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Abstract 

Admittedly the most crucial and the most neglected aspect of the spatial regression 
analysis, spatial contiguity remains an ambiguous concept that is largely 
dependent on the type of spatial units used and the characteristics of each 
application. The application of regression analysis to spatial data raises 
computational as well as conceptual issues. Computational issues consist in 
statistical inefficiency, which is introduced in the model through the property of 
spatial dependence, inherent to spatial data. The solution of the statistical 
inefficiency requires the specification of a spatial autocorrelation model, to which 
an endogenous approach is proposed. Despite its technical simplicity, the method 
encompasses conceptual implications that impact on the underlying 
conceptualization of space: metaspace emerges as a relative in a conscious effort 
of the human brain of conceptualizing space according to its analytical needs. 
Metaspace is populated with metaentities: geometric primitives and their 
attributes; understanding its properties is fundamental, because metaspace is the 
realm of spatial analysis, GIS, and geocomputation. 
Keywords: MetaSpace, relative space, spatial contiguity, spatial analysis, GIS 

1 Introduction 

Spatial regression analysis is a flexible tool that can serve to study diverse 
problems. Two applications are used as examples throughout the paper. The two 
examples have been chosen for the diversity of their scope and of the issues they 
arise. The first example refers to an environmental problem; the second is a socio-
economic application. 

Environmental Case: The Venetian Lagoon (Italy) Clams. Chemical pollution 
in the past decades has induced contamination in the Venetian lagoon sediment. 
This is viewed as an ecosystem stressor. Pollutants in the sediments (heavy metals 
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and organic compounds) tend to biocumulate throughout the trophic chain; this 
might cause a stress on the ecosystem, especially in the organisms living in the 
sediment. Some of these organisms, e.g. clams, are an economic resource. 
Specifically, the Venetian Lagoon is the main producer in Europe of clams (tapes 
Philippinarum): the pollutant biocumulation might cause severe damage to the 
fishing industry (Bertazzon et al., 2000). 

Socio-Economic Case: The Alberta (Canada) Ski Resorts. A noticeable number 
of minor ski resorts in the province are located off the Rocky Mountains. The 
analysis aims at identifying factors that may have influenced the location of ski 
resorts and the growth of their capacity. The Alberta ski industry is viewed as a 
demand/supply system. The system is considered to be demand-driven: the supply 
(resorts and their capacity) are stimulated by localised demand, represented by 
population, income, and demographics: the location and growth of ski resorts is a 
response to a demand for recreation expressed by local population (Bertazzon, 
1998). 

2 Spatial Regression Analysis  

The objective of the analysis is to establish a functional relationship among the 
objects or events under consideration. In the case of spatial regression analysis 
such objects are located in space. The aim of the method is to describe, analyse, 
estimate, and predict the variable of interest. In the general case of multivariate 
regression, a dependent variable (interest variable) is expressed as a function of a 
set on explanatory (independent) variables (Eq. 1). 

y = �0 + �1 x1+ ….+ �k xk + � (1) 

In the case of the Venetian Lagoon Clams the content of mercury (Hg) in clams 
(c) is a function of the content of mercury in the sediment (s), among other 
explanatory variables: 

Hgc = f (Hgs) or Hgc = �0 + �1 Hgs + ….+ �k xk + � (2) 

In the Alberta Ski Resorts case the location of ski resorts (SR) is a function of 
the location of the population (Pop), among other explanatory variables: 

SR = f (Pop) or SR = �0 + �1 Pop + ….+ �k xk + � (3) 

