
A Methodology for Updating Geographic
Databases using Map Versions

Ally Peerbocus1, Geneviève Jomier1, Thierry Badard2

LAMSADE, Université Paris Dauphine, Pl. Mal de Lattre, 75775 Paris Cedex 16,
France. Email: (jomier,peerbocus)@lamsade.dauphine.fr1
Institut Géographique National, COGIT, 2 à 4 Avenue Pasteur, 94165 Saint
Mandé Cedex, France. Email: Thierry.Badard@ign.fr 2

Abstract

This paper addresses issues concerning the exchange and integration of
geographic data between producers and users. Once a producer has delivered a
geographic database to a user, who then uses it as a reference for specific
applications, the database may be updated on both sides. Consequently, the
integration of future updates - delivered by the producer -in the user’s geographic
database is a complex operation due to possible conflicts between updates
performed by both parties. The resulting database may become inconsistent and
the user’s added information may be lost. Users therefore need mechanisms to
help them in the process of update integration. This paper provides a
methodological framework for the updating of geographic databases. It relies on a
multi-version GIS, allowing an automatic detection of conflicting updates between
two map versions.
Keywords: geographic database, multi-version GIS, updates, map version

1 Introduction

Geographic Information Systems (GIS) are increasingly used in a large spectrum
of applications. Since, implementing such systems is complex, users, generally,
purchase reference geographic data from producers in order to set up their GIS.
For instance, a transportation company purchases from a producer a geographic
database representing the road network of a given region for its transport planning
application. For the user, the database delivered by a producer serves as a
reference map, on which to develop the application. Geographic data producers
are responsible for producing and maintaining up-to-date databases, delivered to
users on a regular basis. Meanwhile, users may need to add information on the

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

reference map or update the map to take into account real world changes, or
information they are interested in; for instance bus lines and bus stops (see Fig. 1).

Fig. 1. Integration of updates

Consequently, the integration of the producer’s updates in the user’s database
may result in conflicts with those already performed by the user as described in
(Badard 1998). For instance, if the producer changes the location of a road, to
increase information accuracy, the bus line and bus stops along the road must be
changed too, otherwise the user’s database is in an inconsistent state.

The first step for a proper integration of these updates requires the
identification of the updated objects in the user’s database as well as those in the
producer’s database in order to detect possible conflicts. At present, producers
generally deliver a whole up-to-date database to the user. Even if the percentage of
change is small between two updates, current GIS do not provide any mechanism
for the extraction of updates between two versions of a database representing the
same area at two different times (Raynal 1996). Several techniques have been
proposed to achieve this purpose. They are based on the exhaustive comparison of
all the objects in the two versions of the database (Badard 1998), relying on
geographic data matching algorithms (Lemarié et al 1996). Such an approach,
well adapted in a general context where no hypothesis on the data model is
assumed, is based on complex algorithms and needs considerable effort to be
implemented.

This paper proposes a mechanism for an automatic detection of conflicting
updates performed in two different versions of a database. It is based on the
version approach proposed in (Gançarski et al 1994). This paper is organised as
follows: section 2 describes the context through an example and presents an
overview of related work; section 3 details our approach and the way it is
implemented; section 4 concludes the paper.

2 Context and Related Work

Before presenting an overview of related work, this section describes an example
of exchange of geographic data between a producer and a user, illustrating
conflicts between producer’s and user’s updates.

Up-to-date Producer DB

time

Deliver of the reference
database

Producer DB User DB

Up-to-date User DB (with
the integration of updates
delivered by the producer)

Different updated
versions of the User DB

?

Delivery of up-to-date
producer DB

2.1 Context

The context used to illustrate the producer/user scenario is based on a road
network application relying on Georoute®, a database produced by the IGN (the
French National Geographic Institute) and dedicated to car navigation services.
Fig. 2 depicts part of the producer’s map, identified as prod0, which is delivered in
a geographic database to the user. The map shows the state of the modelled road
network, identified as R1 to R5, and land parcels, identified as P1 to P6. Fig. 2 also
represents the new up-to-date producer’s map, identified as prod1, reflecting the
new state of the road network after:

1. the construction of a new road R6, splitting parcel P2 into P2a and P2b;
2. the deletion of R2;
3. the construction of a new roundabout, identified by P7, at the junction of roads

R1, R3, R4, R5 and R6 implying the update of all these road sections.

