
GAP-Tree Extensions Based on Skeletons

Tinghua Ai1 and Peter van Oosterom2

Department of Cartography and GIS, Wuhan University, P. R. China,
aith@wuhan.cngb.com1
Section GIS technology, Department of Geodesy, Delft University of Technology,
the Netherlands, oosterom@geo.tudelft.nl2

Abstract

The Generalized Area Partitioning tree (GAP-tree) is a model that supports on-
the-fly generalisation of planar partitions of polygon objects. This paper focuses
on solving some limitations of the existing GAP-tree and explores two extensions.
The first extension enables the handling of a disjoint polygonal cluster (within the
partition) and allows aggregation operations to be performed. The skeleton
partitioning model, which is based on the constrained Delaunay triangulation for
the polygonal cluster, is used to define the bridge areas between aggregated
polygons. The second extension involves the improvement of removing
insignificant objects by separating them into parts around the adjusted skeleton
and assigning these parts to different neighbours. The adjusted skeleton is defined
by the compatibility between the removed object and its neighbours, which
considers not only topological relationships but also importance and semantic
similarity. This process again uses the Delaunay triangulation. The algorithm is
given to construct the extended GAP-tree.
Keywords: on-the-fly generalisation, spatial partitioning, and neighbourhood
analysis, GAP-tree

1 Introduction

Multi-scale representation of spatial data is the intent of seamless data navigation,
progressive web transfer, self-adaptable visualisation and other applications.
Recently it has gained considerable significance in such fields as map
generalisation and on-demand mapping. To obtain geographic data representation
suitable for multiple resolutions, one has to build hierarchical spatial partitioning
and clustering. The Generalized Area Partitioning tree (abbreviated as GAP-tree)
developed by Van Oosterom (1991, 1994, 1995) is a spatial data model for
representing multiple detail levels of area objects within a planar partition, such as

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

topography, land use and soil type. It supports display of increased detail during
continuous zoom-in rather than just exaggeration of graphic symbols. In the GAP-
tree structure, a node in the tree represents a generalised polygon region, which
may contain unimportant lower level polygons, and the trace from leaves to root
corresponds to polygon selection and simplification in map generalisation. The
GAP-tree construction is based on answers to two questions: “Which object is the
least important one?” and “Which is the most compatible neighbour of the
unimportant polygon?” The first question is resolved based on the object
classification and on its attribute and geometric properties such as size. The latter
is based on the computation of neighbours and semantic similarity. The
neighbourhood in the original GAP-tree does not consider disjoint polygons
having an approximate neighbour relationship (with close distance). The original
GAP-tree construction work is applicable when regions are connected to each
other, which means that the polygon distribution has neither overlaps nor hole
areas (or empty space).

This paper extends the GAP-tree data structure for on-the-fly generalisation
(continuous zoom-in/out after pre-processing the data) in two ways. First, the
neighbourhood is extended to include also polygons at a certain distance. This is
used when an unimportant object has to be removed and the neighbour with the
highest compatibility value (most compatible neighbour) has to be found. The
techniques applied will be spatial searching (using a spatial index) with a buffer
surrounding the object and using interpolated constrained Delaunay triangulation
(Preparata and Shamos, 1985) to compute distance measures between the two
objects. Furthermore, the constrained Delaunay triangulation is used to compute a
polygon between the two disjoint neighbours, which will be called the 'neighbour
region' of the two objects. This neighbour region is influenced by the importance
and the (in)compatibility of the object types belonging to the triangles, which
might form the neighbour region. The unimportant object will be merged into the
most compatible neighbour and this will include the neighbour region between the
two objects.

Second, a different extension has been considered and instead of assigning an
unimportant object completely to the neighbour with the highest compatibility
value, the object is subdivided in parts and neighbours get assigned pieces based
on their compatibility value. This is achieved through an adjusted skeleton of the
object that has to be removed. The higher the compatibility value of a neighbour,
the more it pushes away the skeleton (and the larger piece of the object will be
assigned to this neighbour). An algorithm will be described, that will not produce
the 'equal' parts skeleton lines, but rather will give a compatibility value based on
weighting. These two developments are an addition to the original GAP-tree and
are improvements for features such as (parallel lines) described in earlier papers
(Van Putten and Van Oosterom, 1998).