In the classical regression model (Eq. 1), y and the k x variables are vectors of 
observed values of the dependent and explanatory variables: in the clam model 
(Eq. 2), y represents a series of observations on the content of mercury in clams; 
in the ski resort model (Eq. 3) x1 represents a series of observations on the Alberta 
population. The vector � = [�0 �1 …. �k] represents the set of coefficients, or 
functional links between each explanatory variable and the dependent variable 
(Eq. 1). The � vector is the error, or regression residual. Each �i represents the 
difference between the observed value of yi and the value estimated by the 
function [x] * [�]. The crucial step for analyzing and predicting the interest 
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variable is the estimation of each � parameter, which will be subsequently 
replaced in the formula (Eq. 1) to produce the analytical results. The classical 
estimation method is known as OLS (Ordinary Least Squares), and consists in 
minimizing the squared error vector �. Calculating the first and second order 
conditions for a minimum for �’�, the OLS estimator is a combination of the 
observed X and Y series: 

�OLS = (X’X)-1 (X’Y) (4) 

The OLS method relies on a number of assumptions (Johnston 1984), that 
guarantee the optimality of the estimates. Particularly, the error vector � should be 
identically and independently distributed (i.i.d.) or  

� ~N (0, �2) (5) 

Under these conditions, the estimator �OLS is B.L.U.E., or the Best Linear 
Unbiased Estimator.  

The crucial property of �OLS in spatial regression analysis is the variance of the 
estimator, and specifically the assumption of an independent distribution. Under 
this assumption the variance of the vector � can be expressed as a single 
parameter, �2, multiplied by the identity matrix: 

�2 =  �2 I (6) 

Only under the assumption of an independent distribution of the vector �, is the 
estimator �OLS guaranteed to have minimum variance, or to be the BEST in the 
class of linear unbiased estimators: the one with the minimum variance in its class. 
The property of minimum variance, guaranteed by the Gauss-Markov theorem, 
implies efficiency of the estimator.  

3 Space, Time, and their (Computational) Properties 

Space and time are often given joint consideration in conceptual terms, whether 
they are considered objective properties of the world or convenient constructions 
of the human brain (Couclelis, 1999; Gatrell, 1983). Despite this frequent joint 
consideration, space and time display very different computational properties. 

Time. Time flows within one dimension and in one direction: from past, 
through present, to future1. Different instants can be ordered unambiguously 
following the time-direction, along the timeline. Time is conventionally stamped 
with standard units (minutes, hours, weeks, years). For centuries calendars and 
clocks have shaped the lives of human beings. Calendars and clocks also shape the 
records of human life and history: the city-state of Athens, in 5th century B. C. had 

                                                           
1 These statements are valid for common experience, at “human scale”, i.e., singularities of 

time and space are not considered (Hawking, 1988).   
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a magistrate, the Eponym Archon, whose main role was to name after himself the 
year of his office!  

Space. Space is, in its simplest definition, bi-dimensional. If a location s0 is 
considered, different locations can be located North, South, East or West of s0, and 
in all possible intermediate directions. Space does not flow, it lies, and no space-
line is given. Locations cannot be organized according to some “natural order”. 
The ordering of spatial observations requires a set of strong and arbitrary 
simplifications, such as the assumption of a bi-dimensional space; the choice of 
two conventional directions, such as East-West and North-South; and possibly the 
choice of a conventional zero, such as the intersection between the Equator and 
the Greenwich Meridian. Space is not conventionally stamped with standard 
units2. Artificial units can be superimposed on space, but objects and events do not 
normally occur and are not commonly recorded according to such rasters. Even 
though it is possible to associate objects and events with a particular cell on a 
raster, this is not the way they are recorded: Meridians and parallels, in common 
experience, are only referred to in determining the borders of 'no fly zones'3, and 
earlier in this paper reference was made to the city of Athens in the fifth century 
BC, not to the city at 38 N and 24 E in its classic period! 

3.1 Time Series vs. Spatial Series 

Classical regression analysis is typically applied to several types of a-spatial 
data, particularly to temporal data, or time series, for which a number of statistical 
routines have been devised and refined over the past decades4. Spatial regression 
analysis is a relatively younger technique, and most problems posed by the use of 
spatial data are, to date, unsolved. 

