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Abstract 

To efficiently store and analyse spatial data at a global scale, the digital expression 
of the Earth’s data  must be global, continuous and conjugate, i.e., a spherical 
dynamic data model is needed.  The Voronoi data structure is the only published 
attempt and only solution (which is currently available) for dynamic GIS.  The 
complexity of the Voronoi algorithms for line and area data sets in a vector-based 
context limits its application in dynamic GISs.  As yet, there is no raster-based 
Voronoi algorithm for objects (including points, arcs and regions).  

To overcome this deficiency, an algorithm for generating a spherical Voronoi 
diagram, that is a Voronoi diagram on a spherical surface, is presented based on 
O-QTM (Octahedral Quaternary Triangular Mesh).  The basic idea is to apply the 
dilation operation developed in mathematical morphology to objects on the sphere 
in an effort to produce the effect of distance transformation.  The distance 
contours of objects will form the Voronoi boundaries of the spherical objects. 

The algorithm presented in this paper can handle point, line and area objects.  
Additionally, it has been tested and concluded that the processing time required 
for this algorithm with point, arc and region data  is proportional to the levels of 
complexity of the spherical surface tessellation. The difference (error) between the 
great circle distance and the QTM cells distance is related to the spherical 
distance.  
Keywords:  O-QTM, neighbour triangular, Voronoi diagram on sphere, recursive 
dilation 
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1 Introduction 

It is been argued by Li et al (1999) that the Voronoi data structure is the only 
possible solution (which is currently available) for dynamic GISs.  This view is 
also similar to that suggested by Wright and Goodchild (1997), who point out that 
the Voronoi methods are the only published attempts of which we are aware that 
are well suited to achieving a dynamic GIS. This is because Voronoi diagrams 
(VD) have many excellent properties in spatial analysis (Gold 1992, Edwards 
1993), dynamic operation (e.g. to add or delete objects without destroying the 
bubble structure of the cells) (Gold and Condal 1995; Gold and Mostafavi 2000), 
and computational geometry (Aurenhammer 1991; Okabe et al. 2000), etc. 

So far, the Voronoi diagram on a spherical surface has been applied to some 
areas, such as global spatial indexing (Lukatela 1987, 2000), interpolation on a 
sphere (Watson 1988,1998) and dynamic operations (Gold 1997; Gold and 
Mostafavi 2000), etc.  For example, Lukatela (1987) sets up a digital geo-
positioning model and develops an operational software package that provides 
geometrical and geo-relational functions to applications that manipulate spatial 
objects.  A Voronoi tessellation is used as a base for a highly efficient indexing 
system to increase the speed of data manipulation (Lukatela 1987) (Fig. 1a).  
Watson (1988,1998) develops the MODEMAP system and uses a point-set 
Voronoi diagram for interpolation on a spherical surface (Fig. 1b). Gold and 
Mostafavi (2000) attempt to develop a global dynamic data structure with the 
Voronoi diagram.  In this type of  structure, the Voronoi diagram is  a basic data 
model that dynamically maintains spatial relationships.  

  
(a) (b)  

Fig. 1. The Voronoi diagram of spherical objects, (a) as a spatial index (Lukatela 1987), 
and (b) for interpolation (Watson 1989) 

It is evident that the Voronoi diagram is a spatial data structure, which has 
become increasingly important. Considerable efforts have been spent on the 
development of the algorithms,  however, most of them are applicable for vector 
data and are based on point sets in a  planar surface.  The algorithms for 
generating the Voronoi diagrams of line and area sets in vector data are very 
complex. This complexity has greatly limited the application of the Voronoi data 
model and only limited advances have been achieved. On the other hand, only a 
few algorithms are available for generating Voronoi diagrams for point-sets, but 



no algorithms for arc-sets (or curve-face sets) have yet been thoroughly 
demonstrated for a spherical surface. 

