
MAPMANAGER: THE DESIGN OF A COM-BASED GIS COMPONENTWARE

Xiaojun Tan a, Fuling Bian

Wuhan University, School of Remote Sensing and Information Engineering, Wuhan, 430079,China

a txj72@263.net

Commission IV, WG IV/1

KEY WORDS: GIS, COM/DCOM, Spatial Database, Spatial ADT, Structured Storage, Spatial Access Method, Spatial Query,

Visualization

ABSTRACT:

GIS software development is now moving in the direction of components. The design of a two-dimensional GIS componentware –
MapManager, which is based on the COM/DCOM technology, is introduced here. In the process of GIS software design, we should
mainly consider the following aspects: spatial database design, visualization, data interface, spatial query and analysis, editing and
mapping. At last, we discuss the shortcomings of MapManager and identify the need for future research in the integration with
DBMS.

1. INTRODUCTION

GIS software and its applications have made great progress
since 1960s. Its development could be technically divided into
three stages (Fang, et al., 2001b). Because of the complexity of
spatial data and the relationships among spatial entities, there
were great limitations in the design of early GIS software that
was developed in a relatively closed environment. This is the
main reason why GIS software was kept far away from the
mainstream of information technology (Fang, et al., 2001a).
With the maturity of Object-Oriented methodology, a lot of
Object-Oriented software development tools, especially
component-based development (CBD) tools, are available now.
It has already been a tendency of the software technology. This
also deeply influences the development of GIS software. The
third generation GIS software development is now moving in
the direction of components. An important milestone indicates
the componentization trend is the OpenGIS project proposed by
OGC (Open GIS Consortium), which was founded in 1994.
OpenGIS is defined as transparent access to heterogeneous
geodata and geoprocessing resources in a networked
environment. The goal of the OpenGIS Project is to provide a
comprehensive suite of open interface specifications that enable
developers to write interoperating components that provide
these capabilities (OGC, 1996). The componentization of the
major GIS software began in the middle of 1990s, and was
almost finished by the end of twenty centuries (Fang, et al.,
2001b). Compared with the traditional GIS software, GIS
componentware has the following advantages: efficient and
seamless system integration, specific programming language
unnecessary, popular, and cheap (Song and Zhong, 1998). This
paper introduces the design of MapManager – a small two-
dimensional GIS componentware.

2. DESIGNING MAPMANAGER

There are two important standards for CBD: Microsoft COM
(Component Object Model) /DCOM (Distributed Component
Object Model), and OMG (Object Management Group)
CORBA (Common Object Request Broker Architecture).

COM/DCOM takes a lead position in the market and becomes
the industrial standard gradually. The ActiveX controls, which
are based on the COM/DCOM technology, are the components
used most widely in visual programming nowadays.
MapManager, a GIS ActiveX control with 41 OLE automation
objects and 627 interfaces (including properties, methods and
events), is based on COM/DOCM. The design of these objects
and interfaces is very important to the functionality of the
software. Besides conforming to componentware specifications
and providing standard external interfaces, the design of GIS
componentware needs the same consideration as traditional GIS
software such as: the design of spatial database; visualization of
spatial information; data interface with external system; and the
design of system functionalities (including editing, querying,
spatial analysis, and mapping).

2.1 Designing Spatial Database

Spatial database is the core of GIS software. The design of a
spatial database takes into account the following four aspects:
the representation of spatial data types, internal-memory model
of spatial database, external-memory model as well as spatial
access method.

Early GIS software used the file system to store the geometric
data structures. There has been suggestion and request for the
use of database management systems since the early 1980s. It is
now being enabled by industry's support of specialized spatial
versions of database systems (e.g., Spatial Data Blades and the
Spatial Data Option) or middleware (e.g., the Spatial Data
Engine). To store the geometric data structures, most
commercial relational databases provide long fields (also called
binary large objects or memo fields) that serve as simple
containers. One of the columns in the relation is declared to
have variable length. The geometric representation is then
stored in such a long field in a way that only the application
programs can interpret it, while the database system itself
usually cannot decode the representation. It is, therefore,
impossible to formulate or process SQL queries against that
column. To implement geographic concepts in a high-level,
compact, and reusable way, the use of spatial data types has

