
The Dimensional Model: A Framework to 
Distinguish Spatial Relationships 

Roland Billen1, Siyka Zlatanova2, Pierre Mathonet3, and Fabien Boniver4 

Geography Department, University of Liege, Allée du 6-Août 17, 4000 Liège, 
Belgium, +32-(0)4/3665752, +32-(0)4/36656 93, Roland.billen@ulg.ac.be1 
Department of Geodesy, Delft University of Technology, Thijsseweg 11, 2629 JA 
Delft, The Netherlands, +31 (0)15 278 2714, +31 (0)15 278 2745, 
S.Zlatanova@citg.tudelft.nl2 
Math. Dept., University of Liege, Grande Traverse 12, 4000 Liège, Belgium, +32-
(0)4/3669480, +32-(0)4/366 9547, P.Mathonet@ulg.ac.be3 
Math. Dept., University of Liege, Grande Traverse 12, 4000 Liège, Belgium, +32-
(0)4/3669417, +32-(0)4/366 9547, F.Boniver@ulg.ac.be4 

Abstract 

A  unique characteristic of GIS as compared to other information systems, is their 
capacity to manage spatial relationships, such as connections or interrelations 
among   objects in the geometric domain. A number of frameworks use topology 
as a basic mechanism to define spatial relationships. The OpenGIS consortium has 
adopted one of them, i.e. the 9-intersection model. In this paper, a new framework 
for representing spatial relationships - the Dimensional model - is introduced. The 
model was first developed for convex spatial objects and is now extended to 
topological n-manifolds. It is based on two major concepts, i.e. the dimensional 
elements of spatial objects and the dimensional relationships, i.e. the relationships 
existing between dimensional elements. The model addresses a  substantial group 
of spatial relationships and provides a flexible framework to consider either 
generalised or specialised types of associations..  
Keywords: spatial relationships, spatial model, convexity, topological manifolds 

1 Introduction 

The development of a mathematical theory for categorising relationships has been 
identified as an essential task  in  tackling the diversity and incompleteness of 
spatial-relationships’ representations (see Boyle et al. 1983, NCGIA 1989). 
Among all the approaches (e.g. metrics, topology, ordered sets), topology seems 
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the most appreciated  (see Egenhofer et al. 1994, Egenhofer 1989, Egenhoher and 
Sharif 1998, Clementini et al. 1993, Kainz et al. 1993, Molenaar 1998). The 
OpenGIS consortium has adopted one of the topologically based frameworks, 
referred to as  the 9-intersection model, as a generic mechanism for 
implementation and development.  

In this paper, a new framework for representing spatial relationships named the 
Dimensional Model (DM) is introduced. The model was first developed for 
convex spatial objects and is now extended to topological n-manifolds. The paper 
is organised in the following sections. First, the order concept for convex bodies is 
presented. Then, the order concept for a topological manifold is developed. A 
formal description of the Dimensional Model follows. After a brief comparison 
with the 9-intersection model, some spatial relationships are depicted using the 
DM. Finally; the implementation of the DM is overviewed. 

2 An Order Formula for Convex Bodies 

2.1 Affine Subspaces and Convex Sets 

Geographers and mathematicians use co-ordinates to describe location in space. 
Whenever d is a positive integer, we denote by Rd the set of tuples (�1,...,�d) of 
real numbers �1,...,�d. As Euclidean vector (or affine) space, Rd is the natural 
framework in which geometry can formally be studied. It is also the first example 
of Euclidean topological space. A detailed introduction to general topology and 
manifolds can be found in Alexandrov (1998) and Lee (2000). 

A subset A of Rd is an affine subspace if, for any distinct points x, y belonging 
to A, the (infinite) straight line defined by x and y lies in A. Points, straight lines, 
planes, and R3 itself are the only affine subspace of R3. Their respective 
dimensions are 0, 1, 2 and 3. An affine subspace of dimension d-1 of Rd is named 
hyperplane. For instance, the hyperplanes are merely straight lines in R2 and 
planes in R3. A hyperplane divides the whole space in two regions, called 
halfspaces. 

A subset A of Rd is convex if, for any two points x,y belonging to A, the 
segment [x,y] lies in A. 

A supporting hyperplane M of a convex set C is a hyperplane such that 

�� C is included in one of the halfspaces defined by M, 
�� ��CM �. 

Fig. 1 shows examples of convex sets and supporting hyperplanes in R2 and R3. 