Time. Given the uni-dimensionality and uni-directionality of time, and its 
conventional subdivision in standard units, time series can be unequivocally 
defined. In a time series observations are regularly spaced5, and unambiguously 
ordered in the single dimension and along the single direction of time. A time 
series is formed by two components: the temporal feature is the reference to one 
of the standard units in which the timeline is subdivided. The attribute feature is 
the value of the observed variable (e. g. the value of the Dow-Johns index, the 
temperature at a sampling station). When regression analysis is applied to time 
series, the assumption of independent distribution of the error vector can be met. 

Space. Due to the multidimensionality of space, to its lack of a natural direction 
and order, and to the general unavailability of regularly spaced data, spatial series 
cannot be built in analogy with time series. Unlike in time series, in spatial series 
a bi-univocal correspondence between standard units and events is hardly 

                                                           
2 The location of objects and events is normally referred in terms of countries, cities, or 

morphologic systems, not in terms of their coordinates. 
3 Navigation in fact, unlike everyday experience, relies upon this raster. 
4 A considerable contribution has been made by the field of econometrics. 
5 Taken at subsequent units, i.e. every hour, every week, etc. 
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possible, not simply because of recording issues. Not only is space generally 
conceptualized as a bi-dimensional plan, but objects lying on it are similarly 
conceptualized as geometric primitives: points, lines, and polygons6. Lines, and 
particularly polygons vary in shape and size within a single spatial series, leading 
to the property known as spatial heterogeneity (Anselin, 1988). Like time series, 
spatial series are made of two components: a locational feature and an attribute 
feature. Unlike time series, the locational feature is not a standard unit of space. 
And this is due to the way in which spatial items are recorded more than to the 
way in which they occur7. 

 

3.2 Spatial Dependence 

Waldo Tobler (1979) referred as the first law of geography to his proposition that 
“Everything is related to everything else, but near things are more related than 
distant things.” What the first law of geography expresses (rather informally) is 
the property known as spatial dependence. More formally, Anselin (1988) defines 
it as “the existence of a functional relationship between what happens at one point 
in space and what happens elsewhere”, or: 

yi = f  (y1, y2, …, yN) (7) 

Eq. 7 is the formal expression of a spatial process. Owing to the generality of 
Anselin’s expression, the effect of distance is not as openly stated as in the second 
part of Tobler’s proposition, but spatial processes tend to display a spatial range, 
and the relationship expressed in Eq. 7 can have different sign and varying 
strength (Ripley, 1981). In other words, what happens at one point in space can 
affect positively or negatively what happens elsewhere, and the strength of such 
an effect can vary. Empirical evidence, as well as qualitative and quantitative 
analyses tend to confirm in the most diverse instances the validity of Tobler’s first 
law of geography, the property that the analytical tradition within geography 
acknowledges as the condicio sine qua non for any spatial analysis (Haggett et al., 
1977). While viewed by geographers as the benign property that allows for the 
implementation of spatial analysis, spatial dependence is symmetrically viewed by 
non-geographers as the unfortunate feature that imposes spatial analysis. Thus in 
such fields as spatial regression, strongly rooted in traditionally non-spatial fields, 
it is perceived as a cumbersome complication that, affecting some key statistical 
properties, threatens the effectiveness of robust, long-established techniques 
(Anselin, 1988; Griffith and Layne, 1999). Spatial dependence is composed of two 
elements: location and attribute. Location information refers to spatial objects, or 

                                                           
6 Along the time line every event in a series can be alternatively conceptualized as a point 

or a segment, but it does in any case correspond to the standard unit segment of 
reference.  

7 Obviously most temporal events do not occur regularly in standard units, but that is the 
way they are recorded.  
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locational units, such as census districts or weather stations, typically represented 
by points, areas, or lattices. Attribute information refers to the observed features, 
or variables, of those spatial units, such as population or rainfall. In the spatial 
analysis context, the most delicate aspect of the model is the locational 
component. 

