distance) between 
the boundary of two consecutive buildings is computed (Fig. 7, left). 

Arrangement of objects: Qualities of the sides of alignment and alignment of 
centres are computed by using angle variation. 

 

         
 

Fig. 7. Measures of proximity,alignment of sides, and, alignment of centres 

3.1.2 The Similarity of Objects 

Size: The size is the area of a building. 
Shape:  Refers to the concavity of buildings, using  the comparison of the area 
and the area of the convex hull (concavity = 1 - area/area (convex-hull)). Other 
measures could be added such as elongation ratio. 

Orientation: Various definitions have been described in [Regnauld 98] such as 
the general orientation and the orientation of walls. The general orientation is 
measured by the average between the two longest segments between the points of 
the border (Fig. 8 left). This method gives approximate results as follows: first for 
squared buildings, the mean is proves insignificant second, for very irregular 
buildings, the results are invalid.  

As a result, wall orientation, which is the mean of the orientation of the wall in 
[0, pi/2], weighted by the length of each wall has been chosen.  Another 
orientation of interest, is the perpendicular orientation (Fig. 8 right ). 

 



        
Fig. 8. Measure of general orientation and  orientation of walls 

The orientation of walls supports a more effective comparison of buildings and 
is more suitable than a general orientation.  

3.2 Aggregation of Criteria Necessary to Define Pattern Quality  

The detected alignments must now be qualified according to perceptual criteria. 
Each pattern is characterised by a distribution of values concerning proximity, 
arrangements, size, shape and orientation of the buildings. Each criterion is 
perceptually 'good' if the values are close one to another. The perception is thus 
based on the regularity of values. 

 An estimator of homogeneity  needs to be developed for each criterion and 
then  aggregated to a global one, for each significant pattern. Assuming that a 
scale of comparable values is required, a normalisation must be done.  The 
classical normalisation of  values prior to computing the standard deviation (Xi = 
(max(xj) - xi) / max (xj)) did not yield  appropriate results.  

3.2.1 Estimator of Homogeneity for Each Criterion 

The measure of regularity is based on the standard deviation. The mean of the 
values has not been used since there are only a few objects and thus, the influence 
of any exceptions would be too high. Consequently, in the standard deviation, the 
mean has been substituted with the median, which in this case, is more 
appropriate. Several estimators E, were then developed, one per criterion, �' = � 
(1/n * �i (xi - med) 2): 

When the value of xi is larger than 1 (area, distance), we divide the standard 
deviation by the median.  The estimator values, however, should be comparable.   
If 0.5 is perceived as medium for one property, it should be perceived as medium 
for the others. Consequently, each estimator has to be adapted to reflect the 
homogeneity  of each criterion:  

�� Arrangement, orientation and shape, E = �’   
�� Proximity, Ep = �’ / median   
�� Area, Ea = �" / median, with �" = � (1/n * �i (xi - med)). The quadratic value 

placed too much emphasis on  large areas. 
 



The standard deviation only computes the regularity of the distance and not the 
distance itself. Consequently, if the median for proximity is superior to 10m, some 
values are added to the test value to penalise it (Ep can be higher than 1). 

We have a set of estimators Ei defining each criterion of the structure. The 
quantitative values given by each estimator are experimentally tested and 
validated. To clarify the results quantitative values are transformed into qualitative 
values. If the values of Ei are superior to 1 it is “very bad”, between 1 and 0,7 it is 
"bad", between 0,7 and 0,5 it is "medium", between 0,5 and 0,25 it is "good", 
under 0,25 it is "very good". (see Fig. 9) 

Finally, a global estimator GE is proposed that defines the global quality of the 
pattern, measured by 1/n*� i  Ei 

2. The use of the square enforces the influence of 
small values (i.e. regular) and high values; a value > 1, i.e. not regular at all  will 
correspond to what is required. Experimentally, we saw that if GE < 0.25, the 
alignment of buildings was perceptually good. Consequently, among the 
alignments defined in section 2, only those having a GE value under this threshold 
are considered as being a 'building perceptual alignment'. Therefore, 0,25= 0,5²,  
corresponds to the limit between good and medium values.  

3.2.2 Accounting for the Number of Buildings 

These preliminary experiments were undertaken with samples of between 4 and 
15 buildings. The more elongated the pattern, the less regular it might be. The 
number of objects could be included in the final cost function but this requires 
further assessment.  

3.3 Results and Comments 

A methodology has been presented to detect and qualify building perceptual 
alignments. Some comments on the limitations  and necessary improvements are 
briefly outlined. 