This paper presents a method for computing  a spherical Voronoi diagram for 
arbitrary input objects  (including points, arcs and curve faces) based on the 
Quaternary Triangular Mesh (QTM).   It makes use of the dilation operation 
through the neighbour triangles.  It is simplified by using their labelling codes. 
Advantages of the QTM-based method are that the QTM data structure is 
seamless, hierarchical and numerically stable everywhere on the surface of the 
sphere.  Its hierarchical data structure can be used to efficiently manage multi-
resolution global data and it allows spatial characteristics be studied at different 
levels of detail in a consistent fashion across extensive regions of the sphere (Lee 
and Samet 2000).  

The next section critically reviews a selection of algorithms. Section 3 will 
introduce the selection of tessellation methods on a spherical surface as a 
reference system. Section 4 will present in detail, a searching method of spherical 
neighbour triangles.. In section 5, an algorithm for generating the Voronoi 
diagram for objects on the sphere by means of a dilation operation in QTM is 
presented..  

2 A Critical Examination of Algorithms for Generation of 
the Voronoi Diagram on a Sphere 

The Voronoi diagram has been one of the research highlights in the area of 
computational geometry since it was introduced to the computer domain by 
Shamos and Hoey (see Okable et al. 2000) as an efficient data structure.  Most 
methods of the Voronoi diagram generation are based on point sets in planar 
space, such as the incremental method, the divide and conquer method, the 
indirect generating method and the parallel method (Aurenhammer 1991; Li et al 
1999; Okabe et al. 2000). There are only a few algorithms for generating spherical 
Voronoi diagrams (Geyer, 2000).  In this section, such algorithms will be 
examined. 

2.1  Voronoi Diagrams on a Sphere: Basic Concepts 

The distance on a sphere is different from that of Euclidean space. As a result, the 
Voronoi diagram on a sphere will have a different definition (Okabe, et al. 2000; 
Lee and Samet 2000):  Let P = { p1, p2, …, pn } (2 � n � �) be distinct points on a 
sphere S with the unit radius centred at the origin, and X and Xi  be the location 
vectors of p�S and pi�S, respectively. The shortest distance from p to pj on S is 
defined by the length of the shortest arc on the great circle (the circle whose centre 
is at the Center of S) passing through p and pi. Mathematically, this distance is 
written as   



� � � � ��� i
T

igc XXppd arccos,  (2.1) 

This distance is called the great circle distance.  The bisector defined with the 
great circle distance is given by the great circle that perpendicularly passes 
through the mid-point of the great circular arc combining pj and p 
(perpendicularly means that sufficiently small segments of the two great circles 
around the mid-point are orthogonal). This bisector divides the sphere S into two 
disjoint hemispheres. Thus the bisector defined with the great circle distance is 
well-behaving, and 

� � � � � � ��� �SpiIjppdppdpV njgcigci ���� ,\,,,  (2.2) 

gives a non-empty set in S.  This set is called the spherical Voronoi polygon 
associated with pi. The set of resulting spherical Voronoi polygons gives a 
generalised Voronoi diagram, which is called the spherical Voronoi diagram 
defined by pi on S.  Fig. 2 shows a spherical Voronoi diagram. 

  
(a) (b)  

Fig. 2. A Voronoi diagram on a sphere based on points sets (Geyer et al 2000), (a) discrete 
points on sphere, (b) a Voronoi diagram on spherical points sets 

A Voronoi edge is the boundary between two Voronoi regions and a Voronoi 
vertex is the intersection of three or more Voronoi edges. 

2.2  Voronoi Diagrams on a Sphere: Algorithms 

Augenbaum (1985) gives an insertion method for computing the Voronoi diagram 
of a set of n points on a sphere with time complexity O(n2), and Robert (1997) 
presents an incremental algorithm, which can be constructed with time complexity 
O(nlogn).  As pointed out by (Gold 1992; Gold and Condal 1995), the vector-
based methods are good for point sets, but  complex for line or area input sets.  
This is also true as far as the spherical surface is concerned.  This  deficiency 
impedes  the Voronoi data structure from being  widely applied in dynamic GISs.  

