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ABSTRACT: 
 
For an interactive visualization of three dimensional (3D) city models a Level of Detail representation is extremely useful to avoid 
unnecessary computations. Differently detailed models of the same object are displayed depending on the distance of the object. This 
implies that less detailed models have to be generated from complex models (generalization). In this paper an approach for the 
automation of 3D generalization especially for building data is presented. It uses the formally well-defined scale-space theory which 
includes morphology and curvature space. Practical investigations for the scale-space operations making use of the geometry kernel 
ACIS 3D Geometric Modeler show good results for morphology. For curvature space important preparations concerning the 
distinction between convex and concave object parts have been carried out. Tasks still to be performed include the coherent 
modeling and the implementation of continuous curvature space, the combination of morphology and curvature space, and the 
rectification of angles. 
 

 
1 INTRODUCTION 

The performance of the interactive visualization of three 
dimensional (3D) polyhedral data depends on the number of 
polygons that have to be rendered. To improve the speed, often 
the Level of Detail (LOD) concept is used where objects that 
are far away are represented with less detail than close ones (cf. 
Fig.1).  
Many approaches for automatic polygon-reduction exist in 
computer graphics and computational geometry. A good survey 
on approaches for surface simplification is given in (Heckbert 
and Garland 1997). Further examples for automatic LOD 
generation can be found, e.g., in (Varshney et al. 1995) and 
(Schmalstieg 1996). An approach close to our approach dealing 
with computer aided design (CAD) objects is presented in 
(Ribelles et al. 2001). 
Unfortunately, most of these approaches do not consider the 
specific properties of an object type such as right angles of 
urban objects. Opposed to this, model generalization of 
cartography takes into account these properties, but there is 
hardly any work on 3D building data. Basics about automatic 
generalization can be found in (Mackaness et al. 1997; Meng 
1997; Staufenbiel 1973, and Weibel and Jones 1998). 
In this paper we base the automatic creation of less detailed 
models, i.e., model-generalization, on the formally well-defined 
scale-space theory. The basic idea is a multiscale representation 
in which for a coarser scale, fine scale information with high 
frequency is eliminated. 
On one hand, we modify the scale-spaces “morphology” and 
“curvature space” to deal with polyhedral, mostly rectangular 
building data. On the other hand, we extend the generalization 
of building data to 3D. 
 

 
Figure 1. Different Levels of Detail (LOD) 
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2 SCALE-SPACES AND SCALE-SPACE EVENTS 

2.1 Scale-Spaces  

One basic scale-space is the linear scale-space, where causality, 
isotropy, and homogeneity are combined. This scale-space 
family continuously smoothes the image function and satisfies 
the so called “diffusion equation” for which the convolution 
with the Gaussian Kernel g:R²××××R+\{0}→→→→R is the solution for an 
infinite domain (Koenderink 1984): 
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Another scale-space is mathematical morphology (Serra 1982). 
It is based on the two basic operations erosion and dilation and 
the two combined operations opening and closing, here defined 
for grey-scale images:  
 

 
 
Because building data usually consists mostly of straight 
segments, which also have to be preserved, erosion and dilation 
are realized by shifting the complete segments inward or 
outward, respectively.  
By combining morphology and linear scale-space, the reaction-
diffusion-space is obtained. The reaction part comprises erosion 
and dilation, whereas the diffusion part, also termed curvature 
space, is for a small-scale parameter equivalent to the linear 
scale space. For a large-scale parameter it diverges in a way that 
only parts with high curvature are eliminated. 
 
 
2.2 Scale-Space Events  

When applying a scale-space to an image, certain events can 
happen. In Figure 2 a part with too small extent is eliminated 
and in Figure 3 gaps are filled by erosion and dilation, 
respectively.  

 
Figure 2. Erosion: blue – original object; green – incremental 

steps; red – object after erosion; annex is eliminated. 

 
Figure 3. Dilation: blue – original object; green – incremental 

steps; red – object after dilation; gap between two building parts 
is filled. 