 

Alignment   139443
Number :  8

E-Proximity  2,18   very bad
E-Area  0,04   very good
E-concavity  0,07   very good
E-orientation  0,91   bad

E-align-wall1  0,30   good
E-align-wall2  0,43   good
E-align-centre0,21   very good
E-align-mean  0,31

GE 0.86 (7 E)
GE  = 1.16 (5 E) Rejected

Alignment   139441
Number :  8

E-Proximity  0,32   good
E-Area  0,03   very good
E-concavity  0,04   very good
E-orientation  0,08   very good

E-align-wall1  0,54   average
E-align-wall2  0,56   average
E-align-centre0,26   good
E-align-mean 0,46

GE  0.11 (7 E)
GE  = 0.06 (5 E)   Selected

 
Fig. 9. Visual results : example 1 



Alignment 135609
Number : 5
E-Proximity 0,31   good
E-Area 0,04   very good
E-concavity 0,14   very good
E-orientation 0,10   very good
E-align-wall1 0,16   very good
E-align-wall2 0,64   average
E-alig-centre 0,23   very good
GE  = 0.09 (7 E)   Selected

Alignment  135611
Number : 4
E-Proximity 0,18   very good
E-Area 0,02   very good
E-concavity 0,02   very good
E-orientation 1,46   very bad
E-align-wall1 0,31   good
E-align-wall2 0,19   very good
E-alig-centre 0,17   very good
GE  = 0.33 (7 E)   Rejected  

Fig. 10. Visual results example 2 

Without having addressed optimisation concerns, we observe that some 
estimators Ei, are still inadequate.  For example,  

�� The Area and Concavity estimator values are always too small. Thus, the 
normalisation should be reconsidered.  

�� The estimator of alignment (E-align) based on the variation of angles that 
connects close buildings is not as strict as a visual inspection might require, 
(e.g. Fig. 9, alignment 139443). Indeed the visual perception of alignment 
depends not only on angles but also on distances. A solution to improve E-align 
lies in replacing � by sinus �� Moreover; a combination of the three indicators 
should be developed. Taking the three indicators (7E) puts too much weight on 
alignment, while taking the average (5E)  may be not be the best solution. 

 
Even if the visual results are acceptable, some more tests are needed to tune 

these functions. The difficulty is partly related to the fact that statistical 
measurements have been used for only a limited number of objects. 

The comparison between the orientation of the buildings and the orientation of 
the alignment, as well as the comparison between the orientation of the alignment 
and the orientation of the closest road would be useful information to add.  

The aggregation of estimators for the global qualification of the perceptual 
alignment also needs improvements. In the above assessment, all estimators are 
equally weighted and an average is computed. The only exception is the distance 
estimator, which combines the regularity and the value of the distance. The 
aggregation of two concepts (regularity and value) is certainly not optimal. An 
improvement might be achieved using the following rule: the smallest the object 
size, the smallest the acceptable distance.  

The detection of alignment (section 2) could include some buildings that may 
decrease the quality of the global structure. Therefore, these structures might be 
rejected during the selection step (section 3). Whenever a large structure is 
removed, consideration could be given  to the effect it has on decreasing the 
global quality. 



4 The Use of Perceptual Alignments for Generalisation 

The aim of this research was to detect building perceptual alignments for 
generalisation purposes. This generalisation process has not yet been implemented 
but an explanation of how these structures will be used is provided below:  

�� For building typification, minimum size and minimum interdistance, are used 
to find the number for required buildings. The appropriate number of buildings 
should be removed (either the less regular or the redundant ones) and the  final 
alignment should be rearranged while maintaining the global characteristics of 
the structure. 

�� In case of an excessive  building density, if the building block is too thin and if 
there are two parallel building alignment structures (which is often the case as 
there are two road parallel roads), we could preserve the best one and remove 
the buildings of the other alignment.. 

�� Last but not least, perceptual alignments should be useful for the building 
displacement process. New algorithms such as [Bader 01] perform 
displacements based on various strengths between objects. In case of the 
displacement of buildings that belong to a perceptual alignment, special 
strengths should be introduced to preserve the alignments as much as possible.  

5 Conclusion 

In this paper, we present research on detecting and qualifying building perceptual 
alignments. These types of patterns have been chosen as they are frequently found 
in urban areas and are necessary elements in cartographic presentation and 
generalisation activities, such as typification and displacement. The idea is to 
detect the structures and to propose new and simpler algorithms that would better 
maintain geographical patterns. The proposed method is a top down detection 
approach as it starts with predefined straight-line templates and seeks  buildings 
that participate in these structures. The detection phase gives acceptable results. 
The characterisation and selection phase should still be improved (see 3.3) even if 
the results are already reasonable sound. The concept of estimator functions 
requires further work and fine-tuning. The next step is to build new generalisation 
algorithms that will, as a result, be easier to develop as it is anticipated that the 
pattern derivation will resolve a number of the problem issues. 
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