Fig. 2. The different states of the producer and user maps

State of the database expected by user New up-to-date producer's database.

P2a

A

P5

R4

 prod-user1

P3

P4
P6

R6

R3

R7

P2b
P7

The database is updated by the user

Delivery of producer’s database

Integration of updates

user1

time

Delivery of new
up-to-date database

 prod0

prod1

R6 P2b

P2a

P4
P5

P6

R1

R3

R4

R5

P7

P1
 P2 P3

P4
P5

P6

R1

R2
R3

R4

R5

 Roundabout

 Road section

 Limit of a parcel
 Antenna

Legend

R1

R3

P3

P4 P5
R5

R7

A
R4

On the user side, the initial geographic database has been updated to obtain a
new version of the map, identified as user1, different from prod1. The updates
performed in user1 are illustrated in Fig. 2:

1. the update of roads R1 and R5;
2. the deletion of R2;
3. the creation of a road section R7 at the limit between P4 and P5;
4. the creation of an antenna, A, representing the user mobile phone company.

Finally, the map identified as prod-user1 corresponds to what the user would like
to obtain after the integration of updates from prod1 and user1.

In general, updates in a geographic database can be performed on both the
schema and the objects. Updates on an object represent its evolution - i.e.,
creation, deletion, and thematic and/or geometric changes. Schema updates are
required when new kinds of objects appear as bus-stops, mobile phone antennae
which are specific objects for the user and whose representation is not provided in
the producer’s schema of the database. When the producer delivers the new up-to-
date database to the user, (prod1 in Fig. 2), the user must then consider this new
information for an update to his current database (user1 in Fig. 2). He cannot just
replace the old reference database with the new one since the resulting database
may be in an inconsistent state; for instance, if a road section is enlarged in prod1,
he should displace any antenna on this road. Besides, specific information added
by the user may be lost and some of the updates may be in conflict with the
producer’s updates, like road R7, which exists only for the user.

2.2 Sources of Conflicting Updates

Several situations may result in conflicts between updates separately performed by
the producer and the user. First, conflicts may be due to the update of the same
object by both actors, defined as a 1-to-1 update, such as parcels P5, P6, and roads
R1, R5, updated by the producer and the user. Secondly, conflicts are very likely to
occur in case of group updates like:

�� 1-to-N update: one object is deleted and is replaced by several objects; e.g., the
splitting of parcel P2 into P2a and P2b in map prod1,

�� N-to-1 update: several objects are deleted and replaced by one object; e.g., the
merge of R1 and R2 in prod0 resulting in R1 in prod1,

�� M-to-N update: several objects are deleted and in their place several other
objects are created; e.g., the creation of the new roundabout P7 by the producer
in prod1.

A complete taxonomy of conflicts hindering the updating of geographic database
is described in (Badard 1998).

2.3 Related Work

Several techniques concerning the detection of update differences between two
geographic databases, modelling the same region, have been proposed. They are
generally based on the comparison of the geometry (Devogèle 1998. (Badard et al
1999) proposes to isolate these differences by using the “geographic data-
matching method”, which goes through every database object in a region and
computes the correspondence relationships between objects, from their geometry
stored in the two versions. The resulting relationships can be classified,
considering their cardinality: a) 1-to-0 or 0-to-1: an object of one database does
not match with any object of the other one; b) 1-to-n or n-to-1, with n>0: an object
of a database matches with one or several objects of the other one; c) n-to-m, with
n>1 and m>1: several objects of a database match with several objects of the other
one.

The correspondence relationships are then analysed and updated objects are
classified according to the evolution they have undergone - the typology is defined
in (Badard 1998b) -, and which can either concern the object level only, or both
schema and object levels. Furthermore, new delivery modes dedicated to the
exchange of updating information have been proposed (IHO96, Poupart-Lavoie
1997, Badard 1998b, Badard et al 2001) to help the integration process in
databases.

