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Abstract 

The Generalized Area Partitioning tree (GAP-tree) is a  model that supports  on-
the-fly generalisation of planar partitions of polygon objects. This paper focuses 
on solving some limitations of the existing GAP-tree and explores two extensions. 
The first extension enables the handling of a disjoint polygonal cluster (within the 
partition) and allows aggregation operations to be performed. The skeleton 
partitioning model, which is based on the constrained Delaunay triangulation for 
the polygonal cluster, is used to define the bridge areas between aggregated 
polygons. The second extension involves  the improvement of removing 
insignificant objects by separating them into parts around the adjusted skeleton 
and assigning these parts to different neighbours. The adjusted skeleton is defined 
by the compatibility between the removed object and its neighbours, which 
considers not only topological relationships but also importance and semantic 
similarity. This process again uses the Delaunay triangulation. The algorithm is 
given to construct the extended GAP-tree. 
Keywords: on-the-fly generalisation, spatial partitioning, and neighbourhood 
analysis, GAP-tree 

1 Introduction 

Multi-scale representation of spatial data is the intent of seamless data navigation, 
progressive web transfer, self-adaptable visualisation and other applications. 
Recently it has gained considerable significance in such fields as map 
generalisation and on-demand mapping. To obtain geographic data representation 
suitable for multiple resolutions, one has to build hierarchical spatial partitioning 
and clustering. The Generalized Area Partitioning tree (abbreviated as GAP-tree) 
developed by Van Oosterom (1991, 1994, 1995) is a spatial data model for  
representing multiple detail levels of area objects within a planar partition, such as 
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topography, land use and soil type. It supports display of increased  detail during 
continuous zoom-in rather than just exaggeration of graphic symbols. In the GAP-
tree structure, a node in the tree represents a generalised polygon region, which 
may contain unimportant lower level polygons, and the trace from leaves to root 
corresponds to polygon selection and simplification in map generalisation. The 
GAP-tree construction is based on answers to two questions: “Which object is the 
least important one?” and  “Which is the most compatible neighbour of the 
unimportant polygon?” The first question is resolved based on the object 
classification and on its attribute and geometric properties such as size. The latter 
is based on the computation of neighbours and semantic similarity. The 
neighbourhood in the original GAP-tree does not consider disjoint polygons 
having an approximate neighbour relationship (with close distance). The original 
GAP-tree construction work is applicable when  regions are connected to each 
other, which means that the polygon distribution has neither overlaps nor hole 
areas (or empty space).   

This paper extends the GAP-tree data structure for on-the-fly generalisation 
(continuous zoom-in/out after pre-processing the data) in two ways. First, the 
neighbourhood is extended to include also polygons at a certain distance. This is 
used when an unimportant object has to be removed and the neighbour with the 
highest compatibility value (most compatible neighbour) has to be found. The 
techniques applied will be spatial searching (using a spatial index) with a buffer 
surrounding the object and using interpolated constrained Delaunay triangulation 
(Preparata and Shamos, 1985) to compute distance measures between the two 
objects. Furthermore, the constrained Delaunay triangulation is used to compute a 
polygon between the two disjoint neighbours, which will be called the 'neighbour 
region' of the two objects. This neighbour region is influenced by the importance 
and the (in)compatibility of the object types belonging to the triangles, which 
might form the neighbour region. The unimportant object will be merged into the 
most compatible neighbour and this will include the neighbour region between the 
two objects. 

Second, a different extension has been considered and  instead of assigning an 
unimportant object completely to the neighbour with the highest compatibility 
value, the object is subdivided in parts and neighbours get assigned pieces based 
on their compatibility value. This is achieved through an adjusted skeleton of the 
object that has to be removed. The higher the compatibility value of a neighbour, 
the more it pushes away the skeleton (and the larger piece of the object will be 
assigned to this neighbour). An algorithm will be described, that will not produce 
the 'equal' parts skeleton lines, but rather will give a compatibility value based on 
weighting. These two developments are an addition to the original GAP-tree and 
are improvements for features such as (parallel lines) described in earlier papers 
(Van Putten and Van Oosterom, 1998). 

The remaining part of the paper is arranged as follows. In section 2 we present 
the refined neighbourhood analysis. The aggregation of ‘disjoint polygonal 
cluster’ is presented in section 3. Section 4 discusses the extension of another 
operation amalgamation based on the adjusted skeleton. Section 5 gives the 
progressive refinement of the extended GAP-tree construction and provides the 



example application in land use data generalisation. Finally, some future work is 
outlined in the conclusion, section 6. 