To solve this problem, Yang and Gold (1996) presented a point-line model.  In 
their model, the complex objects are decomposed to points and lines.  Voronoi 
diagrams for points and lines are generated first, and then translated to Voronoi 
diagrams of the complex objects by removing the Voronoi edges between points 



or lines of the same object.  More recently, Gold and Mostafavi (2000) extend this 
model onto a spherical surface.  The advantage of this method is that it can 
generate a Voronoi diagram of relatively complex vector-based objects and deals 
with dynamic changes of topological relations.  However, this result can only be 
reached through many additional steps, such as decompose, calculation, remove, 
compose, etc.  As a result, their algorithm and the data structure is relatively 
complex.  More importantly, the data structures of these vector-based methods 
lack hierarchical expression. Therefore, it is very difficult to deal with the 
hierarchical expression of a large volume of spherical data.  

Due to the complexity of vector-based methods, alternative methods, i.e. raster-
based methods, on planar have been approached (Dehne 1989; Embrechts and 
Roose 1996; Okabe et al 2000).  These algorithms make use of distance 
transformations, such as city block, chessboard, and Octagon, etc. It is such  that 
the approximation of these raster distances to the Euclidean distance becomes 
poorer and poorer when the distances becomes larger. To solve this problem, Li et 
al (1999) present a method based on raster dynamic distance transformation, 
which employs the dilation operator which was developed in mathematical 
morphology.  In their algorithm, the distance errors are confined to one pixel. 

These raster-based algorithms, however, are limited to planar surfaces and 
cannot be translated onto spherical surfaces directly, simple because planar and 
spherical spaces are not homoeomorphic. In this paper, a spherical mesh-based 
method is presented for the generation of the Voronoi diagram on a spherical 
surface.  In this method, the spherical surface is subdivided into triangles by QTM 
tessellation, which is similar to the planar raster.   The spherical hexagon distance 
(to be discussed in section 5.1) is used for the dilation operation to compute the 
spherical Voronoi diagram of the arbitrary spatial objects (including points, arcs, 
and curve faces).  

3 Selection of a Tessellation Method for a Spherical 
Reference System 

To generate a Voronoi diagram on a sphere, a tessellation method for  spherical 
surfaces and labelling schemes should be selected first. The selection criteria are 
based on the transformation efficiency between triangle code and its spherical 
coordinates and the encoding method, which best suits  a search of  neighbouring 
triangles. 

3.1 Selection of a Tessellation Method for a Sphere’s Surface --  O-
QTM 

Originally, the concept of spherical surface tessellation was presented by Fuller, a 
German cartographer, for studying the mapping projection in the 1940s (Dutton 
1996).  Since then, many researchers have approached this problem to project, 



analyse and index  global data.  Many methods are based on inscribed polyhedron, 
such as tetrahedron, cube (Snyder 1992), octahedron (Dutton 1996, 1999a, 1999b; 
Goodchild and Yang 1992, 1992; Otoo and Zhu 1993; Clarke and Mulcahy 1995), 
dodecahedron (Wickman and Elvers, 1974), icosahedron (Fekete 1990; White et 
al. 1992; Lee and Samet 2000), as shown in Fig. 3.  Edges of the polyhedron are 
projected to the spherical surface and form the edges of spherical triangles. 

 
(a)  

 
(b)  

Fig. 3. Spherical surface tessellation based on inscribed polyhedrons (White et al 1992), (a) 
five polyhedrons, (b) projected to the spherical surface 

In this study, the octahedron is chosen as a basis for an O-QTM.  The reason 
for this selection is that it can be readily aligned with the conventional geographic 
grids of longitude and latitude. When this is done, its vertices occupy cardinal 
points and its edges assume cardinal directions, following the equator, the prime 
meridian, and the 90th, 180th and 270th meridians, making it simple to determine 
which facet a point on the sphere occupies (Dutton, 1996).  In addition, each facet 
is a right spherical triangle and one subdivision line of each face is parallel to the 
equator.  