Spatial dependence can be observed in a data-set, and measured by the 
statistical index of spatial autocorrelation, perhaps the only index that explicitly 
takes into account locational features and attribute features (Goodchild, 1987), and 
can help determine the sign and extent of such dependence. Spatial autocorrelation 
observed in a data set is generally the indication of a spatial process, involving 
those or other variables8; unfortunately spatial autocorrelation provides no 
indication of the spatial process that causes the dependence. 

3.3 Spatial Dependence in Regression Analysis 

Spatial dependence implies, also intuitively, some redundancy of information: this 
renders standard regression methods inefficient.  Formally, the presence of spatial 
dependence in a data set violates th hypothesis of independence in the error 
distribution; hence the OLS estimator is no longer the Best estimator, the one with 
minimum variance, in the class of linear, unbiased estimators (Johnston, 1984), 
and the property of efficiency is no longer guaranteed. In the presence of spatial 
dependence the OLS estimator is still unbiased, but the violation of the efficiency 
property renders it not only unreliable, but potentially misleading. The dependence 
among observations introduces non-null values of the cross products, or 
covariances, and the variance matrix (Eq. (6)), takes the form of Eq. (8), where the 
diagonal identity matrix I is replaced by the full matrix �.  

�2 =  �2 � (8) 

Eq. (8) is the expression of the variance-covariance matrix in the presence of 
autocorrelated error: the correlations �ij�in the matrix result from the dependence 
among observations, and can be interpreted as the effect of spatial dependence, or 
the result of the spatial process for each pair of observations. The entire ��matrix 
is thus the expression of the spatial process(es) at work. It should thus be clear 
that, while disconcerting from the statistical standpoint, this is the crucial, and 
most distinctive component of a spatial regression model. 

Within regression analysis the standard solution to an autocorrelated error is 
known as GLS or Generalized Least Squares method (Johnston, 1984), and 
consists in creating an inverse of the � matrix (Eq. 9) and introducing it in the 
calculation of the OLS estimator (Eq. 4) which thus becomes �GLS, as shown in 
Eq. 9, where the inverse matrix restores the variance matrix to its optimal 
properties (Johnston, 1984). 
                                                           
8 Goodchild (1987) refers to the example of Italian immigrants settling near other Italians in 

London (Ontario), where the apparent correlation may simply indicate a different spatial 
process, such as the concentration of a certain type of jobs. 
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�GLS = (X’ �-1 X)-1 (X’ �-1 Y) (9) 

Statistically, the GLS solution is flawless: the cause of efficiency is surgically 
removed, restoring the optimality of the estimates. In the case of spatial 
regression, the cause of inefficiency is spatial dependence, the most fundamental 
property of any spatial process: its surgical removal is not a geographically 
flawless solution. 

4 Conceptual Issues in Spatially Autocorrelated Models 

In time series analysis, the GLS solution is conceptually acceptable, but in spatial 
series analysis, where it represents spatial processes, the solution is unsatisfactory: 
ridding the model of its inefficiency corresponds to ridding it of its spatial 
component. If the matrix � the spatial dependence in the data, building an inverse 
of the matrix � removes, along with the inefficiency, the entire spatial component 
of the data. The focus of the analysis should then be shifted just to the matrix �. 
“Building an inverse of the matrix �” means specifying a spatial autocorrelation 
model. Ideally, this should lead to understanding the spatial process(es) at work. 
Even though spatial processes have received a considerable attention in the 
literature (Ripley, 1981), statistical indices, such as spatial autocorrelation, can 
hardly explain anything beyond the sign and spatial extent of the correlation. 
Despite these limitations, the statistical approach (spatial autocorrelation index) is 
retains many conceptual and operational merits. 