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

become the standard method. Although early attempts were
made to rely exclusively on those data types offered by standard
programming languages and database systems, it has become
common practice to identify spatial data types and to link them
with their related operations. Object-oriented methods, with
encapsulation and hiding of implementations, have favored this
approach. Abstract data types (ADTs) based on object-oriented
methods provide a robust way to implement complex data types.
The basic idea is to encapsulate the implementation of a data
type in such a way that one can communicate with instances of
the data type only through a set of well-defined operators. The
internal implementation of the data type and its operators are
hidden to any external users. They have no way to review or
modify those interior features. Object-oriented concepts can
easily be adapted to the implementation of spatial ADTs and
operators (Egenhofer, et al., 1999). The OGC Technical
Committee has released an implementation specification named
“OpenGIS Simple Features Specification for OLE/COM
Revision 1.1”, which has a detailed definition on the geometric
class hierarchy (see Figure. 1). The definitions of spatial ADTs
in MapManager are based on a subset of those geometric
classes, which covers all except GeometryCollection and all its
subclasses.

MultiPoint

Surface Curve Point

LinearRing

LineString

Line

GeometryCollection

SpatialReferenceSystem Geometry

MultiCurve

MultiLineString

MultiSurface

MultiPolygon

Polygon

1+

1+
1+

1+ 2+

Figure 1. Geometry Class Hierarchy (from OGC 1999a)

The internal-memory model of spatial database refers to how
three kinds of information – spatial metrical information, spatial
topological information as well as non-spatial information – are
arranged in the physical primary memory. All the features in the
primary memory are stored in a global object named “Database”.
There are four spatial data sets, named node data set, arc data
set, line data set and polygon data set respectively, and one geo-
feature data set in the “Database” object. The spatial
information – both metrical and topological – is stored in the
four spatial data sets. The node data set stores the node’s ID,
coordinates, and IDs for all arcs containing this node in anti-
clockwise order. The arc data set stores the arc’s ID,
coordinates list for all points on this arc, and IDs for all lines
and polygons containing this arc in anti-clockwise order. The
line data set stores the line’s ID, IDs for all arcs contained in
this line, and IDs for all geo-features containing this line. The
polygon data set stores the polygon’s ID, IDs for all arcs on the
boundaries of this polygon, and IDs for all geo-features
containing this polygon.

In the geo-feature data set, semantic information is defined for
all geo-features (e.g. road, river, building etc.). There are four
kinds of geo-features in MapManager: point feature, line feature,

polygon feature and annotation feature. The coordinates of
point feature and annotation feature are stored in the geo-feature
data set, while those of line feature and surface feature are
stored in the above four spatial data sets.

The external-memory model of spatial database refers to how
the data is stored persistently in the secondary memory. As
stated above, it is a trend to introduce commercial database
management system into spatial data management. However, it
may be better to use file system for small GIS software like
MapManager. Fortunately, the structured storage technology
provided by COM/DCOM is a good solution for persistent
storage for MapManager. Structured storage is sometimes called
“a file system within a file” because it can treat a single file as if
it is capable of storing directories and files. A file created using
the structured storage service contains one or more storage,
roughly equivalent to directories, and each storage can contain
zero or more stream, roughly equivalent to files. A storage can
also contain any number of substorages (Eddon and Eddon,
2000). The structured storage of MapManager is shown in
Figure 2.

……

Root

Database
Header

Nodes

Curves

Lines

Polygons

Geo-Features

Thematic
Maps

Geometry

Index

Info xxx

Map xxx

Header

Map xxx

Info xxx

……

Storage

Stream

Legend

Figure 2. Structured Storage of MapManager

In order to deal with massive data in large application, a
feasible spatial access method (SAM), which manages the data
exchange between internal and external memory, is needed. The
foundation of SAM is spatial index technology. So far there are
a lot of spatial index structures such as quadtree, K-D-tree, K-
D-B-tree, R-tree, R+-tree, etc. (Samet, 1990; Samet, Aref, 1994;
Worboys, 1995; Garcia-Molina, et al., 2000). A common

