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Abstract 

The architecture of Geographic Information Systems (GISs) is changing: more 
and more systems are based on the integrated architecture, i.e. storing geometric 
data in the Data Base Management System (DBMS) together with administrative 
data. The first step in building a Geo-DBMS is by having data types and operators 
for simple features (i.e. geometric primitives): point, line and polygon. This has 
reached a level of standardisation and is now implemented in several commercial 
DBMSs. The next step is to have support for the topologically structured features 
in the DBMS, i.e. complex features. The DBMS can then check and guarantee 
consistency. In addition, complex operations can be executed within the DBMS. 
Despite the fact that topologically structured models are well known and that it is 
not difficult to store the topological references, it still remains an unresolved issue 
as to how to effectively implement these models  within a relational DBMS. In 
this paper, we describe the design and implementation of a topologically 
structured management at the DBMS level. Our focus is to translate topological 
structures into geometric primitives. It is then possible to define a DBMS view on 
a topological primitive, which makes this  appear as a geometric primitive. This 
process supports the best of both worlds: on the one hand there are advantages of 
the topological structure (no redundancy) and on the other hand  the ease of 
explicit geometric primitives in querying, analysis and presentation is available. 
Keywords: Topology, DBMS, OpenGIS, spatial modelling, SQL queries 

1 Introduction 

The integrated architecture (Vijlbrief & van Oosterom1992) of storing geometric 
data together with administrative data in the Geo-DBMS can be contrasted to 
traditional GIS approaches such as the dual architecture (separate DBMSs for 
geometric and administrative data) and the layered architecture (all data stored in 
a single DBMS with spatial knowledge  contained in a layer between the 
application and the DBMS), for example ESRI's SDE. In the integrated 
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architecture, the DBMS is extended with spatial data types (point, polyline and 
polygon), and functions (overlap, distance, area and length). The first DBMSs 
offering these capabilities were experimental systems, such as Postgres 
(Stonebraker et al.1990), O2, Gral (Güting1989), and others (DeWitt et al.1990) 
and, of course, the functionality was not standardised in, for example, SQL (Date 
& Darwen1997, ISO1992). Immediately after the availability of first spatial 
DBMSs, the first GISs based on these DBMSs became available. These were 
either based on an extended (object) relational database (GEO++) or on a pure 
object oriented database (GeO2).  

The importance of the integrated architecture was recognised by industry and 
the OpenGIS Consortium (Buehler & McKee1998) standardised the basic spatial 
types and functions, or in the OpenGIS terminology the Simple Feature 
Specification (SFS). The SQL/SFS implementation specification (Open GIS 
Consortium, Inc., 1998) will also be part of the future ISO SQL3 standard 
(ISO/IEC 13249-31999). In 1999 the first implementations of the OpenGIS 
SQL/SFS became available, which marked an important step forward in the 
maturing of GIS to become part of the mainstream ICT. Currently several 
commercial DBMSs are available with support for spatial data types (some 
support the OpenGIS standard): Ingres (1994), Oracle 9i Spatial (2001 and Hebert 
& Murray1999), Informix (2000) or IBM DB2 (2000). As an illustration and proof 
that geo-information is now part of standard ICT product, an example is shown 
below.   In Informix the, OpenGIS compliant, SQL statement to select objects 
from the table lki_boundary where the shape attribute overlaps a given 
polygon (with two holes) provides the example:  
  select * from lki_boundary 
  where ST_Intersects (shape, ST_PolyFromText('polygon \ 
   ((103654574 460970880,104323607 460885924,104769627 460885924, \ 
     105523616 461013359,105544856 461395663,105061624 461741343, \ 
     104089976 461777967,103474041 461639912,103474041 461162032, \ 
     103654574 460970880), \ 
    (104610334 461108935,104610334 461459380,105056356 461459380, \ 
     105056356 461108935,104610334 461108935), \ 
    (103792627 461119555,103792627 461470000,104206790 461470000, \ 
     104206790 461119555,103792627 461119555))',28992)); 



 

 
Fig. 1. Polygon stored in Oracle Spatial visualised with Bentley MicroStation 

In addition, increasing numbers of commercial GIS packages support the 
integrated architecture: MapInfo Professional v6.5 (2001), Intergraph GeoMedia 
Professional 4.0 (2001) or Bentley MicroStation GeoGraphics ISpatial edition,J 
7.2.x (2001). However, the above referenced DBMSs do not natively support 
topology and none of the mentioned GIS packages use topology from a DBMS. 
Fig. 1 shows a polygon in Bentley MicroStation, which was read from the Oracle 
Spatial DBMS.  