There are some methods of recursive tessellation that satisfy the different 
requirements. It is well recognised that the transformation efficiency between 
triangle code and its spherical coordinates (latitude, longitude) is an important 
function in an application system (White and Kimerling 1998). As such the 
Latitudes and longitudes average method is selected in this study, as done by 
Dutton (1996). Fig. 4 illustrates levels 1, 2 and 3. 

   
(a)  (b)  (c)  

Fig. 4. Hierarchical tessellation of the spherical facet based on octahedron (Dutton 1996), 
(a) level 1, (b) level 2, and (c) level 3 



3.2 Selection of an Encoding Method 

The addressing methods and data structures of triangular regions are related to the 
operation and indexing on spherical surfaces. Some methods, such as SQT 
(Sphere Quadtree) (Fekete 1990), SQC (Semi-quadcode) (Otoo et al 1993), THDS 
(Triangular Hierarchical Data Structure) (Goodchild et al 1991) and QTM-IDs 
(Dutton 1996, 1999) have been applied. 

The triangle labelling method selected in our study is similar to the one used for 
the octahedron (Goodchild et al 1991). The address code of each QTM cell 
consists of an octant number (from “0” to “7”) followed by up to 30 quaternary 
digits (from “0” to “3”), which names a leaf-node in a triangular quadtree rooted 
in the given octant. At the k-th level of decomposition, the triangle address A is 
represented by: A = a0a1a2a3�ak, where a1 to ak are k quaternary digits and a0 is an 
octal digit representing the initial octahedral decomposition at level 0.   
 
 
 
 
 
 
 
 
 
 
 
 (a) (b)  

Fig. 5. Surface partition and encoding, (a) original partition of the earth's surface, (b) 
ecnoding in 0 unit 

4 A Method for Searching Neighbours in QTM 

4.1 Different Types of Neighbours 

The neighbours with shared edges are called edge-neighbour-triangles.  Those 
only with common vertices are called vertex-neighbour-triangles, as shown in Fig. 
6a.  In the data structure of O-QTM, triangle neighbours,  that are located in two 
adjacent octants, must also be specifically considered since the search methods for 
different locations of border triangles are different.  From Fig. 7b, it can be seen 
that, if a triangle has edge(s) at the border of an octant, the triangle will have edge-
neighbour-triangle(s) and vertex-neighbour-triangles in its neighbouring 
octant(s). On the other hand, if a triangle has vertices(s) at the border of an octant, 
the triangle will only have vertex-neighbour-triangle(s) in its neighbouring 
octant(s). Border triangles can be classified into 4 categories: edge, sub-edge, 
corner and sub-corner triangles and can be defined as follows (Goodchild et al 
1991), see Fig. 6b: 
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�� Edge triangle (1) --if it has exactly one edge-neighbour-triangle in the adjacent 
octant. 

�� Sub-edge triangle (2) --if it has exactly three vertex-neighbour-triangles in the 
adjacent octant. 

�� Corner triangle (3) --if it has exactly two edge-neighbour-triangles in the 
adjacent octant. 

�� Sub-corner triangle (4) --if it has exactly six vertex-neighbour-triangles in the 
adjacent octant. 

 
 
 
 
 
 
 
 

(a)  (b)  

Fig. 6. Definitions of neighbour triangles and border triangles, (a) edge-neighbour-triangles 
and vertex-neighbour-triangles, (b) classification of a border triangle 

4.2 A Method of Searching Edge-Neighbour-Triangles 

All triangles have three edge-neighbour-triangles in QTM on a sphere. We use the 
codes t, l, r to represent the three edge-neighbour-triangles with common top, left 
and right edges for a given triangle U inside an octant, the code T, L, R to 
represent the edge-neighbour-triangle of a top, left and right edge triangle lying in 
the adjacent octant. Different searching methods  used for the triangles at the 
different locations are in one octant. Border triangles can be classified into 7 
categories and are shown in Fig. 7.  
 