Together with these methods for the detection of updates in geographic
databases, propagation mechanisms of these effects have been proposed in a
multi-scale database context (Badard 2000, Kilpelaïnen 1997, Uitermark et al
1998). In all these papers, no hypothesis is made about the data model used and
only a general solution is provided. It’s clear that detecting changes in the whole
database requires tremendous efforts and sophisticated algorithms.

A proper updating of a user’s database implies the preservation of the integrity
of the map delivered by the producer. This means that users must perform their
updates on versions of the reference map, and the comparison of the different map
versions should be possible in order to detect changes between two map versions.
However, as far as we know, in the geographic context only one technical paper of
SmallWorld GIS (Easterfield et al) has focused on the management of version in
GIS. Few implementation details, however, have been provided.

We propose a methodology for the updating of geographic databases called
Updating by Map Versions (UMV). It is based on the use of a multi-version
geographic database as described in (Bauzer et al 1993), which supports the
management of map versions. The detection of conflicting updates is based on the
automatic identification of all the database objects, and not on comparisons
performed on the geometry of geographic objects as proposed in (Badard 2000).
The next section deals with the main features of the UMV methodology and
describes how it is implemented.

3 Updating by Map Version Methodology

From here on, the producer database will be addressed followed by the user
database as producer-DB and finally, the user-DB. Initially the producer-DB
contains one version of the map representing the modelled geographic area. This
version is identified as prod0. The UMV methodology, comprised of four steps, is
illustrated in Fig. 3 and detailed in the next sub-sections.

Fig. 3. The steps comprising the UMV methodology

These steps are:

S1. At time t0, the producer delivers to the user the initial reference map version,
prod0. This map version is inserted in user-DB, and identified as prod0. It
serves as the reference map for the user. Prod0 is preserved in the delivered
state, frozen in both user-DB and producer-DB. Updates are performed on
successive map versions generated from prod0 on both sides. The newly
generated map versions are identified as prod0,i in producer-DB and user0,j in
user-DB.

S2. Then, at time t1, an up-to-date database version is delivered by the producer
to the user, identified as prod1. The user’s map version at this moment is
identified as user1. The delivered map version, prod1, is inserted in user-DB.

Prod1

User1

Prod0

Prod-User1

User-DB

Non
conflicting

data

S3
Comparing

Prod1 and User1

Time t0

S2

Delivery of Prod1

S1

Delivery of Prod0

S4
Semi-
automa

ic operation

S4
Automatic
operation

P

Producer-DB

Prod1

Prod0,1

Prod0

Conflicting
data

Prod0

User-DB

User-DB

Prod1

User1

User0,1

Prod0

S3. The map versions user1 and prod1 in user-DB are compared to detect
conflicting (from an updating point of view) and non-conflicting data.

S4. Finally, using the strategy, discussed in section 3.3, a new map version is
created, user-DB, to include part or all of the user and producer’s updates. An
automatic integration of data can be used for non-conflicting updates. A semi-
automatic operation is needed to integrate the conflicting data and the
consequences of the conflicts in the final user map version, identified as prod-
user1. For instance, the bus line of the user present in user1 is moved to follow
the new location of a road recorded in prod1.

The UMV methodology is supported by a multi-version database (Gançarski et

al 1994), which is introduced in the next sub-section. We assume that both the
producer and the user have a multi-version geographic database. The underlying
version mechanism is now detailed.

3.1 The Multi-version Geographic Database

Two levels are distinguished: the user level and the database level. At the user
level, for external users, the multi-version database appears as a set of independent
map versions, representing the same area, which coexist within the same storage
space. This means that each map version can be managed (read and updated)
separately and independently from the other map versions of the same region. A
new map version is always generated or derived as a copy of an existing map
version.