The OpenGIS Consortium mentions topology several times in its abstract 
specifications (Open GIS Consortium, Inc.1999). What is still missing is the 
implementation specification for a DBMS environment. The OpenGIS abstract 
specification is very similar, and more or less at the same abstraction level as the 
work of the ISO TC 211 (ISO/DIS 19107, 2000). These two standards are now 
relatively well harmonized and both make a distinction between geometric 
primitives (point, curve, surface and solid) and topological primitives (node, edge, 
face and solid). The latter only have meaning within a topological structure. Note 
the 3D geometric and topological primitives are both called solid. We therefor 
propose to use the term volume for the 3D topological primitive instead.  

Section 2 introduces the data model (options) and motivation behind 
topological structures. Section 3 argues why topology management should be a 
task of the DBMS. The design of a DBMS topology management extension is 
described in Section 4. A partial implementation of this design based on Oracle 9i 
is given in Section 5. This implementation is based on an additional topological 
meta data table together with PL/SQL functionality using this meta data. Special 
attention is paid to the aspect of spatial indexing (and clustering), which is very 
important when dealing with large, real world, data sets. Querying either the 
geometric or the topological 'side' of the system is illustrated in Section 6. Finally, 
conclusions, discussions and future research are described in Section 7.  



2 Topological Structures  

Having spatial types and operators is one part of the DBMS services required by a 
GIS.  Two other components are 1. spatial indexing (quadtree, r-tree 
(Guttman1984, Samet1989)) and spatial clustering, and 2. representing and 
manipulating topological structures. Topological structures are used, among 
others, to represent planar partitions without redundancy. Another possible use of 
a topological structure is for the representation of a linear network. In this paper, 
we will focus on the topological structure for a planar partition. Topological 
structures for planar partitions have been  well known for a long time, e.g. in 
TIGER (Boudriault1987, Kinnear1987), DIME (US Bureau of the Census1970), 
the Arc/Info system (Morehouse1989), the Netherlands Cadastre LKI (van 
Oosterom1997), and many other systems. They have also been studied extensively 
e.g. by Molenaar (Molenaar1998, de Hoop et al.1993). Relational DBMSs can 
effectively store  the topological references: area left and right of a boundary, 
boundary to boundary references, treatment of islands, among other aspects., i.e. 
the modelling via topology. However, they do not support the topology structure 
management as they are not able to achieve  consistency checks (area closed?, no 
intersecting boundaries?) and they do not provide the necessary operators, such as:  

�� the basic edit operations (split or merge area/insert or delete edge) 
�� computing the perimeter and area of topologically represented area  
�� solving the question: which areas are crossed by this query?  
�� map-overlay of two (or more) planar partitions  
�� selection of neighbouring features  
�� route planning in a linear network represented by a complex feature.  
 

The problem with a standard relational DBMS, is that the declarative language 
SQL can not handle the 'navigational access' needed for the functionality 
described above. In SQL it is not possible to express the statement: 'Follow the 
next references of the boundary until we are back at the beginning'. Of course, this 
is a very simple operation in a programming language using one of the basic 
iterator concepts. This programming functionality is also available in every object-
oriented DBMSs for implementing methods associated with classes.  

Though some operations in a relational DBMS are impossible on a 
topologically structured area feature (e.g. compute area), this structure has many 
advantages:  

�� it avoids redundant storage (more compact than a full-polygon model);  
�� it is easier to maintain consistency of the data after editing;  
�� it is more efficient during the visualisation in some kind of front-end, because 

less data has to be read from disk;  
�� it is the natural data model for certain applications; e.g. during surveying an 

edge is collected (together with attributes belonging to a boundary); and  
�� it is efficient for certain query operations (e.g. find neighbours).  



In this paper, the cadastral map will be used as a case study, because topology 
plays a key role in this spatial data set consisting of parcels covering the whole 
country of the Netherlands. The geometric data model for the cadastral parcel 
layer is based on winged-edge topology (Baumgart1975) as described in (van 
Oosterom1997, Lemmen & van Oosterom1995, Oosterom2001). 