The remaining part of the paper is arranged as follows. In section 2 we present
the refined neighbourhood analysis. The aggregation of ‘disjoint polygonal
cluster’ is presented in section 3. Section 4 discusses the extension of another
operation amalgamation based on the adjusted skeleton. Section 5 gives the
progressive refinement of the extended GAP-tree construction and provides the

example application in land use data generalisation. Finally, some future work is
outlined in the conclusion, section 6.

2 Neighbourhood Analysis

The GAP-tree is based on neighbourhood analysis. In spatial cognition,
neighbourhood is a general concept influenced by topological, geometric,
semantic, and Gestalt nature. If two objects touch and share a common boundary,
they are neighbours to each other in an adjoining relationship. Two objects with
disjoint topological relationship, but in close proximity, can also be regarded as
having an approximate neighbourhood relationship. In this case, the geometric
distance plays a major role. In a spatial cluster, in which entities have similar
distance to each other, the (near) equal attribute values and the similar distribution
properties in Gestalt nature consider the corresponding set of objects to be in the
neighbourhood of each other. In the natural world, the distribution of geographic
phenomena generally has an uncertainty boundary rather than a sharp one. An
example would be soil types or vegetation classes in which there is usually some
form of gradation in the real world phenomena as opposed to a finite demarcation
often depicted in map form. Although in data representation, we can draw a sharp
boundary to separate different categories of phenomena, in relationship judgments
we should not rely too much on it. In the original GAP-tree, the neighbourhood
judgement is simply based on a topological touch relationship.

Each object in a GIS has a semantic description (at least a classification or
feature category) and a spatial description. Selecting all objects from a single
feature category results in a sub-set of objects within the planar partition. One
polygon object, on the one hand, has adjoining neighbours with objects possibly
from other categories. On the other hand, it can also have approximate neighbours
with the same classification. As far as the adjacency degree is concerned, the
former is spatially close but may be semantically far, the latter is semantically
close but spatially far. What is the most compatible object in the neighbourhood?
In earlier research (Van Oosterom 1991, 1994), the compatibility formula has
been introduced to resolve this question, but only for adjoining neighbours. The
impact of distance should also be included in the compatibility formula to allow
approximate neighbours to participate.

Approximate neighbourhood representation assigns those objects with distance
to each other less than the tolerance (buffer zone) into a set called approximate
neighbourhood set. Objects with touch relationship can be thought of as special
cases in which objects have zero distance to each other. In this sense, the adjoining
and the approximate neighbourhood can be unified. For the semantic contribution
in neighbourhood identification, we define the following principle: within a
neighbourhood cluster, the closer the semantic relationship between object
elements, the closer the neighbourhood relationship to each other is. In Fig. 1, an
example of a neighbourhood cluster representation is given: object a has
neighbours d, c, f, b, h. When comparing two candidate objects b and f, we find

that object b has the same category as object a, so it has closer neighbourhood
than object f to object a, although object f touches object a. This is just an intuitive
judgement and the strict judgement depends on compatibility computation.

a
c

d

e
f

b

g

h

Fig. 1. Neighbourhood cluster of polygon a.

In neighbourhood definition for disjoint objects, another consideration is the
context influence (Hernandez and Clementini, 1995). For a large neighbourhood
tolerance distance, two objects having less distance are regarded as strong
neighbours. However, when the third object appears between them, it is
considered that they no longer have a neighbourhood relationship. This implies we
cannot simply use the distance metric to find a neighbour, such through
application of a buffer operation in commercial GIS software. An additional test
has to be designed. The Voronoi diagram of the polygonal cluster is computed and
each polygon is extended with its influence region. The result is a partition of
space based on the objects with a certain classification. The approximate
neighbourhood is based on the topological touch relationship between the
partitioning polygons in the Voronoi diagram.

Based on the above analysis, objects are referred to as having neighbourhood
relationship if they satisfy one of the following conditions:

1. having topological touch relationship to each other;
2. among objects with a similar classification, their Voronoi cell polygon shares a

boundary and the distance between objects is less than some tolerance.