 
 
There are two things happening in parallel while transforming 
the objects from fine scale to coarse scale. Firstly, the 
information is reduced by means of scale-space events. 
Secondly, the elimination of object parts such as an annex (cf. 
Fig.2) or the closing of gaps (cf. Fig.3) often results in a 
simplification or abstraction of an object. This abstraction 
capability makes the scale-spaces well suited for generalization. 

 
 
2.3 Opening and Closing in 3D - Internal as well as 

External Events 

Dilation and erosion are in 3D synonymous with moving all 
facets of the polyhedral building data in the direction of the 
normals. Instead of erosion and dilation opening and closing are 
used to reset the object to its original range of size. For small 
objects such as an annex inward moving facets collide while 
opening the object and hereby the annex is eliminated (cf. 
Fig.4). This is called an “internal event”, because it only affects 
topologically neighboring facets. By employing the scale-space 
in small steps, i.e., incrementally, events can be handled by 
simple basic operations. 
So-called "external events" emerge when topologically non-
neighboring facets of one or more buildings touch or overlap 
while opening and closing. For instance, a building consists of 
two big blocks connected by a narrow block in fine scale (cf. 
Fig.5). Two buildings are created after eliminating the narrow 
block while opening. On yet a coarser scale, the two big blocks 
are merged while closing, resulting again in one building (cf. 
Fig.6). 
 

 
Figure 4. Elimination of the annex while erosion in 3D: blue – 

original object; green – incremental steps; red – object after 
erosion. 



 

 
Figure 5. Splitting of two object parts while erosion in 3D: blue 
– original object; green – incremental steps; red – object after 

erosion 
 

 
Figure 6. Melting of two objects while dilation in 3D: blue – 
original object; green – incremental steps; red – object after 

dilation 

 
 
2.4 Discrete and Continuous Curvature Space 

While morphology provides the only means to aggregate or split 
objects, it cannot be used to eliminate step-structures and 
inward or outward pointing boxes (cf. Fig.1a) upper centre). 
This is the strong point of curvature space.  
In curvature space the facets are moved in a way that steps and 
boxes are eliminated. This is shown in two dimensions (2D) in 
Figure 7 for Z- and L-structures. Curvature space in 3D can be 
treated in a discrete or a continuous way. 
In discrete curvature space only specific facets under a certain 
size are shifted. E.g., for Z-shapes the two long segments are 
moved in opposite directions in a way that the short segment 
becomes even shorter. For more than one short segment all 
segments are shifted inward or outward at the same time (cf. 
Fig.7). In 3D the procedure is similar. Only the facets belonging 
to the step or the box which has to be eliminated are shifted 
inward or outward.  
In contrast to this, in continuous curvature space all facets are 
moved, but the speed of the movement is weighted by the area 
of the facets and by the length of the corresponding edges. The 
different properties of discrete and continuous curvature space 
are shown in Table 1 (Mayer 1998). 

 
Figure 7. Movement of the facets to eliminate U-, Z-, and L-

structures 
 

 
 
Table 1. Basic properties of Discrete and Continuous Curvature 

Space 
 
 
In order to decide in what direction facets have to be moved, the 
determination of elements like steps and outward and inward 
going boxes is necessary for both curvature spaces. The 
differentiating feature is convexity or concavity, respectively. 
For the detection of concave segments (step-structures and 
inward going boxes) different approaches exist: 
In (Mayer 1998) the relation of the normals which depend 
directly on the 2D polygons of the neighboring facets are used 
to control the movement of the facets. The concave segments 
are determined by comparing the orientation of three 
subsequent points of the ordered point-list of the 2D polygon 
with the orientation of the whole polygon. When the 
orientations are different, the points define two concave 
segments (cf. Fig.8). 
The problem of this approach in 3D lies in the decision if a 
structure goes inward or outward. Especially with nested 
structures as seen in Figure 10 this becomes an intricate 
problem.  
Therefore in this paper a new approach to determine concave 
segments which can deal with this problem is proposed. It 
investigates the interior angles between neighboring facets and 
determines, if points created by extending segments are in- or 
outside of the polyhedron. The approach is described in detail 
in section 3.4. 