At the database level, however, one important feature of the multi-version
database mechanism is that it automatically allows keeping track of all database
objects that compose a consistent map version. Thus, several versions modelling
the same real world object may coexist in the database. This gives origin to the
concept of multi-version object, which is a “repository” of all versions of a given
object – i.e., multi-version object O encapsulates the mapping between all
different states of an object and the corresponding map versions. One of the main
advantages of the mechanism is that it minimises storage occupancy and avoids
redundancy while storing multiple map versions. The derivation relationships
among the distinct map versions are recorded in a structure called map version
tree. Updates to objects in one map version are handled without side effects on
other map versions, due to an appropriate management of internal version
identifiers. To obtain the value of an object in a map version, the system applies a
rule stating that it has the same value as that in the map version from which it is
derived except if another value is explicitly specified. This rule is recursive and
called implicit sharing rule.

When an object is deleted in a map version, its value in the database is set to �,
meaning it does not exist. When an object O in a map version v is involved in a
group operation - splitting (e.g. the splitting of parcel P2 into P2a and P2b in map
version prod1) or merging operation -, the link between O and the resulting
object(s) is stored in a genealogy graph (Sperry et al 1999). A special value “#”

for O in map version v is used to denote a group operation. When geographic
objects are created from one or several other geographic objects - i.e. the object
has one or several ancestors, the resulting geographic objects are initialised with a
special value “*” in the map version parent of the map version in which the
operation has been performed. Thus, the genealogy graph represents 1-to-N, N-to-
1 and N-to-M evolution of geographic objects.

The system uses the internal identifier of objects to follow the evolution of
objects through time. Internal identifiers are managed only by the system,
conversely to external identifiers, which are managed by users. For further details
on this approach, the reader is referred to (Cellary et al 1990, Bauzer-Medeiros et
al 1993, Gançarski et al 1994, Cellary et al 2000).

3.2 Illustration of the Multi-version Geographic Database

The top of Fig. 4 shows a part of the producer multi-version database
corresponding to map versions prod0 and prod1 described in Fig. 2. For the sake of
clarity, we ignore the intermediate map versions between user0 and user1 in user-
DB, considering that the database is composed only of user0 and user1. Each
multi-version object in the figure is represented by a table with two columns: MV-
id (for multi-version identifier) and Value. Parcel P6 has a different value for each
of the two map versions: valp6 in prod0 and valp6a in prod1. The Parcel P2 in
prod1 has been split and replaced by parcels P2a and P2b as illustrated by the
genealogy tree. Parcel P1 has only one value, represented by valp1, corresponding
to map version prod0. According to the implicit sharing rule and the producer’s
map version tree, valp1 is also the value of P1 in map version prod1.

The bottom part of Fig. 4 shows a part of the user’s multi-version database.
Road section R7 and the antenna A have only one value, valr7 and valA
respectively, corresponding to map version user1, meaning that they have been
created in user1. Parcel P1 has only one value, valp1, for map version prod0, thus
its value in map version user1 is implicitly shared with that in prod0. Parcel P6 has
two values, valp6 in map version prod0 and valp6x in map version user1, because
it has been updated in map version user1.

Notice that the identifier of new objects created in prod1 or user1 must not be in
conflict. This can be the case if the same identifier is used in prod1 and user1 to
represent two different real world entities. To prevent this, the identifier of new
objects is prefixed with the name of the database in which it is created. For
example, the identifiers of P2a and P2b in Fig. 4 are in fact prod-DB.P2a and prod-
DB.P2b. For simplicity sake, this does not appear on the figure.

This sub-section has described the main principles of the multi-version
approach. In reality, the geometry of some geographic objects may be represented
by complex objects. As such, updates are carried out on the elementary objects
that compose the geometry (Peerbocus et al 2001).

Fig. 4. Part of the multi-version databases

3.3 Delivery of Producer’s Updates

On delivery, the producer’s updated map version prod1 is inserted in user-DB to
enable the detection of conflicts between the producer’s and the user’s updates.
This insertion operation is performed automatically as follows:

1. The system first modifies the map version tree to include map version prod1 as
derived from prod0; prod1 and user1 become alternative map versions, both
derived from prod0, as illustrated in Fig. 5.

2. The system then verifies for each object in the delivered map version prod1
whether the object has been updated or created by the producer - i.e., it has a
value explicitly associated with prod1. If so, the system inserts the value
corresponding to prod1 in the corresponding multi-version object in user-DB.