3 Does Topological Structure Management Belong in a 
DBMS?  

In an implementation of topological structure management, not all functionality 
has to be provided by the DBMS. It is possible to provide part of the functionality 
in a front-end (or middleware) application. This enables the implementation to be 
based on standard tools without modifying the relational DBMS (server). 
However, as the support for complex features is quite generic, it should optimally 
be in the DBMS. This avoids reimplementation of the same functionality in 
several applications and it is the best guarantee for consistency control. Further, it 
also allows analysis queries on topologically structured features to be executed 
within the DBMS. Thus, no unnecessary data transfer to a front-end application 
takes place. Currently, the OODBMSs do seem to offer the most flexible platform 
for implementing the complex features. OODBMS offer the possibility of 
navigating through the database, controlled by programming the implementation 
methods.  Their relatively weak acceptance by the market, the lack of a standard 
query language and the fuzzy separation between the DBMS and the application 
(as more and more user programming code ends up in the DBMS) form the 
motivation  to include support for complex features in (extended/object) relational 
DBMSs.  

Since the subject of implementing complex features in a relational DBMS is a 
fairly unexplored field, various issues have to be taken into account:  

�� The possibility of implementing a fully operational solution, that covers the 
total domain of all possible topological structures should be assessed. Since we 
will first focus on a subset of the topological structures - the planar partitions - 
the question will also be how far this solution will solve the total domain, and 
how this subset can be used as a basis to extend to other complex data types.  

�� The chosen solution of implementing the topology management in the database 
will have to be tested in an effort to establish the real benefits above other 
scenarios. Further, whether this functionality is best implemented in the front-
end or in a middleware application, or that it be distributed over the DBMS will 
need to be explored  

�� A solution must have the possibility  of being extended. Users must have the 
freedom to add on their own applications or variants of topology management 
structures, without creating conflicts with the database.  

�� Having an abstract standard is one important step, but the implementation 
forms the next required step in practice. The OpenGIS Consortium mentions 



topology several times in its abstract specifications (Open GIS Consortium, 
Inc.1999). What is still missing is the implementation specification of topology 
(or sometimes also called complex features) for specific platforms. The 
question remains whether this could be possible for standard SQL. 

�� The rule of thumb whether certain functionality belongs to the DBMS or to a 
specific application is whenever it concerns general and reusable aspects then 
this belongs to the DBMS. In this section it was argued that topological 
management is a generic functionality and therefore belongs to the DBMS.  

4 Design of DBMS Topological Structure Management  

Subsection 4.1 describes an earlier attempt to extend (post)quel (a language 
similar to SQL, used in the Postgres DBMS) with 'prototypes' and the 'create layer' 
statements for the management of topology structures. The drawback of this 
approach is that it requires an extension of the DBMS query language, which has a 
serious impact on the DBMS kernel implementation. In practice (and in theory), 
there are many different types of topology structures used and described. 
Subsection 4.2 tries to categorise these different topological structures. In 
Subsection 4.3, this paper suggests a different approach than the 'prototype' 
approach for topology management having less impact on the DBMS kernel. Most 
relational DBMSs are currently  enriched with object-oriented technology. This, 
among others, allows the DBMS to be extended with types and functions, which 
exist and run within the DBMS.  

4.1 Query Language Extension Based on Prototypes  

For the modelling part of topology and one of the most important operators, i.e. 
map-overlay, an attempt to extend (post)quel (a language similar to SQL, used in 
the Postgres DBMS) was described (Schenkelaars & van Oosterom1995). It was 
suggested to use 'prototypes' to define topological roles and the 'create layer' 
statement to define (declare) the roles of the different tables based on the 
prototypes.  A translation was given from the postquel to the SQL syntax 
(Oosterom et al.2000),:  
    create prototype face(id=oid, bnd=edge.id[]); 
    create prototype edge(id=oid, line=polyline2, left=face.id, 
      right=face.id); 