approach to search spatial objects consists of a two-step process:
(1) choosing an approximation (e.g., a simpler shape, such as
Minimum Bounding Rectangle) that can be indexed and serves
as a fast filter and (2) using the original geometry to assert the
retrieval condition only for the initially retrieved objects to
eliminate false hits. An index may only administer the MBR of
each object, together with a pointer to the description of the
object’s database entry (the object ID). With this design, the
index only produces a set of candidate solutions. This step is
therefore termed the filter step. For each element of that
candidate set we have to decide whether the MBR is sufficient
to decide that the actual object must indeed satisfy the search
predicate. In those cases, the object can be added directly to the
query result. However, there are often cases where the MBR
does not prove to be sufficient. In a refinement step we then
have to retrieve the exact shape information from secondary
memory and test it against the predicate. If the predicate
evaluates to true, the object is added to the query result as well,
otherwise we have a false drop (Egenhofer 1999). The spatial
index structure of MapManager is square grid, which can
manage hundreds of megabyte data stably and efficiently in
practice with the help of spatial object’s MBR. However, its
performance is degraded quickly when the size of database
grows.

2.2 Visualization

The visualization of spatial information includes the following
four aspects: map projection and coordinate system,
management of thematic maps and layers, symbolization, and
visualization of statistical data. Like the other GIS software,
MapManager supports all kinds of common map projections
and coordinate systems. The visualization of statistical data
could be carried out with the help of other commercial
componentware. Here we mainly discuss the management of
thematic maps and layers as well as symbolization.

In MapManager, data in spatial database is represented by the
means of thematic maps and map layers. There are several
thematic maps in a spatial database, and the arrangement of
these thematic maps is similar to an atlas. Each thematic map
contains several map layers, each of which has a property
named “Symbol” and is linked to a kind of geo-feature in the
geo-feature data set. When a map is displayed, all the features
contained in the map layer are drawn with the proper symbol.
All the map layers in a thematic map are organized as a tree-like
hierarchy. There are no limitation on the height of the tree and
the number of the sub-nodes.

There are four kinds of symbols, point symbol, line symbol,
polygon symbol, and annotation symbol, according to four
kinds of geo-features. A special program, Symbol Designer, has
been written to help designing symbols (see Figure. 3). When a
geo-feature is symbolized, the coordinate lists of that feature are
passed to the symbol and the symbol itself will finish the
drawing procedure. We put forward the concept of “exceptional
symbol” to deal with the situation that features of the same type
require different symbols. Each feature with an
“ExceptionalSymbol” property will be treated differently by the
drawing program. The “exceptional symbol” could avoid the
conflict between the commonness and individuality of symbols.
However, the drawing performance will be degraded if there are
too much exceptional symbols.

Figure 3. Symbol Designer Program

2.3 Data Interface

In terms of data input, MapManager doesn’t offer the
functionality for digitizing as well as image scanning. However,
it provides consistent data interface to import spatial data from
outside. This process is reversible – users can also export data
to the other system. Currently, MapManager provides four
vector data interfaces: Autodesk DXF file, ESRI E00 File, ESRI
shape file, and Mapinfo Interchange File.

2.4 System Functions

Here we will mainly discuss three aspects of system functions:
spatial query, editing and mapping.

For many years, the database market has been dominated by the
Structured Query Language (SQL). There has been a long
discussion in the literature as to whether SQL is suitable for
querying spatial databases. It was recognized early on that
relational algebra and SQL alone are not able to provide this
kind of support. In some sense, however, with the success of
SQL the discussion about its appropriateness has become a
moot point. The question is not whether SQL should be used
— SQL is and in the foreseeable future will be used to query
spatial databases as well. The question is rather which kind of
extensions are desirable to optimize user friendliness and
performance of the resulting spatial data management system
(Egenhofer, et al., 1999). Various extensions to SQL have been
proposed to deal with spatial data (Egenhofer, 1992). The ANSI
Committee on SQL3 are developing an integrated version of
such spatial extensions called SQL/Multimedia (SQL/MM),
which is a suite of standards that specify type libraries using
SQL’s object-oriented facilities. A “quasi-SQL” language,
which is an extension to SQL, is used in MapManager to
implement the spatial query function. It is based on the
definition of spatial relationship predicates. In OGC’s
implementation specification, there are five named predicates
based on the dimensionally extended nine-intersection model
(DE-9IM): Disjoint, Touches, Crosses, Within and Overlaps.
For user convenience, eight spatial relationships between spatial
objects are given as following (OGC, 1999b):

• Equals

• Disjoint
• Intersects
• Touches
• Crosses
• Within
• Contains
• Overlaps

By extending SQL to incorporate these spatial relationships
with quasi-SQL language, it is possible to do spatial query
efficiently in MapManager.