4.1 Spatial Autocorrelation Model  

As spatial dependence is comprised of two components, so must be the 
autocorrelation model. Location and attribute are explicitly accounted for in the 
��� matrix: 

�-1  = W * C (10) 

Where w (weight) represents the locational feature, and c the attribute feature. 
While c expresses the sign and value of the dependency, the locational feature 
expresses its spatial extent, or range. The locational feature, w, can thus be 
interpreted as an attempt to interpret the concepts of near and distant in Tobler’s 
law, or to define the properties of the spatial process. Defining an appropriate 
matrix w for the spatial weights, is a way of addressing these questions. W is 
known, technically, as a contiguity matrix. In its simplest specification it is a 
binary structure, designed specifically to separate what is near from what is 
distant. Some more complex specifications include various types of weights to 
increase or decrease the effect of such nearness9. The locational component is 
                                                           
9 Farness is obviously not weighted, having a 0 value in the basic specification. 



 8

modelled through such matrix, whose role is to define which units are, and which 
ones are not contiguous, or near. Despite its crucial role in spatial regression 
analysis, the contiguity matrix has received proportionally very little attention in 
the literature (Griffith and Layne, 1999), yet its importance is widely acknoledged. 
Any application of spatial regression analysis relies on some ambiguous, largely 
artificial, often application-specific definition of contiguity. Despite all their 
limitations, such definitions do retain a crucial merit: they are solely based on 
locational features, on a single metric (most often the Euclidean one) in absolute10 
space, within which they are consistently developed. Still, it is just such merit that 
introduces most of the ambiguity and prevents the formulation of a uniform 
criterion to define contiguity beyond the specificity of single applications. In 
applied analysis, in the interest of analytical results, it is crucial that the extent of 
spatial dependence be specified to a high level of accuracy, and possibly 
unambiguously. Yet to date, due to a number of technical problems, any such 
determination, general and applicable to different cases is far from being achieved, 
and when it is determined for single phenomena, based on their unique features, it 
still lacks the property of unambiguousness (Anselin, 1988)11. 

4.2 Contiguity Matrix  

Due to its ambiguousness, highlighted by Anselin (1988), there are several 
practical possibilities of defining contiguity. Conceptual differences depend on the 
approach taken, but the most basic differences are due to the type of locational 
data at hand: there are typically two alternatives. For area units, contiguity is 
typically based on shared borders, as shown in Fig. 1(a). The criterion is, in 
general, applicable only to area data ; it is fairly unambiguous, in that it depends 
on the topology of the data; it also allows for the definition of several orders of 
contiguity (Fig. 1(a)). In most applied cases the spatial units are artificial 
(sampling points, census districts), hence the definition of contiguity depends 
solely on the topological properties of artificial objects. The criterion can be 
considered endogenous, but, considering the overwhelming importance of the 
topological properties, it should more appropriate be defined structural. 

The alternative is the definition of a threshold distance, as exemplified in This 
criterion is applicable to any kind of spatial data (area, point, line, or lattice data). 
It is not unambiguous, since the threshold must be determined from some external 
criterion: the approach is, therefore, exogenous. 

                                                           
10 It is the classical conceptualization of space, representable by Euclidean geometry in a 

Cartesian frame (Couclelis 1999).   
11 Recent computational, or rather geocomputational advances do not seem yet to address 

the conceptual issues involved (Anselin, 1998). 
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Fig. 1. Continuity based on (a) Shared borders; (b) Threshold Distance 

Even though the two definitions of contiguity present some considerable 
differences, they have important elements in common. Particularly: in both cases 
the demarcation between near and distant is only determined by the locational 
feature. Due to this properties, both measures of contiguity may be defined 
locational. This characteristic has important consequences on the specification of a 
spatial dependence model:  Tobler’s law states that “near things are more related 
than distant things”,it does not state that more related things are nearer then less 
related things…. This is the criterion used by the two measures of contiguity: 
some things are more related because they are near; . In Eq. 10 the w element is 
set equal to 1 or to 0 by the topology. And this 1 or 0 weights the attribute feature: 
consequently, in the model, only near things can be related! Especially in light of 
this Solomonic effect, crucial questions arise, such as: what measure of distance is 
appropriate, and what distance is relevant, in determine contiguity? Can there be 
aa single answer for any application? Even though specific applications may 
require different measures of distance, is it possible to find at least a standard 
criterion as a general guideline? 