The prototypes are used to model the different roles that entities can play in a 
topological structure. It also standardises names of the attributes with specific 
meaning; e.g. the object identifiers, the topological references and the base 
geometry. As will be described in the next subsection, there are several ways to 
implement topology, the method described in this subsection is based on edges 
and faces (no explicit nodes). There are references from a face to all its boundaries 
(exterior and possibly also interior) and there are references from a boundary to 



the left and right face. This type of topology is sometimes called, wheel topology 
(NNI NEN-36101995). Other topology implementations (with other restrictions) 
are possible (see also Subsection 4.2), but can be based on different prototypes. 
Based on the abstract prototypes given above, it is now possible to create specific 
tables that inherit the topological structure from the prototypes:  

  create table parcel(owner=text) inherit face; 
  create table boundary(quality=integer) inherit edge; 
  create layer (layer_id='cad_map', topology_type='wheel_topol',  
                  face_role='parcel', edge_role='boundary'); 

The last statement ‘create layer’ defines which tables are used to 
implement a certain topological structure, the parameter ‘topology_type’ 
specifies the type of topology. In a way the ‘create layer’ statement could 
be compared to the ‘create index’ statement, because it has important 
(under water) side effects later on during the updating.  

It is assumed that the updates are correct and consistent with the topological 
rules. Otherwise a transaction can not be committed. This is checked by the 
DBMS as a result of the ‘create layer’ statement. After this first layer 
cad_map is created, a second layer ‘soils’ could be created in a similar 
manner. Having created two layers, it is now possible to perform the complex 
map-overlay operation within the DBMS. The DBMS must be extended to support 
this overlay operation, which returns the number of faces as a result and as a side 
effect is able the compute the new (topological) layer as overlay of the input 
layers. Again, note that the support of topology is more or less the same level in 
the DBMS as the support of indices or referential integrity constraints.  

4.2 Topological Structures Inventory  

Without claiming to be complete, this subsection tries to make an inventory of the 
most common topological structures. It has already been stated several times that 
there are many different ways to implement topology. In the previous subsection 
the wheel topology was discussed. Other topology implementations (with other 
restrictions) are possible and can be implemented in the DBMS. For example, the 
Dutch Cadastre uses a planar partition for the parcel layer based on edges and 
faces, but with different references, i.e. the chain topology (also called the 
winged-edge topology). The different topological structures can be characterised 
by the following 'parameters':  

�� what is the dimension of the embedding space: 2D, 2.5D, 3D, time added?  
�� which topological elements (primitives) are used: node, edge, face, volume?  
�� are the elements considered directed (oriented) or not?  
�� which explicit topological relationships (part_of, in, on) are stored?  
�� what are the topological 'rules': crossing edges allowed?, dangling elements 

allowed?, same topological primitive on both sides of boundary allowed?, etc. 



Table 1. Inventory of different topological structures 

 Topol.  
type  Dimension 

 
Primitives 
used  

Topological  
tables  

Explicit  
Relationships  

All  
tables Rules 

TIN  221 2D  Node,edge node,edge  no  2  Planar 
Partition 

Wing-edge 222  2D  Edge,face  edge,face  no  2  Planar 
Partition 

Wheel  
(chain) 223  2D  Edge,face  edge,face  no 2  Planar 

Partition 

3DFDS  381  3D  node,arc,  
edge,face  

arc,edge,  
face  

node-on-face  
node-in-volume 
arc-partof-line  
arc-on-face  
arc-in-volume  

8  Space 
Partition 

TEN  352  3D  
node,arc,  
triangle,  
tetrahedron

arc,triangle, 
tetrahedron  

tri-partof-surf  
arc-partof-line  5  Space 

Partition 

Cell-tuple 313  3D  0-cell,1-cell 
2-cell,3-cell cells  no  1  Space  

Partition 

SSS  364  3D  Node,face  face,line  
surface,volume 

node-in-volume 
face-in-volume 6  Space 

Partition 

Table 1 illustrates some 'parameters' of different topological structures.  
The topological type is obtained by encoding the dimension of the data 

structure, the total number of topological tables and the topological 'rules'. As can 
be seen from  in  Table 1 many types of topology are possible and even more are 
possible; e.g. structures not for partitions such as a linear network. First of all, the 
dimension may be 2D or 3D. Second, not all primitives have to be used. For 
example, in the 2D winged-edges structure, neither the node nor the volume 'roles' 
are used, but only the edge and face 'roles'. In the TIN, only the node and the edge 
'roles' are used. In SSS (Zlatanova & Tempfli2000) the roles that are not explicit 
are the edge and volume 'roles'. 3DFDS (Molenaar1998) does not use the volume 
'role', while TEN (Pilouk1996) exploits the 'role' of all the primitives. It depends 
on the type of topology as to which roles are expected. Note, that the node table in 
the presented 3D topological structures contains only the coordinates of the points, 
i.e. links to other topological primitives are not provided. Indeed, 3D topological 
structures that assign topological functions to the node are also available (de la 
Losa & Cervelle1999).  