Furthermore, the semantic adjacency and the length of a shared boundary
decide the neighbourhood strength. The impact of these parameters has been used
in the computation of the most compatible neighbours in the original GAP-tree
construction. With the new neighbourhood definition, the shared boundary
includes not only boundaries between objects themselves, but also between the
touching partitioning polygons in the Voronoi diagram in case of disjoint objects.

According to the definition, in Fig. 1, object a has neighbours b, c, f, d and this
order also represents the neighbourhood strength. Object g has the same category
but is far away from object a, so it cannot act as the neighbor of a. Although
object h has the same category as object a and is located within the buffer region
of object a, the appearance of object b makes their corresponding Voronoi
diagram partitioning polygons not touch. Therefore h is not the neighbour of
object a.

3 Aggregation Based on the Skeleton Partitioning Model

In spatial data handling, we can distinguish two combination operations: the
aggregation for polygon objects with homogeneous semantics, and the
amalgamation for polygon objects with heterogeneous semantics. The results of
aggregation will inherit the attribute of the original ones,, while the result of
amalgamation will change the classification of some of the original objects. We
will discuss the amalgamation operation in section 4, while in this section will
focus on aggregation.

Aggregation is an important operation in the generalisation of data sets such as
land use, urban building clusters among other applications. The original GAP-tree
focuses on the selection and combining of objects. However, no distinction is
made between amalgamation and aggregation. In the GAP-tree structure, the
merge operation just happens based on the compatibility with the least important
object and the result is a ‘parent and child’ edge in the GAP-tree. When
considering the aggregation of non-adjoining neighbours, we find that the
operation implies that a third object (with another classification) is affected.

one neighbour two neighbours Three neighbours

Fig. 2. W1, W2 local distance for three triangle types

For a set of objects, from a similar category, we construct the constrained
Delaunay triangulation. The triangles connecting different polygons are
considered which implies that those triangles within and outside the polygons but
with three vertices located in the same polygon will be removed from the
triangulation. For the remaining triangles, according to the number of neighbour
triangles, the dashed skeleton segments are linked as depicted in Fig. 2 (where Pi
is the middle point of the corresponding triangle edge, and O is the weight centre
of the triangle). This is done to get the skeleton partitioning model. The result is
illustrated in Fig. 3, in which every object polygon is surrounded by one
partitioning polygon, and the partitioning skeleton separates the ‘empty’ space
equally between two or more object polygons. If two partitioning polygons touch,
the corresponding contained object polygons are possible neighbours, depending
on the distance. Next we compute distance measures (minimum, average)
between object polygons based on the skeleton edges.

The aggregation of approximate neighbour polygons behaves as filling a certain
area between them and changing its classification (a little bit of amalgamation).

We call this area the neighbour region. Define a neighbourhood tolerance distance
d, and then select those triangles whose local distance between the connected
object polygons is shorter than d. Group these selected triangles into triangle
clusters. Each triangle cluster goes across a part of the partitioning skeleton edges
and plays the bridge role connecting two or more neighbour objects, see Fig. 3.

Fig. 3. One category of land use object distribution and neighbour region extraction

4 Amalgamation Based on the Adjusted Skeleton

In the iterative process of GAP-tree construction, each step will remove the most
insignificant polygon object among the current remaining objects. Therefore, the
most compatible neighbour will fill the space. This process can also be
understood as the amalgamation operation in the case of two semantically
different objects. In the original GAP-tree, this operation is based on topological
structure and semantic compatibility computation, and the insignificant object will
completely be assigned to one of the neighbours. We cannot always find an
obviously strong neighbour to completely replace the insignificant object. From
the point of view of error adjustment, separating the insignificant polygon around
its skeleton and assigning different parts into different neighbours is better than
assigning the whole polygon into one of the neighbours. Bader and Weibel (1997)
presented an idea to separate an insignificant object based on the constrained
Delaunay triangulation and the skeleton. However, if the insignificant object does
not have an obvious lineal stretch distribution, the method cannot guarantee that
the terminal point of the skeleton exactly meets one of the intersection points
between two neighbours. Adjustment of the skeleton is required. Next we will
provide the detailed method of this amalgamation operation from the geometric
algorithm.