4.3 Ad hoc measure of contiguity in the Alberta ski resort application. 

In the Alberta ski resorts case study, population, income, and other demographic 
data are attributes of census units in the province. Supply variables (lift, hour 
capacity, price, etc.) are consistently attributed to the census units of pertinence12. 
Census units provide an irrelevant, if not misleading, base for locational 
contiguity. With border-based contiguity, when a large area is considered and 
different orders of contiguity are introduced, topological contiguity becomes 
increasingly irrelevant. A census tract in fact is not necessarily near a ski resort 
because it is contiguous to it within the fifth order (Fig. 1(b)).  Threshold distance 
contiguity presents some advantages, but the result is still ambiguous, particularly 
in a mountain region. For this case study, a distance measure based on traveling 
time was introduced, and based on it, three orders of contiguity were defined: 
                                                           
12 Alternatively, they could have been considered as point values. 
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1st order contiguity: if the census unit - resort distance allows for a half-day ski 
trip; 
2nd order contiguity: if the census unit - resort distance allows for a day ski 
trip; 
3rd order contiguity: if the census unit - resort distance allows for a weekend 
ski trip. 

The definition of day-trips is conceptually appropriate for a tourism model, and 
it can be referred to a network distance (Bertazzon, 1998). This criterion is an 
example of an exogenously defined distance model: not only does it require an 
external, a priori knowledge of the phenomenon under exam, but this choice does 
not find any justification within the spatial regression model.  

4.4 Endogenous Approach to Contiguity  

The problem with the specificity of such solutions as the trip-length lies not only 
in the need for external knowledge, and in the need to “start it all over again” for 
each new application, but also in the fact that in some cases ad hoc measures may 
not be known, or not available. For all these reasons, and because of the 
dissatisfaction associated with the need for an external solution to an essential 
component of the spatial regression model, the question arises, whether it would 
be possible to follow a standard criterion to defining contiguity: an explicit, 
endogenous model of spatial autocorrelation. The natural solution, comes from the 
statistical routines that deal with spatial autocorrelation, i.e. semivariogram or 
correlogram. The semivariogram will be considered. The empirical variogram 
provides a description of how the data are related (correlated) with distance.  

��(h) =  1 / (2 |N(h)| ) �N(h)�(zi – zj)2 (11) 

Where N(h) is the set of all pair-wise Euclidean distances i-j=h, and zi , zj  are 
the values of the variable at each pair of locations (MathSoft, 1996). The crucial 
parameter in the present analysis is the range value: the distance (if any) at which 
data are no longer autocorrelated. The range value is not infrequently used to 
determine endogenously the threshold for distance-based contiguity. 

The semivariogram is an explicit model of spatial autocorrelation. Even though 
its calculation is not strictly required by spatial regression analysis, it can be 
considered endogenous to the model, in that it uses the same data or raw variables, 
and no a priori choice is required. The endogenousness of the approach is very 
important in that it keeps the whole problem, and its solution, within one single 
conceptual framework; yet the most radical difference, conceptually, between this 
the topological approach, is, beyond its endogeneousness, the role taken by 
relatedness and nearness in each case. While in the topologically based contiguity 
(be it border or distance based) it is the locational feature to drive the 
determination of relatedness, in this approach, it is both locational and attribute 
feature that determine jointly the autocorrelation model, and hence the contiguity 
matrix. The distance element, or the h interval, enters as a measurement unit, but 
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is evaluated by the � function in conjunction with the attribute correlation, and 
based on the pattern of �, function of z and h, the range is calculated and the 
threshold determined. In the topological model, things are related because they are 
near, and only near things can be related. The semivariogram model considers 
both relatedness and nearness, location and attribute. The endogenous process 
from location and attribute data to the estimation of the spatial regression 
coefficient is summarized in Fig. 2. 