 

 

  

 

 

Fig. 1. Examples of closed convex sets and hyperplanes 

2.2 Order of Points in Closed Convex Set 

Let C be a convex set, closed with respect to the Euclidean topology. Each point 
of C has an order, whose definition is given in Berger (1978, p. 50), and can be 
stated as follow. 

Let C be a closed convex set in Rd and Cx� . The order of x in C, denoted by 
o(x,C), is the dimension of the intersection of all supporting hyperplanes 
containing x. 

In particular, if no supporting hyperplanes contains x, then x has order d. One 
can prove that those points with order d are exactly the interior points of C with 
respect to the Euclidean topology. 

Fig. 2 shows points with various orders in a triangle, a drop, and a segment. For 
instance, the top point of the triangle has order 0. Indeed, infinitely many 
supporting hyperplanes (only two are represented) go through it and intersect in 
that point itself. Fig. 3 shows examples in R3. 

 

 
Fig. 2. Order of points of closed convex sets in R2 (with some hyperplanes) 

 
Fig. 3. Order of points of closed convex sets in R3 (without hyperplanes) 



 

3 An Order Formula for Manifolds 

More often than not, objects in GIS application environments  are not convex. It is 
therefore  reasonable  to seek for a suitable formula for more general objects. 
Those will be topological manifolds. Our approach goes as follow: given a point x 
in a topological manifold, we create a closed convex neighbourhood of x and 
compute its order with respect to this neighbourhood. The key point is that, 
intuitively, the order of a point is a “local” property: it actually depends only on 
the manifold in a neighbourhood of x 

Therefore, the steps to find the order of points are: 1) determine if the point of 
interest stands on the interior or the boundary of the manifold; 2) centre a ball on 
this point with a given radius r; 3) take the intersection between the ball and either 
the manifold or the boundary of the manifold; 4) determine the convex hull of this 
intersection; 5) determine the order of the point regarding the convex object 
created (the convex hull); 6) repeat the operation 2 to 6 with a smaller radius, until 
getting a minimum value for the order. 

3.1 Topological Manifolds 

Let n be a positive integer. We denote by Rn
+ the subset of tuples (�1,...,�n) with 

�n 0� .. A subset A of Rd is a topological n-manifold with boundary if each point 
Ax�  has neighbourhood, which is homeomorphic to an open subset of Rn

+. 
Let A be such n-manifold. It is the disjoint union of its interior, �A , and its 

boundary, A� . The points belonging to �A  are named interior points. A point is 
interior if it has a neighbourhood homeomorphic to an open subset of Rn. It is 
worth noticing that those definitions do not coincide with the Euclidean 
topological definitions of interior and boundary. 

Two additional notations will be useful. If B is a subset of Rd, we denote by 
conv(B) the convex hull of B, which is the smallest convex subset of Rd containing 
B. If r is a positive real number and �x  Rd, we denote by bx,r the closed ball with 
centre x and radius r. 

3.2 The General Formula 

We can now write the general formula that encapsulates the algorithm presented 
above. Let X be a topological manifold. Assume furthermore that X is closed as a 
subset of Rd. If x is an interior point of X, then its order is defined as: 

))(,(lim ,
0,0

Xbconvxo rx
rr

�
��

. (1) 

Now, if Xx �� (x is a boundary point of X), then its order is: 
))(,(lim ,

0,0
Xbconvxo rx

rr
��

��

. (2) 



 

In both cases, the limit exists and equals the minimum of the values of the 
function o. 

Fig. 4 illustrates this approach for 1-manifold. Figs. 5 and 6 show some more 
examples for 1-manifold (curve line) and 2-manifold. 

 

Fig. 4. Determination of the order of a broken line’s point with different ball radius 

(a) (b) 

Fig. 5(a) Determination of the minimum order of a broken line’s point, (b) determination of 
the minimum order of a curve line’s point 

(a) (b) 

Fig. 6(a) Determination of the minimum order of a polygon’s boundary point, (b) 
determination of the minimum order of a polygon’s interior point 



 

4 The Dimensional Model 

The Dimensional Model (DM) is a (conceptual) framework to describe both 
spatial objects and spatial relationships. The spatial objects are composed by 
dimensional elements, which are based on order’s points of object. The spatial 
relationships between spatial objects are described in terms of dimensional 
relationships, i.e. relationships that exist between the dimensional elements of the 
objects. 

4.1 Spatial objects in DM 

In our model, a simple spatial object of dimension d is equivalent to a topological 
d-manifold. They are called simple because it is possible to apply directly the 
order formula to them, and therefore determine their dimensional elements. We 
also define a complex spatial object (as a combination of simple spatial object), 
which will not be discussed here (see Fig. 7). 