The basic idea of this method is to generate the skeleton within the insignificant
polygon and then create the polygon parts composed of some skeleton edges and
one boundary edge. The generated polygon parts are assigned to the neighbour
polygon on the other side of the boundary edge. Here the Delaunay triangulation is
used again, but this time within the studied polygon. To seamlessly partition the
insignificant polygon, we expect that the terminal point of each skeleton edge
meets in a node of the boundary edge. This condition includes two aspects: one is
that each terminal point of the skeleton edge must exactly be located in one node

of boundary edge, another is that each node of the boundary edge must exactly
have one linking skeleton edge. Note that a node is defined as the location where

at least three edges meet. Obviously, directly extracting the skeleton based on all
triangles within one polygon cannot guarantee the above conditions, see Fig. 4b.
We use the following two steps to adjust the skeleton edges.

(a) (b) (c) (d)

Fig. 4. The generation of skeleton edges within one insignificant polygon, (a) original
scene, (b) original skeleton, (c) adjusted skeleton, (d) partitioning result

First, all triangles linking the same boundary edge (that is, with all three points
on the same boundary of one neighbour polygon) are removed and will be
assigned to the corresponding polygon, as shown in Fig. 4c. Based on the
remaining set of triangles within the polygon, the new skeleton edge is
constructed. We now can guarantee that each terminal point exactly meets in one
node, and is not located in the middle of a boundary edge. As illustrated in Fig.
4c, from the point of view of neighbour, the area in which triangles are removed
serves as the concave part. Since this part is strongly surrounded by one
neighbour polygon, in the partitioning it should not act as a competition region for
different neighbours to separate. Second, a skeleton edge begins from a triangle
with only one neighbour triangle, which appears in some places of the boundary,
which is not smooth.

E0

E1

E2

E3

E 4

E5

a
b

c

Fig. 5. Adding additional skeleton edges in E1, E2, E3, E4.

As described above, the skeleton begin point will always be a node. However,
in some situations there is no skeleton edge connected to a node (a relative smooth

part), see E1, E2, E3, and E4 in Fig. 5. In Fig. 5, we can just get one skeleton edge
from E0 to E5. From nodes without a skeleton edge, search the closest point in the
existing skeleton edge along a triangle edge. Some nodes relate to just one triangle
edge intersecting with the existing skeleton edge, such as E1 and E3. Others may
relate to more than one triangle edge, such as E2 and E4. Select the shortest
connection (half of one triangle edge) and let it act as the added ‘skeleton’ edge.
Note that, if a neighbour wants to receive a part of an insignificant polygon, it
must share a common boundary with some length. For example, in Fig. 5, object
c shares just one point E3 with the insignificant object a, it will not merge with the
part of object a.

Through these processes for matching boundary nodes and skeleton terminal
points, the conditions discussed earlier are fulfilled. Now, select all the boundary
edges of the insignificant polygon and all its skeleton edges to organise the
polygons. Each boundary edge will make up one polygon together with some
skeleton edges. The generated partitioning polygon can now be assigned to the
other side neighbour of the boundary edge. This amalgamation maintains the
topological consistency, not resulting in gaps or overlapping regions. Fig. 6 shows
an experiment example of this amalgamation. In the left, the objects surrounded
by the wide dark boundaries are unimportant (small size) and will be removed.
The right graphic is the result of subdividing the insignificant objects.

Fig. 6. An experiment of removing insignificant objects based on adjusted skeletons.

The skeleton generation above is based on the assumption that the neighbours
have the same influence to divide the insignificant object and the skeleton edge
partitions left/right region in an equal way. Further improvement, in future work,
can be obtained by considering geometric relationship and semantic similarity. We
use function compatibility(a,b) to compute the compatibility between object a (to
be removed) and its neighbour object b, taking into consideration:

�� The compatibility of the types: type_comapt(a,b);
�� The length of the shared edge: length(a,b);
�� The importance of b: Imp(b).

The function could be: compatibility(a,b)=type_compat(a,b)*length(a,b)*imp(b).

Fig. 7. The generation of adjusted skeleton.

We call this kind of skeleton, the adjusted skeleton, since it considers the
compatibility difference between polygons competing for extending their area.
In the geometric algorithm, the adjusted skeleton can be an adjusted version of the
normal skeleton. In Fig. 2, the skeleton points Pi need to be computed according to
two segment ratios based on the compatibility values, rather than the middle
position unless the two compatibility values are the same. For example, in Fig. 7,
object c has compatibility value 3 and b has 7. For the region between object c and
b, 30 percent will be assigned to object c and 70 percent will be assigned to object
b.