 

Contiguity Matrix
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Spatial Autocorrelation Model
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Spatial Regression Model
y =  + x  + ... +  x  +� � � �

0 1
   

k1 k
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G L S

 = (X' X)  (X'  Y)
- 1  - 1 - 1

Row Data
RD

Location
L

Attribute
C

Range
R

Attribute
C

Spatial Weights
W

Inverse Autocorrelation Matrix

w * c = �
- 1

 
Fig. 2. Endogenous Approach to Contiguity. 

As shown in Fig. 2, applying the endogenous approach, through the use of a 
spatial autocorrelation model (SAM), i.e. the semivariogram, the entire analysis is 
conducted within one consistent framework.  

Before discussing the conceptual implication of the endogenous approach, a 
few comments should conclude the case studies referred to throughout this paper. 
The endogenous approach was used in the clam example, where no other 
exogenous model was available; based on this,  regression coefficients were 
calculated, producing a satisfactory goodness of fit (Bertazzon et al, 2000). For 
the Alberta case, the trip-length criterion proved to be the most appropriate choice 
(Bertazzon, 1998).  

5 METASPACE 

Absolute, or Newtonian space, is conceptualized as a neutral container of things 
and events (Couclelis 1999); thus things and events can be assigned coordinates 
and represented by Euclidean geometry in a Cartesian frame. Opposed to this 
traditional view is the conceptualization of relative space, defined as a space 
emerging out of the relationships among things (Gatrell, 1983).  
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5.1 Endogenous Contiguity Model as the Creation of a Relative Space 

Based on Gatrell’s definition, the endogenous approach to spatial contiguity can 
be seen exactly as the construction of a relative space. The process described in 
Fig. 2 forms a sub-procedure in which a new space emerges out of the 
relationships of proximity and relatedness among a set of things. According to this 
interpretation, during the process occurs a shift not between spaces, but between 
conceptualizations of space. This conceptual shift involves a number of 
implications. The definition of a relative space implies the dissolution of distance 
into a relationship, so that the spatial coordinates of locational units become 
attributes, not dissimilar from any other attribute of those units. As Gatrell (1983) 
notes, the concept of relative space is more general and empirically more useful 
than the concept of absolute space, for two reasons: first, by referring to a 
‘relation’ we are envisaging many ways in which the spatial separation of objects 
can be described. Second, we do not require the relation to be something with the 
properties of distance (so-called ‘metric properties’). This conceptualization of 
space opens a path towards alternative definitions of contiguity, independent on 
topology and [Euclidean] distance. Such solutions as the trip-length, previously 
considered a priory and exogenous, could be absorbed within the endogenous 
process through a relative, more general definition of contiguity. Border and 
threshold criteria could be replaced by more relevant relatedness measures. 
Relative space provides a conceptual framework to define rigorously the 
endogenous approach to the definition of spatial contiguity. Within this 
framework the approach possesses general validity, is consistent, and is 
unambiguous: the method therefore does provide a single criterion, if not a 
standard procedure for virtually any application. In absolute space the method 
would be spurious, as attribute features would be used to define spatial contiguity 
in locational terms; the contradiction is resolved in relative space, where both 
locational and attribute properties belong to the same conceptual plane. The 
flexibility of relative space allows for diverse conceptualizations of spatial 
separation, more general than traditional metrics. 