2 Neighbourhood Analysis 

The GAP-tree is based on neighbourhood analysis. In spatial cognition, 
neighbourhood is a general concept influenced by topological, geometric, 
semantic, and Gestalt nature. If two objects touch and share a common boundary, 
they are neighbours to each other in an adjoining relationship. Two objects with 
disjoint topological relationship, but in  close proximity, can also be regarded as 
having an approximate neighbourhood relationship. In this case, the geometric 
distance plays a major role. In a spatial cluster, in which entities have similar 
distance to each other, the (near) equal attribute values and the similar distribution 
properties in Gestalt nature consider the corresponding set of objects to be in the 
neighbourhood of each other. In the natural world, the distribution of geographic 
phenomena generally has an uncertainty boundary rather than a sharp one.  An 
example would be soil types or vegetation classes in which there is usually some 
form of gradation in the real world phenomena as opposed to a finite demarcation 
often depicted in map form. Although in data representation, we can draw a sharp 
boundary to separate different categories of phenomena, in relationship judgments 
we should not rely too much on it. In the original GAP-tree, the neighbourhood 
judgement is simply based on a topological touch relationship. 

Each object in a GIS has a semantic description (at least a classification or 
feature category) and a spatial description.  Selecting all objects from a single 
feature category results in a sub-set of  objects within the planar partition. One 
polygon object, on the one hand, has adjoining neighbours with objects possibly 
from other categories. On the other hand, it can also have approximate neighbours 
with the same classification.  As far as the adjacency degree is concerned, the 
former is spatially close but may be semantically far, the latter is semantically 
close but spatially far.  What is the most compatible object in the neighbourhood? 
In earlier research (Van Oosterom 1991, 1994), the compatibility formula has 
been introduced to resolve this question, but only for adjoining neighbours. The 
impact of distance should  also be included in the compatibility formula to allow 
approximate neighbours to participate. 

Approximate neighbourhood representation assigns those objects with distance 
to each other less than the tolerance (buffer zone) into a set called approximate 
neighbourhood set. Objects with touch relationship can be thought of as special 
cases in which objects have zero distance to each other. In this sense, the adjoining 
and the approximate neighbourhood can be unified. For the semantic contribution 
in neighbourhood identification, we define the following principle: within a 
neighbourhood cluster, the closer the semantic relationship between object 
elements, the closer the neighbourhood relationship to each other is. In Fig. 1, an 
example of a neighbourhood cluster representation is given: object a has 
neighbours d, c, f, b, h. When comparing two candidate objects b and f, we find 



that object b has the same category as object a, so it has closer neighbourhood 
than object f to object a, although object f touches object a. This is just an intuitive 
judgement and the strict judgement depends on compatibility computation. 

a
c

d

e
f

b

g

h
 

Fig. 1. Neighbourhood cluster of polygon a. 

In neighbourhood definition for disjoint objects, another consideration is the 
context influence (Hernandez and Clementini, 1995). For a large neighbourhood 
tolerance distance, two objects having less distance are regarded as strong 
neighbours. However, when the third object appears between them, it is 
considered that they no longer have a neighbourhood relationship. This implies we 
cannot simply use the distance metric to find a  neighbour, such through 
application of a buffer operation in commercial GIS software.  An additional test 
has to be designed. The Voronoi diagram of the polygonal cluster is computed and 
each polygon is extended with its influence region. The result is a partition of 
space based on the objects with a certain classification. The approximate 
neighbourhood is based on the topological touch relationship between the 
partitioning polygons in the Voronoi diagram. 

Based on the above analysis, objects are referred to as having neighbourhood 
relationship if they satisfy one of the following conditions: 

1. having topological touch relationship to each other; 
2. among objects with a similar classification, their Voronoi cell polygon shares a 

boundary and the distance between objects is less than some tolerance. 
 

Furthermore, the semantic adjacency and the length of a shared boundary 
decide the neighbourhood strength. The impact of these parameters has been used 
in the computation of the most compatible neighbours in the original GAP-tree 
construction. With the new neighbourhood definition, the shared boundary 
includes not only boundaries between objects themselves, but also between the 
touching partitioning polygons in the Voronoi diagram in case of disjoint objects. 

According to the definition, in Fig. 1, object a has neighbours b, c, f, d and this 
order also represents the neighbourhood strength. Object g has the same category 
but is far away from object a, so it cannot act as the neighbor of a. Although 
object h has the same category as object a and is located within the buffer region 
of object a, the appearance of object b makes their corresponding Voronoi 
diagram partitioning polygons not touch.   Therefore h is not the neighbour of 
object a. 