 

Simple spatial objects (manifold) 
Complex spatial objects (aggregation of 

simple objects) 

Fig. 7. Examples of spatial objects 

4.2 Dimensional elements of DM 

The dimensional elements are associated with different parts (or points) of a 
spatial object according to their order. 

1. The ��dimensional element (denoted �D-element) of a spatial object C (which 
has at least dimension �), corresponds to the set of all the points (or parts) of C 
which have order 0 to �.  

2. The �D-element of a spatial object C has an extension and may have a limit.  
3. The extension is the subset of C formed by its points of order �, and the limit is 

the subset of C formed by its points of order 0 to order (�-1).  
 

Thus, if the �D-element has a limit, this limit corresponds to a lower (�-1)D-
element. The 0D-element does not have a limit by definition. Fig. 8 illustrates the 
dimensional elements of a polygon. First, the order of all the points is determined. 



 

This convex is composed of 2D, 1D and 0D-elements. The different extension and 
limits are presented in the Fig. 8. In the case of an ellipse, the 1D-element does not 
have a limit. It should be noted that there is one and only one xD-element for this 
object. 

 

   

  

Fig. 8. Order of points and dimensional elements of a polygon and of an ellipse 

4.3 Dimensional Relationships 

The dimensional relationships are defined as the relationships existing between 
dimensional elements. These relationships can either be total, partial or non-
existent, and are oriented (from one element to an other one). 

1. A dimensional element is in total relation with another dimensional element if 
their intersection is equal to the first element, and if the intersection between 
their extensions is not empty.  

2. A dimensional element is in partial relation with another dimensional element 
if their intersection is not equal to the first element, and if the intersection 
between their extensions is not empty. 

3. A dimensional element is in no relation (non-existent) with another 
dimensional element if the intersection between their extensions is empty. 

 
Fig. 9 illustrates the three types of dimensional relationships for 2D-elements. 
 

   
No relation (non-existent) Total relation Partial relation 

Fig. 9. The different types of dimensional relationships between two 2D-elements (from 
black element to grey element) 



 

4.4 The Dimensional Model for Investigation of Spatial Relationships 

The dimensional elements (with their limits and extensions) and the dimensional 
relationships (i.e. total, partial and non-existent) are the basic tools to decode 
spatial relationships. The spatial relationship between two objects can be 
expressed by the dimensional relationships that exist between the dimensional 
elements of both objects. For example, let us consider a polygon A (with 2D, 1D, 
0D elements) and a line B (with 1D and 0D-elements). The dimensional 
relationships between the spatial object A and the spatial object B can be identified 
in the following sequence: first, check the dimensional relationship between the 
2D-element of A and all the dimensional elements of spatial object B; then, check 
the dimensional relationship between the 1D-element of A and all the dimensional 
elements of spatial object B, etc. The dimensional relationships between B and A 
can be found following the same approach. Three groups of dimensional 
relationships can be distinguished following this approach, i.e. the simplified, the 
basic and the extended relationships. 

A dimensional relationship is coded RnDy, using the notations R for 
relationships, nD for dimension of the element of the first object, and y dimension 
of the element of the second object. R2D1 represents the dimensional relationships 
between the 2D-element of the first object and the 1D-element of the second 
object. Furthermore, a numeric code for the three types of dimensional 
relationships, i.e. 0 for non-existent, 1 for total and 2 for partial, is specified. 

The basic relationships. This group contains all the relationships between every 
possible combination of dimensional elements. For example, the spatial 
relationship between a polygon (considering 2D, 1D, 0D elements) and a line 
(considering 1D and 0D elements) can be expressed by basic dimensional 
relationships as follows: 

 
 R2D1  R2D0  R1D1  R1D0  R0D1  R0D0 
{0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} 
 
where 0, 1, 2 correspond to the possible dimensional relationships, i.e. non-

existent, total and partial. 
The extended relationships. The partial relation can be further investigated for 

the dimension of the intersection. For example, in R3, a 2D-element and a 1D-
element may have a 1D- or a 0D-intersection. If the intersection has the same 
dimension as the lowest dimensional element in the relation, it keeps the code 2 
(e.g., if a 2D-element and a 1D-element have a 1D-intersection, it would be noted 
as R2D1 2). If the dimension of the intersection is just inferior, then it would have 
code 3 (a 0D-intersection in the example, R2D1 3). Our example of the extended 
dimensional relationships between a polygon and a line becomes: 