5.2 Relative Space as a MetaSpace 

The conceptual shift from absolute space to a particular relative space poses some 
issues regarding the properties of such space and objects in it. Intriguing is the 
ontological status of a space (relative) that “emerges out of the relationships 
among things”. If the very existence of such space is subordinate to the existence 
of those objects and relationships, what is the ontology of a space affected by a 
subordination condition? Traditionally the ontological question about space 
revolves around the question whether space (as well as time) is an objective 
property of the world, or a construct of the human brain - the Kantian synthetic a 
priori (Couclelis, 1999). Defining it as a Kantian space, or a construct of the 
human brain, leads to a logical contradiction, even before the ontological question 
is raised: this space cannot be an a priori -i.e. before experience- category, since it 
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is subordinate to the existence of objects and their relationships, unless those 
objects and relationships can conceivably exist a priori. Even admitting the 
existence of a priori objects and relationships, relative space emerges out of those 
objects and relationships (Gatrell, 1983): it is therefore configured as a 
meta13category, perhaps ontologically nested in the a priori universe, but 
mediated: a metaspace. The alternative conceptualization of space (and time) as an 
objective property of the world would lead to the same conclusion: the existence 
(ontological status) of relative space as an objective property of the world is not 
necessarily rejected, but its emergence from objects and relationships confers it a 
status of metacategory. If the Kantian definition of space is a synthetic a priori 
(Couclelis, 1999), this relative space, a metaspace emerging from within and 
interest of spatial analysis, should be defined as an analytical a posteriori. 

Objects and relationships provide the foundation for the emergence of relative 
space, but as a consequence of the conceptual shift to metaspace, their nature and 
properties are also affected. Objects and relationships of absolute space are 
geometric primitives with their attributes in metaspace. Metaspace emerges out of 
the set of objects being analysed and the relationship defined as spatial 
dependence, a relationship in turn rooted in the locational and attribute features of 
those objects. Defined and measured in Newtonian space, locational properties 
dissolve into relative, a-locational properties, not dissimilar from any other 
attribute property, in the shift to relative space. The dissolution of absolute 
location into an a-locational attribute transforms the contiguity relationship into an 
(a-locational) proximity. The very relationship of spatial dependence is configured 
as a multi-correlation among a-locational attributes.  

Metaspace is a conscious effort of the human brain of conceptualizing space 
according to some specific analytical needs: it plays the role of a laboratory where 
analyses and predictions about the world are performed, i.e., where knowledge is 
acquired. Fundamental questions arise therefore also with respect to its logic, 
physics, and epistemology: How does metaspace work? What are the rules that 
govern it? The mechanisms that make it function? How can knowledge be 
acquired and transferred within it and about it? 

How does metaspace relate to absolute space? The comparison is not between 
two alternative physical spaces, but between two alternative conceptualizations of 
space. If metaspace is a laboratory for the acquisition of knowledge, assessing the 
relevance of that knowledge to “the real world” is the most fundamental question 
about metaspace. In order to address it, it is necessary to comprehend the 
relationships between ontology, epistemology, physics and logic of metaspace to 
those of absolute space. 

The absolute space of daily experience is populated with people, objects, and 
events. Metaspace is populated with metaentities: geometric primitives and their 
attributes. Spatial analysis, GIS, geocomputation deal only with metaentities in 
metaspace: all the questions raised in this section are about their ability to deal 
with people and our world. 

                                                           
13 The Greek preposition ���� - “meta” means after,beyond. 
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6 Conclusion 

The analysis of spatial contiguity and its conceptual implications has lead to the 
specification of an endogenous approach, and, in turn, to the proposition of a 
relative space, emerging from the properties of relatedness and nearness of spatial 
data. Such space is configured as a metaspace, an a posteriori analytical 
conceptualization of space where spatial analysis is performed. Beyond absolute 
space, metaspace is the space populated by geometrical primitives and attributes, 
the laboratory where knowledge is acquired about our world. Understanding the 
ontology, epistemology, logic, and physics of metaspace is understanding the 
relevance of spatial analysis, GIS, and geocomputation to people in their world. 
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