5 Progressive Refinement of the GAP-Tree Construction

The aggregation of adjoining neighbours and the improvement of the
amalgamation, changes the GAP-tree construction. The basic idea is that once an
unimportant object is determined, it has the possibility either to be aggregated
with its approximate neighbour or to be amalgamated into adjoining neighbours.
The algorithm of the GAP-tree construction, which is an iterative process, is
described in Fig. 8.

As usual, an edge in the GAP-tree represents the parent-child relationship
between the unimportant polygon (child) and the polygon(s) to which it has been
assigned (parent). Fig. 9 shows an example with the iterative process of the GAP-
tree construction using both aggregation (P1 steps) and amalgamation (P2 steps).

It is possible that one ‘neighbour region’ lies on top of more than one polygon;
see for example the upper-right image and the one below. This is because the
‘neighbour region’ is computed using a Delaunay triangulation of only the
selected polygons, which have similar classification and are within tolerance
distance of the least important polygon.

No

Find unimportant
polygon, say a.

Only one neighbor? Select the closest

one, say b.

a has
approximate
neighbor?

Finished?

Perform aggregation

(Union of a, b and the

neighbor region

between them)

Find adjoining
neighbors of a

Re-organize the topological structure

Perform
amalgamation

Assign a to

neighbor

Stop

Set tolerance
distance

Yes

No

Yes No

Fig. 8. The progressive construction of the extended GAP-tree.

Fig. 9. The scene change during the extended GAP-tree construction.

Using nodes and edges to record the result of two kinds of operation, as shown
in Fig. 10, we get a new data structure. As in the amalgamation operation, an
object can be split into parts and each is assigned to a different parent, this will
destroy the real tree structure of the GAP-‘tree’. It has now become a 'directed

P1 aggregation
P2 amalgamation

a
c d
e

g

n h

f b
m

ac
d

e
g

n h

f b
m

a
c de g

n h

f b
m

a
c de g

n

f b
m

a
cde g

n

f b m
a

cde g

n

f
b

m
a

cde g

n

f
b

mcde g

n

f m

n

m m

c d h

g

bfgab

cdefg

n m

acyclic graph', because one child may have several parents (GAP-DAG). In the
parent-child edges, it must be stored how big the part of the child object assigned
to this parent is (child-part, with values between 0 and 1). The original area
formula has to be changed into: area(object)=Area(object-GAP-node)-sum(child-
part * Area(child-node))

c

p p p1 2

a b

ab

neighbor region
Aggregation Amalgamation

Fig. 10. Structure for 2 operations

After construction, the GAP-tree is used during on-the-fly generalisation based
on the painter’s algorithm idea in computer graphics. This means, once an
important object is drawn, it will never be drawn again during refinement. Only
additional details will be drawn on top of it, each time refining the 'image'. These
details include the neighbour regions in aggregation and the divided parts in
amalgamation. In this way, it can be compared with the progressive transfer of the
raster images on the Internet, which are also displayed from coarse to fine as there
is more and more time for sending details (refinements). In the case of joining
disjoint neighbours in the GAP-tree construction, which have to be visually
disconnected again, when using the GAP-tree, the 'neighbour region' will be
drawn on top of this. This is an exception to the rule that the most important (and
first drawn object) will never be drawn again. In this case, a small fragment will
be 'redrawn'.

Fig. 11. The generalisation of land use objects based on the extended GAP-tree

The land use map, see Fig. 11, is a typical kind of categorical theme and has the
properties covering the whole area with neither gaps nor overlapping areas.
Usually it includes many categories in the classification hierarchy. Its
generalisation has to consider geometric simplification, semantic hierarchy
abstraction and statistical properties maintenance. In our generalization of land use
data, we select one category of objects (resulting in a disjoint polygonal cluster) as
operated objects, while others are classified as background objects. Fig. 11 gives
an experimental illustration. Future research has to determine the proper
parameters for compatibility formula computation in real land use data. For the

time being, we just use the normal skeleton (equal partitioning) to separate
insignificant objects in this experiment.