Finally, the multi-version database is composed of multi-version objects having
values corresponding only to prod0 and/or prod1 and/or user1 (see Fig. 5). For
instance, parcel P6 has three distinct values corresponding respectively to map

A part of the producer multiversion database

A part of the user multiversion database
prod0

user1

User’s map
version tree

P1

MV-id

prod0 valp1

Value

prod0

user1

valp6

valp6b
P6

R7

MV-id

user1 Valr7

Value

prod0

user1

Valr2

�

user1 Valr7

R2

A

Deleted in
user1

Created in

prod

prod1

Producer’s
map version tree

Created
 in prod1

Updated
 in prod1

Deleted
in prod1

 P2

P2a P2b

Genealogy graph

P1
MV-id

prod0 valp1

Value

P2

�

prod0

prod1

valp2 A group

operation

P2a

prod1

prod0

valp2a

P2b

prod1

prod0

valp2b

*

 P7 prod1 valp7

 P6

MV-id

prod0

prod1

Value

valp6

valp6a

prod0

prod1

Valr0

�
R0

prod0

prod1

Valr2

�
R2

versions prod0, prod1 and user1, parcel P1 has only one value for prod0, shared
implicitly by user1 and prod1, and so on.

The next step consists in comparing, in user-DB, the user’s and the producer’s
map versions, user1 and prod1, for the detection of possible conflicting and non-
conflicting updates.

Fig. 5. Part of the user's database after the insertion of prod1

3.4 Comparison of Updates and Detection of Conflicts

When the system compares the values associated with prod1 and user1 for the
different multi-version objects in the database, the two following situations are
possible:

Case 1. An object has the same value in both map versions. This can occur
because the object has not been updated - i.e., the multi-version object contains
only one value for prod0, shared implicitly by prod1 and user1. Alternatively
this may happen when the object has been updated or created in both the prod-
DB and user-DB, and the values are equal - e.g., road section R2 which has
been deleted in map versions user1 and prod1. In these cases, there is no
conflict.

Case 2. The object has different values in the two map versions, user1 and prod1.
This situation is possible in the following cases:
a) the object has been updated or created in both user1 and prod1 and the two

values are different; e.g., parcel P6 has value valp6 in prod0, valp6x in user1
and valp6a in prod1, and valp6x and val6a are different. Here, the two
updates or creations are in conflict.

prod0

user1 prod1

User’s map version tree

 P6

prod0

user1

prod1

valp6

valp6x

valp6a

P2

prod0

prod1

valp2

�

 P2

P2a P2b

Genealogy graph

 A user1 valA

P1
valp1

Value MV-id

prod0

 R2 prod0

user1,prod

Valr2

�

 R0

Value

Valr0

�

MV-id

prod0

pr
d1

 R5 valr5

valr5a

prod0

prod1

 R6 valr6prod1

 R7 valr7 user1 P7 prod1 Valp7

b) the object has been updated either in prod1 only or in user1 only. The
update corresponds to one of these operations:

��a creation: roundabout P7 and road R6 have been created in map version
prod1, and antenna A in user1.

��a deletion: road R0 is deleted in prod1 and still exists in user1.
��an update of its value: road R5 has value valr5a in prod1 and value valr5

in user1 (implicit sharing with prod0).
��a group operation: the value of parcel P2 in user1 is valp2, implicitly

shared with prod0. Its value in prod1 is denoted by #, meaning a group
operation which is explained by the genealogy graph of P2: it has been
split into two new parcels P2a and P2b. These two parcels have only one
value in prod1 (corresponding to their creation). Conflicts exist in these
cases and, for each object, its value in the new map version to be created
in the user-DB depends on the user’s decision.

These different situations can be visualised on the map by using special

colouring of the object, revealing non-conflicting and conflicting updates and the
types of conflicts.

This section has focused on updates relating to objects only. For schema
updates a similar procedure is adopted [BCJ98]; e.g., antenna if it exists only in
user-DB.