 

 

 

 

 

 
 

Fig. 7. Categories of triangles by different searching algorithm of edge-neighbour-triangle 

The data strings t, l, r, T, L and R can be obtained by the triangular address U. 
The details can be seen in (Goodchild et al 1991).  
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4.3 A Method of Searching Vertex-Neighbour-Triangles 

For all triangles in an octant, a corner triangle has 7 vertex-neighbour-triangles 
(Fig. 8-a), and each of the others have 9 vertex-neighbour-triangles, as shown in 
Fig. 8-b. There are several methods to search vertex-neighbour-triangles. In our 
approach, they have been obtained through their edge-neighbour-triangles.  
 
 
 
 
 
 

 
 
 
 

 
(a)  (b)  

Fig. 8. Angle-neighbour-triangles, (a) corner 
triangle, (b) no-corner triangle 

Fig. 9. Nine different types of 
searching methods of angle-neighbour-
triangles 

The searching algorithm of vertex-neighbour-triangles varies with the locations 
of U in the octant. In particular, the border triangles are much more complex.  
These triangles can be classified into 9 different types  (shown as Fig. 9).  

5 A QTM- Based Algorithm for Generating the Voronoi 
Diagram  

The algorithm for the generation of the Voronoi diagram on a sphere is based on 
the dilation operator of spherical triangles. In this section, we will develop the 
triangle-dilation-operator in QTM according to the principle of the raster dilation 
operator in mathematical morphology. From this and the neighbour searching 
method described in section 4, the triangle cell distance diagram, which consists 
of a number of distance contours, radiated from each object on the sphere, is 
obtained. The most distant contours form the approximate boundaries of spherical 
the Voronoi diagram. 

5.1 Distance Contours in QTM Generated by a Dilation Operator 

Dilation and erosion are two of the basic operators in mathematical morphology 
and have wide applications in digital image processing as well as geographical 
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information science (Su et al. 1997, Li et al 1999). These two basic operators in 
QTM cells can be defined as follows:  

b

b

BAbBAerosion
BAbBAdilation

����

����
 (5.1) 

Where A is an original region on sphere and B is a structuring element, 
examples of dilation and erosion are given in Fig. 10: 

 
Fig. 10. Dilation and erosion operations based on QTM 

Now the concept of distance becomes important.  In vector mode, the distance 
on sphere means the great circle (or arc or geodesic) distance. The distance 
between two points X1 (�1, �1) and X2 (�2, �2) on sphere is defined as formula 
(5.2): 

)(cos 21
1

21
XXRRL XX ���

�

�  (5.2) 

 
Where �  is an angle between X1 and X2 , and the range of cos-1

�  is taken to be 
[0, �].  In QTM, the distance in the integer number is more desirable and thus 
normally employed. Accordingly, the order of neighbours could be the best 
candidate to be used as the QTM distance to approximate the great circle distance 
(e.g. hexagon structuring element in Fig. 11a).  

 

  
(a)  (b)  

Fig. 11. Hexagon structuring element and dilation on a sphere, (a) the hexagon structuring 
element, (b) the triangular dilation on a spherical surface 

For an inside triangle, the region expanded is a hexagon with three edges of 
length (m-1)�l and three edges of length m�l if the region does not cross to 
another octant. Where m is the number of times the procedure is repeated and l is 



the edge length of the triangle at the given level. The form of the region changes if 
the region crosses the edge of an octant as shown in Fig. 11-b. The distance 
between the border of the dilated region and the nearest edge of a given triangle 
(point) varies from 2/3nl  to nl, a factor of 0.866, which is larger than in a 
rectangular raster where the ratio of the edge to the diagonal of a square is 0.717 
(Goodchild et al. 1991). The error of forming the dilation region by hexagon 
structuring element in QTM is smaller than the chess structuring element in 
rectangular cells in planar space. In addition, the topological and metrical 
properties of the region are preserved: 

�� The region generated is connected and there exists no hole. 
�� The region dilated each time is a stripe region surrounding the old region with 

the width of 2/3l . 
 