4.3 Topology Management using Meta Information  

A lighter approach than extending the DBMS kernel with topological functionality 
involves creating a table with meta information describing the topological 
structures in the DBMS. This topological meta information can than be used both 
within the DBMS (back-end) and outside the DBMS (front-end or middleware). In 
general, meta information (or system catalogs) of a DBMS contains descriptions 
of the data stored in the database: tables, attributes and types, and contains 



descriptions of the available types and operators. This enables dynamic SQL 
applications. A traditional example of the use of meta-data is to obtain a 
description of the tables within Oracle such as:  

  SELECT owner,table_name,column_id,column_name,data_type 
  FROM all_tab_columns 
  ORDER BY owner,table_name,column_id 

Oracle spatial also uses a specific meta data table to describe geometric 
attributes in more detail: USER_SDO_GEOM_METADATA, which contains 
information about the number of dimensions, the extent of the domain and the 
resolution. In case the (relational) DBMS has to support topology management, 
the structural knowledge has to be stored (and be accessible for applications).  For 
example, topological layer names, boundary tables, area tables and relevant 
attributes with metrical and topological information must be determined and 
accessible.  One solution for this problem is providing prototypes as a basis for the 
possible topological structures; see Subsection 4.1. A drawback of this solution is 
that the topology elements (object ids, references and also the metric attributes) 
have fixed names.  

An alternative is to describe this topological information in another meta data 
table. Again, somewhere it must be declared which tables and which attributes 
carry the topological information. An example of the extension of the meta 
information of the DBMS was given in the context of GEO++ (geo_dyn_info 
table) in (Vijlbrief & van Oosterom1992). Below the table definition of a more 
generic topological meta data table is shown. This model we now propose as the 
basis of our solution:  
                                 | /* example entry for winged-edge 
                                 |    topology of Dutch cadastre */ 
create table topo_meta_data(     | insert into topo_meta_data values  
 topol_layer_name  varchar(32)   |   ( 
                     PRIMARY KEY,|    'parcel layer', 
 topol_type        integer,      |    222, 
 node_table_name   varchar(32),  |    NULL, 
 node_info         varchar(256), |    NULL, 
 edge_table_name   varchar(32),  |    'lki_boundary', 
 edge_info         varchar(256), |    'object_id,l_obj_id,r_obj_id,  
                                 |     fr_line_id,lr_line_id, 
                                 |     geo_polyline', 
 face_table_name   varchar(32),  |    'lki_parcel', 
 face_info         varchar(256), |    'object_id,line_id1', 
 volume_table_name varchar(32),  |    NULL, 
 volume_info       varchar(256));|    NULL); 

The topology type is encoded in a number and stored in the meta data attribute 
‘topol_type’. Knowing which tables to use for which role is not sufficient. It 
must  be explicit about which attributes in these tables contain the needed 
identifier, references and other information. This depends again on the topology 
type. Standardising the topologically structured knowledge makes it possible to 
implement functionality (within the DBMS). Several categories of functionality 
can be considered. Initially we focus on the 'bridge' between topology and 



geometry by implementing a function which realises (materialises) geometric 
primitives from topological primitives.  

5 Implementation in Oracle 9i  

The Oracle 9i spatial DBMS will be used to test the topological structure 
management proposal. The manner in which the relational model is extended 
(PL/SQL, stored procedures) to support topological structure is described. The 
interface of a hard coded (table and attribute names are fixed) example of a 
PL/SQL function which translates a topological structure into a geometry is given 
below:  
  CREATE OR REPLACE FUNCTION return_polygon 
    (i_object_id kadtest.lki_parcel.object_id%type) 
  RETURN mdsys.sdo_geometry 
  IS 
  ...../* body of the function */ 
    polygon:=mdsys.sdo_geometry(2003, NULL, NULL,  
            mdsys.SDO_ELEM_INFO_ARRAY(1, 1003,1), list_coordinates); 
    return polygon; 
  END return_polygon; 