 

 

 
Figure 8. Concave segments have a different orientation from 

that of the polygon. 

 
 

3 PRACTICAL INVESTIGATIONS 

 
3.1 ACIS 3D Geometric Modeller and VRML 

 
The prove of concept was done in (Mayer 1998) based on 
CGAL (Computational Geometry Algorithm Library, 
www.cgal.org) with a fixed sequence of opening, closing, and 
curvature space. This led to acceptable results, but great effort 
was needed to change the topology of the polyhedra after the 
scale-space events.  
Therefore, it was decided to use a more suitable tool, 
particularly the ACIS 3D Geometric Modeler (Spatial Corp., 
www.spatial.com) that offers a more general solution for 3D 
topology. Functions that can directly be used for the erosion 
and dilation as well as for the change of the angles between 
single facets of the object already exist. The latter function can 
be used to handle non-orthogonal structures. Short descriptions 
of the functions mainly used are given in the following sections. 
As input format VRML (Virtual Reality Modeling Language) as 
a common file format for interactive 3D models is used. It offers 
the possibility to build test objects in a fast and simple way and 
many programs provide the possibility to export their own 
formats to VRML. To construct the ACIS objects out of the 
VRML models a converter was implemented.  
Until now in ACIS only separate tests for morphology and 
discrete curvature space have been made. The investigations 
concerning the ACIS functionalities are not yet finished, but the 
main tasks are already functional.  
 
3.2 Morphology 

 
For morphology all facets need to be moved simultaneously 
inward or outward. In ACIS this is termed offsetting. The 
function api_offset_body works for all kinds of objects, but for 
the task of generalization it is only well suitable for orthogonal 
structures. Inclined structures disappear far too slow, especially 
when the inclination is low (cf. Fig.9 lower right).  
For perpendicular structures, small segments are eliminated by 
incrementally offsetting the whole object until ACIS reports a 
change in topology.  
 
 

 
Figure 9. Erosion, seen from above: inclined structures 

especially with a low inclination (cf. lower right), disappear 
slow compared to orthogonal structures. 

 
 
3.3 Curvature Space 

 
Compared to morphology for curvature space it is not only yet 
sometimes unclear how to move the facets (cf. section 2.4), but 
it is also more complex to implement it with ACIS. Using 
morphology the whole object is handled at once. All facets are 
moved the same distance in or opposite to the direction of the 
normals.  
Contrary to this, in discrete curvature space only a selected 
number of facets is shifted and in continuous curvature space all 
facets are shifted with various distances. ACIS provides the 
functions api_offset_faces and api_offset_faces_specific. The 
first one shifts a set of facets for a fixed distance and is therefore 
suited best for discrete curvature space. The latter moves each 
facet individually and can therefore be used for continuous 
curvature space.  
Until now mainly the discrete curvature space operations were 
tested in ACIS. The first task is to decide which facets have to 
be moved. For this, and in order to obtain the sign for the 
movement of a particular facet, one has to know, if a vertex is 
concave or convex.  
Yet, the determination of the convexity and concavity of 
vertices is only the basic problem. The concave and convex 
parts can construct rather complicated nested structures. The 
remainder of this section deals with the determination of the 
hierarchy of the concave and the convex structures. 
 
3.4 Concave and Convex Parts 

 
First attempts to determine the convexity of a vertex were made 
by computing the interior angles between the facets which are 
neighbors to the vertex. If all interior angles at a vertex are 90°, 
the vertex describes a perpendicular corner which is convex, if 
they are 270°, it is concave (cf. Fig.10). 
A more general solution is made by extending the coedges 
belonging to, i.e., ending at a vertex (cf. Fig.11 and 12). An 
edge according to ACIS is adjacent to two facets which results 
in two coedges with different directions, each associated with a 
loop in one of the two facets  
 
 

http://www.spatial.com/


 

 
Figure 10. Convex (yellow) and concave (red) vertices  

 
 

 
Figure 11. Coedge structure (black: directions of the coedges; 

green: extensions of the coedges) 

 
 