 
 R2D1  R2D0  R1D1  R1D0  R0D1  R0D0 
{0,1,2,3} {0,1,2} {0,1,2,3} {0,1,2} {0,1,2} {0,1,2} 
 
The simplified dimensional relationships. In many cases the dimensional 

elements of the second object is not relevant. For example, it might be interesting 



 

to know if the 2D-element of a polygon has a relationship with another object 
independently of its dimensional elements. In such cases, some dimensional 
relationships can be aggregated. The complete aggregation rules will not be 
exposed here. Our example of the simplified dimensional relationship becomes: 
 

 R2D  R1D  R0D 
{0,1,2} {0,1,2} {0,1,2} 
 
Fig. 10 illustrates how the spatial relationships between a polygon and a line 

are represented according to the different groups in the Dimensional Model. 

 
Basic relationships 
R2D1 |R2D0 |R1D1 |R1D0 |R0D1 |R0D0 
2 |0 |0 |0 |0 |0 
Extended relationships 
R2D1 |R2D0 |R1D1 |R1D0 |R0D1 |R0D0 
3 |0 |0 |0 |0 |0 
Simplified relationships 
R2D |R1D |R0D 
2 |0 |0 

Fig. 10. The Dimensional Model applied to the relationship between polygon and line 

5 The Dimensional Model Versus the 9-intersection Model 

As mentioned, the 9-intersection model is a one of the topological relationships 
standard. We want to clearly expose the difference that exists between the 9-
intersection model and the Dimensional Model. 

5.1 The 9-intersection Model (9i Model) 

The framework is based on the assumptions of spatial objects (represented by 
0,1,2,3-cells) without holes and intersecting parts. If the spatial objects A and B 
are defined in the same topological space, their boundary, interior and exterior are 
denoted by ���� � BBAAA ,,,,  and �B (see Egenhofer, M. and J. Herring, 1990). 
The binary relationship R(A,B) between the two objects is then identified by 
composing all the possible set intersections of the six topological primitives, 
i.e. BA ��� , ��� BA , ��� BA , BA ��� , ��

� BA , BA ��
� , ��

� BA
, �

�� BA  and �

�� BA , and detecting empty (0) or non-empty (1) 
intersections. For example, if two objects have a common boundary, the 



 

intersection between the boundaries is non-empty, i.e. 1���� BA ; if they have 
intersecting interiors, then the intersection ��� BA is not empty, 
i.e. 1���� BA . To represent the relationships a decimal coding is adopted here 
(see Kufoniyi 1995). That is to say, that the binary number (obtained from a 
particular ordering of all the intersections) is converted into a decimal number. For 
example, the relationship that has a binary number 000011111 (considering the 
ordering given above) equals decimal number 31 and hence the relationship is 
R031 (disjoint). Thus, all the decimal codes are between R000 and R512 

5.2. Differences Between 9i Model and DM 

The differences between the 9-intersection model and DM can be summarised as 
follows: 

1. The definition space of 9i model is topological when it is an affine one for DM. 
2. In the 9i model, the spatial relationships are determined looking to intersections 

of the topological primitives. In the DM, the spatial relationships are 
determined looking to intersections of the dimensional elements. 

3. The 9i model is related to the cell approach. The dimension of the cells are not 
(always) equivalent to order of points (see Fig. 11). Therefore, the union of d-
cells of an object is not equivalent to its dD element, except for some types of 
objects (as polytopes).  
 

    
Object A Object B 

Fig. 11. Examples of differences between cell decomposition and dimensional elements 

4. The DM allows grouping spatial relationships at different level of complexity: 
more general groups than with 9i model, same kind of groups or more specific 
ones (see the next section). 

6 Possible Spatial Relationships 

As mentioned, three groups of dimensional relationships can be used to express 
the spatial relationship between objects. Furthermore, one has the choice to take 
into consideration only relevant dimensional elements in a geographical 
perspective. For example, a particular geographical phenomena represented by a 
polygon may not need a distinction between the 1D-element and the 0D-element 
which form its border. In such a case, although the 0D-element exists in the 



 

object’s definition, it would not be taken into account in the determination of the 
spatial relationship. 