This function uses the ‘lki_boundary’ table in order to obtain the 
coordinates of the polygon realised for the face in the ‘lki_parcel’ table. In 
our current prototype implementation, the boundaries are accessed based on their 
‘object_id’, on which a btree index is created.  For fast access, spatial 
clustering of the boundary table is needed.  The clustering supports fast access in 
case a large number of boundary records,  forming one polygon are to be retrieved 
in a sequence and are spatially related A spatial index is not needed, per se, for 
this purpose. However, sometimes boundaries are spatially selected independent 
of the polygons and for this reason also a spatial index, an rteee, is created on the 
boundary table. Now, the function ‘return_polygon’ can be used to create a 
view in the following way:  
  create view lki_parcel_pgn_vw as  
    select municip, osection, parcel, oarea,  
      return_polygon(object_id) shape  
    from lki_parcel; 

Fig. 2 shows an example that uses the function to view topological data in a 
viewer that  knows that the data it displays is in a topological model (Wilko 
Quak’s Quick GIS). Currently, table names and attribute names are hard coded in 
the function ‘return_polygon’. One might wonder what is the role of the 
‘from’ clause in this situation, besides being necessary in a valid SQL 
‘select’ statement. The answer is that the ‘from’ clause provides the iteration 
over the ‘object_id's’ from the ‘lki_parcel’ table. 



 
Fig. 2. Viewing topological data in a veiwer that is not topology aware 

A function-based spatial index is created in order to optimise the performance. 
Since version 9i, Oracle offers function-based indices, i.e. an index, which is 
created on the return value of a function in contrast to a normal index created 
directly on the value of an attribute. The spatial index is created based on the pre-
computed values returned by the function. This is implemented in Oracle 9i in two 
steps. First, by inserting a row in the table USER_SDO_GEOM_METADATA and 
then the spatial index is created by specifying the function name and parameters. 
  insert into user_sdo_geom_metadata values( 
    'LKI_PARCEL', 'return_polygon(object_id)', mdsys.sdo_dim_array ( 
    mdsys.sdo_dim_element('X', 82291,  84261, 0.0005),  
    mdsys.sdo_dim_element('Y', 453039, 455632, 0.0005)), NULL); 
 
  create index lki_parcel_idx on 
    lki_parcel(return_polygon(object_id)) 
    indextype is mdsys.spatial_index; 

The view that was created (lki_parcel_pgn_vw) can use this index and 
thus improve performance and functionality. Without a function-based spatial 
index it would not have been possible to properly index the faces. During an 
overlap query (or any other search query using the spatial index, for some 
examples see the next section), objects are filtered by means of this index. That is, 
using the pre-computed boxes which are stored in the R-tree. Then the 
‘return_polygon’ function is executed to obtain the complete geometry of 



filtered objects used in the exact overlap test. In Informix (Informix2000) it is 
possible to build an R-tree index which also includes the shape instead of only the 
box (as is the case in the standard R-tree), which then avoids executing the 
function return_polygon. 

6 Querying Topology and Geometry 

In this section examples of queries are given, which use the function to realise a 
geometry based on stored topology as described in section 5. The first two 
geometric queries return respectively the area and the maximum area (with a 
tolerance value of 0.5) of realised geometry’s. 
  select municip, osection, parcel, sdo_geom.sdo_area(shape,0.5) 
    from lki_parcel_pgn_vw;  
  select max(sdo_geom.sdo_area(shape,0.5))  
    from lki_parcel_pgn_vw; 

The next geometric query gives all the parcels, which are within a distance of 
100m of the given rectangle (specified by lower-left and  upper-right coordinates).  
  select parcel from lki_parcel  
    where sdo_within_distance( 
      return_polygon(object_id),mdsys.sdo_geometry(2003,NULL,NULL,  
        mdsys.sdo_elem_info_array(1,1003,3), 
        mdsys.SDO_ORDINATE_ARRAY(832018,453536,832824,453610)), 
     'distance = 100')='TRUE'; 

Next a topological query selects all neighbour parcels of parcel 'X'.  
  select distinct l_obj_id neighbour_parcel  
    from lki_boundary where r_obj_id='X' 
  union all 
  select distinct r_obj_id neighbour_parcel  
    from lki_boundary where l_obj_id='X'; 