The coedges are only very slightly extended (linear equation) 
and the new endpoint is tested for its relation to the object itself 
by the ACIS function api_point_in_body. Possible relations are 
inside, outside, or on the boundary of the object. If all extended 
points belonging to a vertex lie inside the object, the vertex 
describes a concave corner, if they are all outside of the object, 
it is convex (cf. Fig.12). 
Unfortunately, the determination of concave and convex 
vertices is not sufficient for the decision which facets have to be 
moved outward or inward, respectively. If an object consists of 
nested structures as seen in Figure 10, additionally different 
kinds of concave structures have to be distinguished.  
The five concave vertices in Figure 10 (represented as red 
spheres) belong to different types of box structures. To 
determine if a box points inward or outward, the facets which 
are neighbors of the obtained concave vertices are investigated. 
If all related facets do not contain any other concave vertex, this 
is a fully concave, inward pointing box without any other object 
part contained (cf. Fig.13, red facets). Else, it is part of a nested 
structure (magenta and yellow facets).  
Next the concave structures which are higher in the hierarchy 
(magenta) have to be distinguished from the convex structures 
they include (yellow). The number of concave vertices for each 
of the facets is known. If a facet contains only one concave 
vertex, it is convex (yellow). If there are two of them, the facet 
is concave (magenta).  

 
Figure 12. Coedge-extension to distinguish convex and concave 
vertices: If all ends of the extended edges at a vertex lie outside, 

it is a convex vertex (left), if they lie inside, it is a concave 
vertex (right) 

 
 

 
 

Figure 13. Determination of different types of outward or 
inward going boxes 

 
 
After the determination of the three types of facets, the sign of 
the movement is clear. While the concave facets (red and 
magenta) have to be moved outward, the convex facets (yellow) 
have to be moved inward. In Figure 12, e.g., we have eliminated 
the smallest of the inward pointing boxes in the centre of Figure 
13.  
What is left to determine is the distance for the movement. At 
the moment it is, e.g., investigated if an incremental offsetting 
of the specific facets is suited best, or if the offset distance has 
to be fixed by the length of the shortest edge contained in a set 
of facets. The latter is due to the fact that the ACIS functions 
only produce a cleaned topology if facets are coplanar. 
 
 

4 CONCLUSIONS AND OUTLOOK 

 
An approach for the generalization of orthogonal building 
structures using the scale spaces “morphology” and “discrete 



 

curvature space” was introduced. The test implementation was 
done in ACIS and shows good results for morphology where 
annexes can be removed or objects can be split or aggregated.  
For the implementation of the discrete curvature space 
operations which can handle step-structures and outward and 
inward going boxes important preparatory work has been done. 
It can be automatically determined which facets have to be 
moved and in which direction of the normal. The way of 
movement, i.e., incrementally or fixed distances, still has to be 
investigated. Another step is to realize the continuous curvature 
space, where the movement of a facet depends on, e.g., the area 
of the facet and the length of the corresponding edges. A 
suitable function for the specific offset in ACIS already exists. 
Though, the theory is not yet totally consistent  
For practical generalization morphology and curvature space 
need to be combined. One way is to determine a fixed sequence 
of both operations, which suits best for most of the common 
building structures. Another way which is investigated would be 
to combine both scale-spaces conceptually. 
As the work at the moment is restricted to orthogonal models, 
additionally rectification is necessary. Contrary to the test 
models, real data in many instances will not be orthogonal. In 
ACIS exists the function api_edge_taper_faces for changing the 
angles between the facets. An algorithm for automatically 
detecting and correcting slightly distorted angles has to be 
developed. The code to derive the interior angles between facets 
mentioned in section 3.4 could be used as starting point. 
Though, intricate practical but also theoretical problems have to 
be solved. In 3D it is not sufficient to only change the angle 
between two facets because all other angles are affected by the 
change and are also changed even if they should be preserved. 
The result could be a much more skewed model which must be 
avoided. In the future also the main directions of the building 
may have to be taken into account.  
Finally, the scale-space operations are to be tested on real data 
instead of the simulated test objects.  
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