3.5 Proposed Strategy for Updates Propagation

The previous steps of the UMV methodology help the user in the visual detection
of conflicts both at schema and object levels. Moreover, it supplies information
concerning the types of evolution underlying the different updates. Now, the
remaining step concerns the propagation of the detected updates in the user
database.

This step needs an appropriate strategy, which may depend on many factors of
the application concerned - e.g., knowledge about the underlying topology of the
spatial objects (Egenhofer et al 1994, Badard et al 1999). For instance, the user
may decide or not to favour his update in place of the producer’s one in case of
conflict. This choice may affect the user’s added information, which may need to
be readjusted. It is, therefore, wiser to use already proposed strategies such as
(Badard et al 1999, Badard 2000, Kilpelaïnen 1997, Uitermark et al 1998), where
the propagation problem has been thoroughly studied. The final map version of
the user after the propagation of updates may contain the updates of the producer
as well as those of the user. Suppose that the final user’s map version is prod-user1
as illustrated in Fig. 2.

To obtain the map version prod-user1, the user first derives a map version
identified as prod-user1 from prod1 (see Fig. 6), since prod1 contains a large part
of updates that the user needs to represent in his map version. Thus, all objects in
the new map version are shared implicitly with prod1; e.g., parcels P1, P6 and road

sections R5, R6. Next, he includes in prod-user1 his specific updates: the road
section R7 and the antenna A. Fig. 6 shows part of the state of user-DB after the
creation of the final map version prod-user1, resulting from the merging of user1
and prod1. In the user’s database, the value, valr7, of the road section R7 in prod-
user1 is the value coming from user1 and it is shared explicitly with user1 as
illustrated in Fig. 6. The situation is the same for antenna A that the user preserves
in prod-user1. In case, an object in prod-user1 has a value different from that in
prod1 and user1, for instance road section R4 in Fig. 6, the system creates a new
entry for this value, valr4b, which is associated with prod-user1.

Fig. 6. Part of user-DB after the integration of data from prod1

Finally, from user-DB of comprising of four map versions, the system reads the
value of an object O in prod-user1, as follows: if prod-user1 appears in the multi-
version object, then the value of O is the one corresponding to prod-user1 (see Fig.
6). Otherwise, if prod-user1 does not appear in the multi-version object, then the
value of O is shared implicitly with the value of the nearest ancestor, obtained
from the user’s map version tree, which is either prod1 (e.g., P6, R6), or prod0 (e.g.,
P1); finally, if only user1 appears in the multi-version object, then O does not exist
in prod-user1.

After this propagation step, the user will work on new versions of prod-user1
for further updates, whereas the producer uses new versions of prod1. Thus at time
t2, t2 > t1, a new operation of integration of updates may take place: the new up-to-
date map version, prod2, is inserted in the user’s database and compared to the
current user’s map version, user2, which has been created by derivation and
updates from prod-user1. A new map version prod-user2 is created, integrating
updates coming from prod2 and user2. To help users in understanding updates
performed in the different map versions for integration purposes, the updates
should be documented as depicted in (Peerbocus et al 2001).

user1, prod-user1 valr7 R7

valp6

valp6x

valp6a

P6
prod0

user1

prod1

 R0

 User’s map version
tree

prod0

user1 prod1

prod-user1

 R6 prod1 valr6 R5

prod0

prod1

valr5

valr5a

P1

MV-id

prod0 valp1

Value

user1, prod-user1 valA

valr0

�

 R4

valr4b

Value

valr4

valr4x

valr4a

MV-id

prod0

user1

prod1

prod-user1

4 Conclusions

The focus of this paper was on how to help the exchange of updating information
between a geographic data producer and a user. The main advantage of the UMV
methodology is that it allows the automatic detection of updates whereas existing
techniques require an exhaustive retrieval within the different versions of the
database. The UMV methodology responds as well when updates are delivered on
a given frequency as for real time updates. The UMV methodology can also be
applied in a general context where there is a need of exchanging geographic data
between any two users or between a user and a producer.

A prototype of a multi-version geographic database has been developed using
MapInfo® in the LAMSADE Laboratory, University of Paris Dauphine. It
requires the implementation of the version mechanism in the geographic database,
which must be managed by a version manager. It allows the representation of the
different states of geographic objects. All changes are documented. The prototype
allows the retrieval of updated geographic objects between any two map versions
of the multi-version geographic database and provides the user with the associated
change documentation (Hedjar 2001).