The number of potential relationships between two objects depends, with 
respect to the Dimensional Model, on: 1) the dimensional nature of the objects 
(given by dimensional elements), 2) the semantic dimension of the object (only 
the “relevant” dimensional elements from a semantic point of view) and 3) the 
group of dimensional relationships. Similarly to the 9-intersection model, only a 
small number of the theoretical relationships can be realised in reality (see 
Zlatanova, 2000 for examples in R3). The same approach is adopted, i.e. 
elimination of impossible relationships by negative conditions. All the possible 
relationships between line-line, line-surface, line-body, surface-surface, surface-
body and finally body-body have been established and studied for the different 
criterion mentioned above. Note that in this study, some elements have been 
simplified.  For example the 0D element of a line corresponds only to its 
extremities (no broken lines). Table 1 portrays simplified, basic and extended 
relationships for all levels of dimensional relevancy. 

Table 1. Possible relationships according to the Dimensional Model 

D  
element 

Dim. 
Rel. 

Line- 
Line 

Surface- 
line  

Body- 
body  

Surface-
surface 

Body- 
Line 

Body-
surface 

S. 5 3 5 5 3 3 
B. 5 3 5 5 3 3 

(n)D 

E. 7 5 5 11 3 3 
S. 11 10 8 15 6 8 
B. 33 31 8 43 19 19 

(n)D 
&(n-1)D 

E. 61 ? 15 ? 43 48 
S.  ? ? ? 19 ? 
B.  ? ? ? ? ? 

(n)D 
&(n-1)D 
&(n-2)D E.  ? ? ? ? ? 

S.   ?  ? ? 
B.   ?  ? ? 

(n)D 
&(n-1)D 
&(n-2)D 
&(n-3)D 

E.   ?  ? ? 

With Dim. Rel. = Dimensional relationship; S. = simplified; B. = basic; E. =extended 
? non determinate 
 impossible case 

33 possible relationships according to the 9-intersection model 
 
Considering the highest and the second highest dimensional element and using 

the basic relationship, the relationships reported by Zlatanova (2000) are  found. 
They are shown  in bold font in table 1 (light grey row). Most of the equivalent 
topological  cases can be “refined” using some of the more complex criteria in the 
Dimensional Model (i.e. everything that is below the shaded line in table 1). 
Further, more aggregated relationships can be found with simpler criterions (i.e. 
everything that is above this line). Fig. 12 presents the extended dimensional 
solutions (0D elements are not taken into account) to the topological equivalence 
R095 and R287 (between a body A and a surface B). 



 

 

 
 R3D2 R3D1 R2D2 R2D1 R1D2 R1D1

(a) 0 0 2 0 2 0 
(b) 0 0 0 0 2 0 
(c) 0 0 0 2 0 0 
(d) 0 0 0 0 0 2 

Fig. 12. Dimensional relationships for, (a) and (b) topological equivalence R095, and (c) 
and (d) R287  

Another interesting example concerns the “meet” relationship between two 
bodies. All the spatial situations in Fig. 13 are equivalent to R287 according to the 
9-intersection model, while all of them can be differentiated with the Dimensional 
model. Solutions are given only for cases a, b, c and d. The cases e and f need to 
consider the 0D-element. 

 

 
 R3D3 R3D2 R3D1 R2D3 R2D2 R2D1 R1D3 R1D2 R1D1 

(a) 0 0 0 0 2 2 0 0 0 
(b) 0 0 0 0 2 2 0 0 2 
(c) 0 0 0 0 0 0 0 2 2 
(d) 0 0 0 0 0 0 0 0 2 

Fig. 13. Dimensional relationships for topological equivalence (R287) 

7 Implementation of the DM 

The DM is oriented spatial relationships. . It is possible, however, to use it to 
enrich spatial data structures and  some convenient tests have been done. The 
“purest” solution is to use D elements instead of topological primitives. Of course, 
some problems may occur when objects are transformed – the D elements are not 
invariant through all the homeomorphic transformations. A more pragmatic 



 

solution is to keep a topological data structure and compute the dimensional 
elements during the determination process of dimensional relationships. This 
computation uses colinearity and coplanearity algorithms. The search for an 
adapted implementation of DM has  revealed some very interesting concepts, such 
as the possibility of   relinquishing the single-valued map approach (see Molenaar, 
1998). This is still being considered and will not be addressed here.  

8 Conclusions 

In this paper, we have presented a new framework, i.e. the Dimensional Model, to 
distinguish spatial relationships of spatial objects. The Dimensional Model 
supports the presentation of a very large group of spatial relationships. It provides  
a flexible framework that allows either generalised or specialised types of 
relationships to be considered. The freedom in choosing geographically relevant 
dimensional elements and groups of dimensional relationships allows one to 
decide on a particular complexity of spatial relationships. It covers a large range of 
spatial objects (topological n-manifold for simple spatial objects and combinations 
of simple spatial objects for complex spatial objects). 
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