The neighbouring triangle search algorithm described in section 4 can be used 

directly for dilation since the dilation operation requires searching all neighbours 
(edge neighbours and vertex neighbours) of a point, arc or region. 

5.2 The Principle of Generating the Voronoi Diagram on a Sphere in 
QTM 

The Algorithm for generating  the Voronoi diagram on a spherical surface is based 
on the principle of dilation operation in mathematical morphology. In the QTM, a 
point is represented by a triangle, an arc by a series of neighbour triangles and a 
region by a series of neighbour triangles on and within its boundary trace. The 
dilation operation of an arc or region can be simply done by dilation of all 
triangles by which the arc or region is described. Thus, the process of generating 
the Voronoi diagram is as follows: First, determine the edge and vertex neighbour 
triangles around the object (such as points, arcs and regions) by using the 
algorithm of searching neighbour triangles presented in section 4. Second, remove 
all duplicate triangles and generate the dilation trace of the object. The spherical 
distances are approximate equal from the outer boundary of the dilation trace to 
the boundary of the object. Next, repeat the dilation operation and stop when the 
dilation trace is intersected with the other dilation trace. The intersecting trace is 
just the Voronoi edge between two objects. 

5.3 Algorithm  

Input: tessellation level N and an object data set on a spherical surface: � ={A1, A2, 
A3, …, An} 
Output: Voronoi diagram of input data set � stored in the file VoronoiData. 
 
CsphVoronoiView::OnCaculateVoronoi( ) 
{ 



 step1: LongLatitude_to_QTMcode(�); 
 step2: For every objects Ai in � 
 {  
  step2.1: For every QTMcode Qj in Ai; 
   {  
    Adjact12(Qj); //searching neighbour triangles 
    if Adjact12(Qj) are copy code 
     Delete_copyQTMcode(Qj);  
Else  Dialation_A[i] � Adjact12(Qj) 
   } 
step2.2: For every Dialation_A[i] 
   { 

For every QTMcode Qim in A[i] and every QTMcode Qjk in A[j], i�j 
     {  
      if (Qim = Qjk) 
      VoronoiData�Qjk; 
     } 
   } 
 } 
 step3: QTMcode_to_LongLatitude(VoronoiData); 
 step4: Output( );  
}over 

Based on the algorithm described above, a prototype system has been 
developed on OpenGL with VC++ language. 

A number of experimental tests have been conducted but for the sake of brevity 
will not be discussed here.   An example of the Voronoi diagram for arbitrary 
objects positioned on a sphere are shown in Fig. 12). 

 

 
Fig. 12. Voronoi diagrams of  arbitrary objects on a sphere based on QTM 

6 Conclusions 

In this paper, a new algorithm for generating a Voronoi diagram on the sphere is 
developed by the recursive dilation operation in QTM (Quaternary Triangular 



Mesh).  This method can easily handle arbitrary composite objects (including arcs 
and regions).The dilation operation, developed in mathematical morphology, was 
applied to objects on the sphere, in an effort to provide the effects of a distance 
transformation.  The distance contours of objects will be used to form the 
boundaries of Voronoi regions of spherical objects.  In this case, the principle of 
dilation is extended to spherical surfaces.  A method for spherical distance 
transformation based on QTM is developed and a detailed algorithm is presented.  
This algorithm can handle point, line and area objects.  It has also been tested and 
it was observed that the time consumption of this algorithm with input points, arcs 
and regions are equal, and is proportional to the levels of the spherical surface 
tessellation. The difference (error) between great circle distance and QTM cells 
distance is related to the spherical distance (better than the raster dilation in the 
planar space), and is related mainly to the locations of the generating points.  
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