 

3 Aggregation Based on the Skeleton Partitioning Model 

In spatial data handling, we can distinguish two combination operations: the 
aggregation for polygon objects with homogeneous semantics, and the 
amalgamation for polygon objects with heterogeneous semantics.  The results of 
aggregation will inherit the attribute of the original ones,, while the result of 
amalgamation will change the classification of some of the original objects. We 
will discuss the amalgamation operation in section 4, while in this section will 
focus on aggregation. 

Aggregation is an important operation in the generalisation of data sets such as 
land use, urban building clusters among other applications. The original GAP-tree 
focuses on the selection and combining of objects. However, no distinction is 
made between amalgamation and aggregation. In the GAP-tree structure, the 
merge operation just happens based on the compatibility with the least important 
object and the result is a ‘parent and child’ edge in the GAP-tree. When 
considering the aggregation of non-adjoining neighbours, we find that the 
operation implies that a third object (with another classification) is affected. 

 
one neighbour two neighbours Three neighbours 

Fig. 2. W1, W2 local distance for three triangle types 

For a set of objects, from a similar category, we construct the constrained 
Delaunay triangulation. The triangles connecting different polygons are 
considered which implies that those triangles within and outside the polygons but 
with three vertices located in the same polygon will be removed from the 
triangulation. For the remaining triangles, according to the number of neighbour 
triangles, the dashed skeleton segments are linked as depicted in Fig. 2 (where Pi 
is the middle point of the corresponding triangle edge, and O is the weight centre 
of the triangle).  This is done to get the skeleton partitioning model. The result is 
illustrated in Fig. 3, in which every object polygon is surrounded by one 
partitioning polygon, and the partitioning skeleton separates the ‘empty’ space 
equally between two or more object polygons. If two partitioning polygons touch, 
the corresponding contained object polygons are possible neighbours, depending 
on the distance.  Next we compute distance measures (minimum, average) 
between object polygons based on the skeleton edges.  

The aggregation of approximate neighbour polygons behaves as filling a certain 
area between them and changing its classification (a little bit of amalgamation). 



We call this area the neighbour region. Define a neighbourhood tolerance distance 
d, and then select those triangles whose local distance between the connected 
object polygons is shorter than d. Group these selected triangles into triangle 
clusters.  Each triangle cluster goes across a part of the partitioning skeleton edges 
and plays the bridge role connecting two or more neighbour objects, see Fig. 3. 

 
Fig. 3. One category of land use object distribution and neighbour region extraction 

4 Amalgamation Based on the Adjusted Skeleton  

In the iterative process of GAP-tree construction, each step will remove the most 
insignificant polygon object among the current remaining objects. Therefore, the 
most compatible neighbour will fill the space.  This process can also be 
understood as the amalgamation operation in the case of two semantically 
different objects. In the original GAP-tree, this operation is based on topological 
structure and semantic compatibility computation, and the insignificant object will 
completely be assigned to one of the neighbours. We cannot always find an 
obviously strong neighbour to completely replace the insignificant object. From 
the point of view of error adjustment, separating the insignificant polygon around 
its skeleton and assigning different parts into different neighbours is better than 
assigning the whole polygon into one of the neighbours. Bader and Weibel (1997) 
presented an idea to separate an insignificant object based on the constrained 
Delaunay triangulation and the skeleton. However, if the insignificant object does 
not have an obvious lineal stretch distribution, the method cannot guarantee that 
the terminal point of the skeleton exactly meets one of the intersection points 
between two neighbours. Adjustment of the skeleton is required. Next we will 
provide the detailed method of this amalgamation operation from the geometric 
algorithm. 

The basic idea of this method is to generate the skeleton within the insignificant 
polygon and then create the polygon parts composed of some skeleton edges and 
one boundary edge. The generated polygon parts are assigned to the neighbour 
polygon on the other side of the boundary edge. Here the Delaunay triangulation is 
used again, but this time within the studied polygon.  To seamlessly partition the 
insignificant polygon, we expect that the terminal point of each skeleton edge 
meets in a node of the boundary edge.  This condition includes two aspects: one is 
that each terminal point of the skeleton edge must exactly be located in one node 



of boundary edge, another is that each node of the boundary edge must exactly 
have one linking skeleton edge. Note that a node is defined as the location where 

at least three edges meet. Obviously, directly extracting the skeleton based on all 
triangles within one polygon cannot guarantee the above conditions, see Fig. 4b.  
We use the following two steps to adjust the skeleton edges. 