6 Conclusion

Based on skeleton handling, this paper extends the GAP-tree construction in two
aspects. The first one is the introduction of aggregation of disjoint polygon
objects. The second one is the improvement of amalgamation between different
category objects. Both extensions use the Delaunay triangulation and skeleton, but
in different ways. The idea of two operations can be unified in the GAP-tree. On-
the-fly generalisation (continuous zoom-in/out) can be achieved by using the
GAP-tree based on painters algorithm. The initial tests show good generalisation
results. This strategy is also very suitable to progressively transfer polygonal map
in Internet.

In the past other generalisation techniques have been based on the Delauney
triangulation, Voronoi diagram or the skeleton (Poorten and Jones, 1999, Jones,
Bundy and Ware, 1995, Ware and Jones, 1995, 1997, Ai, Guo and Liu, 2000, Ai
and Guo, 2000). This paper has added two more generalisation techniques, which
proves again how powerful these structures are.

Further research topics related to GAP-tree use in generalisation include:

a) Improvement of neighbourhood definition, simultaneously considering
topological, geometric, semantic and Gestalt nature’s impacts. The
compatibility formula between two neighbours has been defined, especially
how to compute the parameters.

b) Application of this method in a web transferring environment, in a server-client
framework, to realise the transfer of vector map in the way from coarse to
refinement, just like images are refined during transfer.

c) Uncertainty of both the geometry and the classification of the objects could also
be taken into account in the determination of the least important feature and
its most compatible neighbours.

Acknowledgements

Tinghua Ai’s work is supported by the National Science Foundation, China under
grant number 40101023. We would like to thank our colleague Tjeu Lemmes and
the anonymous referees whose comments materially improved the paper. Special
thanks go to Elfriede M. Fendel for editing the paper.

References

Ai T, Guo R, Liu Y (2000) A Binary Tree Representation of Bend Hierarchical Structure
Based on Gestalt Principles. In: Forer P, Yeh AGO, He J (eds) Proceedings of the 9th
International Symposium on Spatial Data Handling, Beijing, pp 2a30-2a43

Ai T, Guo R (2000) A Constrained Delaunay Partitioning of Areal Objects to Support Map
Generalization. Journal of Wuhan Technical University of Surveying and Mapping
25(1):35-41 (in Chinese)

Bader M, Weibel R (1997) Detecting and Resolving Size and Proximity Conflicts in the
Generalization of Polygonal Maps. In: Ottoson L (eds) Proceedings of the 18th
International Cartographic Conference. Stockholm, pp 1525-1532

Hernandez D, Clementini E (1995) Qualitative Distance. In: Proceedings of COSIT’95,
Semmering, Austria, pp 45-57

Jones CB, Bundy GL, Ware JM (1995) Map Generalization with a Triangulated Data
Structure. Cartography and Geographic Information System 22(4): 317-331

Oosterom P Van (1995) The GAP-tree, An Approach to On-the-Fly Map Generalization of
An Area Partitioning. In: Muller J C, Lagrange J P, Weibel R (eds) GIS and
Generalization: Methodology and Practice. Taylor & Francis, London, pp 120-13

Oosterom P Van (1994) Reactive Data Structure for Geographic Information Systems.
Oxford University Press, Oxford

Oosterom P Van (1991) The Reactive-Tree: A Storage Structure for a Seamless, Scaleless
Geographic Database. In: Auto-Carto 10, pp 393-407

Poorten P, Jones C B(1999) Customisable Line Generalization Using Delaunay
Triangulation, CD-Rom Proceedings of the 19th ICC, Ottawa, Section 8

Preparata FP, Shamos MI (1985) Computational Geometry An Introduction. Springers-
Verlag

Putten J Van, Oosterom P Van (1998) New Results with Generalized Area Partitionings. In:
Proceedings of Spatial Data Handling, Ottawa, Canada

Ware JM, Jones CB (1995) A Triangulated Spatial Model for Cartographic Generalization
of Areal Objects. In: Proceedings COSIT’95. Semmering, Austria, pp 173-192

Ware JM, Jones CB(1997) A Spatial Model for Detecting (and Resolving) Conflict Caused
by Scale Reduction. In: Kraak MJ, and Molenaar M (eds) In: Advance in GIS
Research II (7th Int. Symposium on Spatial Data handling), Springer-Verlag