The integration of the updates and propagation of their effects in geographic
databases requires handling all the spatial relationships between entities in an
effort to preserve consistency or added information. Several research works have
set up tools for the retrieval of these relationships necessary to the updating of
geographic databases. Ongoing researchers (IGN) investigating the development
of a formalism and a model for the design of geographic databases, which are
easier to maintain. The UMV methodology thus appears as a key element of a
global methodology for the design of easy-to-update GIS.

References

Badard T (1998a) Towards a generic updating tool for geographic databases. In:
GIS/LIS’98, Fort Worth, Texas, pp 352-363

Badard T (1998b) Extraction des mises à jour dans les Base de Données Géographiques.
Revue Int. de Géomatique 8(1-2):121-147

Badard T, Lemarié C (1999) Propagating updates between geographic databases with
different scales. In: Innov. in GIS VII:GeoComputation, London

Badard T (2000) Propagation des mises à jour dans les bases de données géographiques
multi-représentation. Ph.D. thesis, Univ. Marne-la-Vallée, France

Badard T, Richard D (2001) Using XML for the exchange of updating information between
GIS. In: CEUS 25. Elsevier, Oxford, pp 17-31

Bellosta MJ, Cellary W, Jomier G (1998) Consistent Versioning of OODB Schema and its
Extension. 14-èmes Journées BDA, Hammamet, Tunisia

Bauzer-Medeiros C, Jomier G (1993) Managing Alternatives and Data Evolution in GIS.
In: ACM Workshop on Advances in GIS. Arlington,Virginia

Cellary W, Jomier G (1990) Consistency of versions in object-oriented databases. In:
VLDB. Brisbane, pp 432-441

Cellary W, Jomier G. (2000) The Database Version Approach. Networking and Information
Systems Journal 3(1): 177-214

Devogèle T (1998) Le processus d'intégration et d'appariement des BD géographiques.
Ph.D. thesis, Univ. Versailles-Saint Quentin, France

Egenhofer MJ, Clementini E, Di Felice P (1994) Evaluating inconsistencies among multiple
representations. In: 6th SDH. Edinburgh, UK, pp 901-920

Easterfield ME, Newell RG, Theriault DG ('No Date') Version Management in GIS-
Applications and Techniques. Smallworld technical paper no. 4

Gançarski S, Jomier G (1994) Managing Entity Versions within their Context: a Formal
Approach. In: DEXA’94. Athens, LCNS no. 856, pp 400-409

Hedjar M (2001) A prototype for documenting spatiotemporal evolution. Research report,
DEA 127, LAMSADE, Univ. Paris-Dauphine, France

International Hydrographic Organisation (1996) IHO transfer standard for digital
hydrographic data. Publication S-57, Edition 3.0

Kilpelaïnen T (1997) Multiple representation and generalisation of geo-databases for
topographic maps. Finnish Geodetic Inst., 124, 51-711-212-4

Lemarié C, Raynal L (1996) Geographic data matching: First investigations for a generic
tool. In: GIS/LIS'96. Denver, Colorado, pp 405-420

Peerbocus MA, Bauzer Medeiros C, Jomier G, Voisard A (2001) Documenting Changes in
a Spatiotemporal DB. In: XVI BSDB. Rio

Poupart-Lavoie G (1997) Développement d'une méthode de transfert des mises à jour de
données à réf. spatiale. M.Sc. , Univ. Laval, Québec

Raynal L (1996) Some elements for modelling updates in topographic database. In:
GIS/LIS'96. Denver, Colorado, pp 405-420

Sperry L, Claramunt C, Libourel T (1999) A Lineage Metadata Model for the Temporal
Management of a Cadastre Application. In: Int. Workshop on Spatio-Temporal Models
and Languages. Firenze, Italy

Uitermark H et al (1998) Propagating updates: Finding Corresponding objects in a multi-
source environment. In: 8th SDH. Vancouver, pp 580-591