(a) (b) (c) (d) 

Fig. 4. The generation of skeleton edges within one insignificant polygon, (a) original 
scene, (b) original skeleton, (c) adjusted skeleton, (d) partitioning result 

First, all triangles linking the same boundary edge (that is, with all three points 
on the same boundary of one neighbour polygon) are removed and will be 
assigned to the corresponding polygon, as shown in Fig. 4c. Based on the 
remaining set of triangles within the polygon, the new skeleton edge is 
constructed. We now can guarantee that each terminal point exactly meets in one 
node, and is not located in the middle of a boundary edge.  As illustrated in Fig. 
4c, from the point of view of neighbour, the area in which triangles are removed 
serves as the concave part.  Since this part is strongly surrounded by one 
neighbour polygon, in the partitioning it should not act as a competition region for 
different neighbours to separate. Second, a skeleton edge begins from a triangle 
with only one neighbour triangle, which appears in some places of the boundary, 
which is not smooth.  

E0

E1

E2

E3

E 4

E5

a
b

c

 
Fig. 5. Adding additional skeleton edges in E1, E2, E3, E4. 

As described above, the skeleton begin point will always be a node. However, 
in some situations there is no skeleton edge connected to a node (a relative smooth 



part), see E1, E2, E3, and E4 in Fig. 5. In Fig. 5, we can just get one skeleton edge 
from E0 to E5. From nodes without a skeleton edge, search the closest point in the 
existing skeleton edge along a triangle edge. Some nodes relate to just one triangle 
edge intersecting with the existing skeleton edge, such as E1 and E3. Others may 
relate to more than one triangle edge, such as E2 and E4.  Select the shortest 
connection (half of one triangle edge) and let it act as the added ‘skeleton’ edge. 
Note that, if a neighbour wants to receive a part of an insignificant polygon, it 
must share a common boundary with some length.  For example, in Fig. 5, object 
c shares just one point E3 with the insignificant object a, it will not merge with the 
part of object a. 

Through these processes for matching boundary nodes and skeleton terminal 
points, the conditions discussed earlier are fulfilled. Now, select all the boundary 
edges of the insignificant polygon and all its skeleton edges to organise the 
polygons. Each boundary edge will make up one polygon together with some 
skeleton edges. The generated partitioning polygon can now be assigned to the 
other side neighbour of the boundary edge. This amalgamation maintains the 
topological consistency, not resulting in gaps or overlapping regions. Fig. 6 shows 
an experiment example of this amalgamation. In the left, the objects surrounded 
by the wide dark boundaries are unimportant (small size) and will be removed. 
The right graphic is the result of subdividing the insignificant objects. 

Fig. 6. An experiment of removing insignificant objects based on adjusted skeletons. 

The skeleton generation above is based on the assumption that the neighbours 
have the same influence to divide the insignificant object and the skeleton edge 
partitions left/right region in an equal way. Further improvement, in future work, 
can be obtained by considering geometric relationship and semantic similarity. We 
use function compatibility(a,b) to compute the compatibility between object a (to 
be removed) and its neighbour object b, taking into consideration:  
 



�� The compatibility of the types: type_comapt(a,b); 
�� The length of the shared edge: length(a,b); 
�� The importance of b: Imp(b). 

The function could be: compatibility(a,b)=type_compat(a,b)*length(a,b)*imp(b). 

Fig. 7. The generation of adjusted skeleton. 

We call this kind of skeleton, the adjusted skeleton, since it considers the 
compatibility difference between polygons competing for extending their area. 
In the geometric algorithm, the adjusted skeleton can be an adjusted version of the 
normal skeleton. In Fig. 2, the skeleton points Pi need to be computed according to 
two segment ratios based on the compatibility values, rather than the middle 
position unless the two compatibility values are the same. For example, in Fig. 7, 
object c has compatibility value 3 and b has 7. For the region between object c and 
b, 30 percent will be assigned to object c and 70 percent will be assigned to object 
b. 

5 Progressive Refinement of the GAP-Tree Construction 

The aggregation of adjoining neighbours and the improvement of the 
amalgamation, changes the GAP-tree construction. The basic idea is that once an 
unimportant object is determined, it has the possibility either to be aggregated 
with its approximate neighbour or to be amalgamated into adjoining neighbours. 
The algorithm of the GAP-tree construction, which is an iterative process, is 
described in Fig. 8. 