Another pure topological query is to find all boundaries of  parcel 'X'.  
    select distinct object_id parcel_boundary 
      from lki_boundary where r_obj_id='X' or l_obj_id='X'; 

Finally, an example of a complex query: map-overlay, which computes the 
intersection of all faces from one layer with all faces from the other layer. Below, 
one input layer is topologically structured ‘lki_parcel’ and the other layer is 
not topologically structured ‘query_geom’. The result is stored in a non-
topologically structured table ‘overlay_result’.  
  create table overlay_result as  
  select object_id, tag, 
    sdo_geom.sdo_intersection(return_polygon(object_id),q.shape,0.5) 
      clip_geom 
    from lki_parcel, query_geom q 
    where mdsys.sdo_relate (return_polygon(object_id), 
      q.shape,'mask=ANYINTERACT querytype = JOIN') = 'TRUE'; 



In the target list the actual geometric computation is performed in addition to 
selecting the identifiers from both input layers. If both input layers are partitions, 
the output layer will also form a partition again. To execute the map-overlay 
efficiently, the where clause has been added and tests for overlap (through a 
spatial index because a spatial operator is used).  

The next step is to get the topological layer as a result of the map-overlay 
operation. A solution may be to make a special purpose map-overlay function (in 
PL/SQL), which does all the computation and populates the target topology tables.  

7 Discussion and Conclusion  

In this paper we presented a breakthrough in managing topology and geometry in 
RDBMSs based on a function, which realises (constructs) a topological primitive 
into its geometric counter part. The proposed solution is based on a generic 
topology meta data table and stored procedure (PL/SQL), which uses this meta 
data to realise the geometry. This makes it possible to have both the advantages of 
a topological structure (e.g. no redundancy) and advantages of explicit geometric 
primitives in querying, analysis and presentation. Any GIS package being able to 
display geometry from the DBMS (called sdo_geometry in Oracle) can now 
also analyse, query and display topologically structured features from the DBMS. 
An important issue is the connection between the features and their topology and 
geometry 'aspects'. Our generic approach makes it possible to integrate topology 
and geometry as attributes of the features or to separate those in two modelling 
levels. In the second approach, which is also described in (Molenaar1998), 
topology and geometry aspects are modelled (in tables such as node, edge and 
face) separately from the features, which are modelled on top of (refer to) the 
topology tables. This approach also fits in our generic approach and it is up to the 
application developer to decide on the best model for a given situation. It is our 
expectation that future ISO and/or OpenGIS standards with respect to topology 
will also fit in our generic approach.  

Future work will focus on keeping the topological structure consistent under 
updates. This issue is related to the temporal aspect of geo-information as 
updating is the source of historical information (van Oosterom1997). In the same 
manner as there should not be gaps and overlaps in space (in a partition), there 
should also be no gaps and overlaps in time: a next version should start at the 
moment the previous version becomes outdated.  

One can assume that the topological structure is correct and that updates keep 
the structure correct and consistent within the topological rules. Otherwise a 
transaction can not be committed. This must  be checked by the DBMS. Two 
approaches can be identified. In the first solution, a group of insert/delete/updates 
to node/edges/face/volume tables is considered as one transaction and on the 
commit of this transaction a function is executed, which checks the correctness of 
the changes. In the second solution it is not allowed to change the 
node/edge/face/volume tables directly, but only through higher level edit 



operations, which bring the DBMS from one consistent state into the other (by 
changing several tables at the same time). Further research will investigate and 
compare these different solutions.  

Other future work will try to implement the more generic solution, including 
support for other types of topological structures. This solution should also be  
applicable for other RDBMSs. The later could perhaps be achieved by not using 
Oracle's PL/SQL in the server, but the more generic Java/SQL. This might also be 
beneficial for the performance, due to the more advanced techniques of a JVM, 
such as just in time compilation. An interesting issue related to other topology 
types, raised in (de Hoop et al.1993), is whether it is possible to share the 
geometry in differently structured topological layers. In our model, this is not 
visible, although an implementation might support this. We did not investigate 
this, and this is again a good item for future research.  

Finally, complex operations such as map-overlay of two (or more) planar 
partitions, resulting in a new planar partition will be investigated. Of course, as 
usual everything performed within the DBMS.  
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