As usual, an edge in the GAP-tree represents the parent-child relationship 
between the unimportant polygon (child) and the polygon(s) to which it has been 
assigned (parent). Fig. 9 shows an example with the iterative process of the GAP-
tree construction using both aggregation (P1 steps) and amalgamation (P2 steps).  

It is possible that one ‘neighbour region’ lies on top of more than one polygon; 
see for example the upper-right image and the one below. This is because the 
‘neighbour region’ is computed using a Delaunay triangulation of only the 
selected polygons, which have similar classification and are within tolerance 
distance of the least important polygon. 
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Fig. 8. The progressive construction of the extended GAP-tree. 

Fig. 9. The scene change during the extended GAP-tree construction. 

Using nodes and edges to record the result of two kinds of operation, as shown 
in Fig. 10, we get a new data structure. As in the amalgamation operation, an 
object can be split into parts and each is assigned to a different parent, this will 
destroy the real tree structure of the GAP-‘tree’. It has now become a 'directed 
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acyclic graph', because one child may have several parents (GAP-DAG). In the 
parent-child edges, it must be stored how big the part of the child object assigned 
to this parent is (child-part, with values between 0 and 1). The original area 
formula has to be changed into: area(object)=Area(object-GAP-node)-sum(child-
part * Area(child-node)) 

c

p p p1 2

a b

ab

neighbor region  
Aggregation  Amalgamation 

Fig. 10. Structure for 2 operations 

After construction, the GAP-tree is used during on-the-fly generalisation based 
on the painter’s algorithm idea in computer graphics. This means, once an 
important object is drawn, it will never be drawn again during refinement. Only 
additional details will be drawn on top of it, each time refining the 'image'. These 
details include the neighbour regions in aggregation and the divided parts in 
amalgamation.  In this way, it can be compared with the progressive transfer of the 
raster images on the Internet, which are also displayed from coarse to fine as there 
is more and more time for sending details (refinements). In the case of joining 
disjoint neighbours in the GAP-tree construction, which have to be visually 
disconnected again, when using the GAP-tree, the 'neighbour region' will be 
drawn on top of this. This is an exception to the rule that the most important (and 
first drawn object) will never be drawn again. In this case, a small fragment will 
be 'redrawn'. 

 
Fig. 11. The generalisation of land use objects based on the extended GAP-tree 

The land use map, see Fig. 11, is a typical kind of categorical theme and has the 
properties covering the whole area with neither gaps nor overlapping areas. 
Usually it includes many categories in the classification hierarchy. Its 
generalisation has to consider geometric simplification, semantic hierarchy 
abstraction and statistical properties maintenance. In our generalization of land use 
data, we select one category of objects (resulting in a disjoint polygonal cluster) as 
operated objects, while others are classified as background objects. Fig. 11 gives 
an experimental illustration. Future research has to determine the proper 
parameters for compatibility formula computation in real land use data. For the 



time being, we just use the normal skeleton (equal partitioning) to separate 
insignificant objects in this experiment. 

6 Conclusion 

Based on skeleton handling, this paper extends the GAP-tree construction in two 
aspects. The first one is the introduction of aggregation of disjoint polygon 
objects. The second one is the improvement of amalgamation between different 
category objects. Both extensions use the Delaunay triangulation and skeleton, but 
in different ways.  The idea of two operations can be unified in the GAP-tree. On-
the-fly generalisation (continuous zoom-in/out) can be achieved by using the 
GAP-tree based on painters algorithm. The initial tests show good generalisation 
results. This strategy is also very suitable to progressively transfer polygonal map 
in Internet.  

In the past other generalisation techniques have been based on the Delauney 
triangulation, Voronoi diagram or the skeleton (Poorten and Jones, 1999, Jones, 
Bundy and Ware, 1995, Ware and Jones, 1995, 1997, Ai, Guo and Liu, 2000, Ai 
and Guo, 2000). This paper has added two more generalisation techniques, which 
proves again how powerful these structures are. 

Further research topics related to GAP-tree use in generalisation include: 

a) Improvement of neighbourhood definition, simultaneously considering 
topological, geometric, semantic and Gestalt nature’s impacts. The 
compatibility formula between two neighbours has been defined, especially 
how to compute the parameters. 

b) Application of this method in a web transferring environment, in a server-client 
framework, to realise the transfer of vector map in the way from coarse to 
refinement, just like images are refined during transfer. 

c) Uncertainty of both the geometry and the classification of the objects could also 
be taken into account in the determination of the least important feature and 
its most compatible neighbours. 
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