The usability of GIS software owes a lot to the data edit
function. In MapManager, the edit functions are decomposed
into a lot of meta-operations, and are realized by the objects’
properties, methods, or events. Users can combine these meta-
operations to achieve different effects. We pay lots of attention
to the automatic maintenance of topological relationship when
designing the editing subsystem. And the object-snapping
function works very well.

MapManager has powerful mapping capability. There are a
whole set of layout element objects that satisfy a lot of
applications. The layout could be output to either hard copy
devices or standard output formats such as Encapsulated
PostScript file.

3. CONCLUSIONS

Some professional applications have been developed on
MapManager version 1.0, which is proven to be an applicable
GIS component. However, there are many shortcomings in the
software, and some are listed as following:

• No supporting for complex collection spatial objects
• No concurrency control, because without the help of

DBMS
• SAM not efficient enough
• Drawing performance degraded by the hierarchy of

symbol object

There are lots of works to do to overcome all these
shortcomings. First of all, what we want to research next is to
provide accessibility to spatial data in large commercial DBMS.

REFERENCES

Eddon, G., Eddon, H., 2000. Inside COM+ Base Services.
Microsoft Press, Redmond, Washington.

Egenhofer, M. J., 1992. Why not SQL! Int. J. Geographical
Information Systems, 6(2), pp. 71-86.

Egenhofer, M. J., Glasgow, J., Günther, O., Herring, J. R.,
Peuquet, D. J., 1999. Progress in computational methods for
representing geographical concepts. Int. J. Geographical
Information Science, 13(8), pp. 775-796.

Fang, Y., Tian, G. L., Shi, Z. Z., Zhou, C. H., 2001a. Modert
Itand 4th GIS software. Journal of Image and Graphics, 6A(9),
pp. 824-829.

Fang, Y., Zhou, C. H., Jing, G. F., Lu, F., Luo, J. C., 2001b.
Reasearch of 4th Generation GIS software. Journal of Image
and Graphics, 6A(9), pp. 817-823.

Garcia-Molina, H., Ullman, J. D., Widom, J., 2000. Database
System Implementation, Prentice Hall, Inc.

OGC, 1996. The OpenGIS™ Guide.
http://www.opengis.org/techn/guide/guide1.htm

OGC, 1999a. OpenGIS® Simple Features Specification for
OLE/COM. http://www.opengis.org/techno/specs/99-050.pdf.

OGC, 1999b. OpenGIS® Simple Features Specification for SQL.
http://www.opengis.org/techno/specs/99-049.pdf.

OGC, 1999c. The OpenGISTM Abstract Specification – 99-AS-
RFP009. http://www.opengis.org/techno/abstract/99-AS-
RFP009.pdf.zip.

Samet, H., 1990. The Design and Analysis of Spatial Data
Structures, Addison-Wesley.

Samet, H., Aref, W. G., 1994. Spatial data model and query
processing. Modern Database Systems: The Object Model,
Interoperability, and Beyond. Addison Wesley/ACM Press,
Reading, MA, pp.338-360.

Song, G. F., Zhong, E. S., 1998. Research and Development of
Components Geographic Information Systems. Journal of Image
and Graphics, 3(4).

Worboys, M.F., 1995. GIS: A Computing Perspective, Taylor &
Francis Ltd, London

http://www.opengis.org/techn/guide/guide1.htm
http://www.opengis.org/techno/specs/99-050.pdf.
http://www.opengis.org/techno/specs/99-049.pdf.
http://www.opengis.org/techno/abstract/99-AS-RFP009.pdf.zip
http://www.opengis.org/techno/abstract/99-AS-RFP009.pdf.zip

	INTRODUCTION
	DESIGNING MAPMANAGER
	Designing Spatial Database
	Visualization
	Data Interface
	System Functions

	CONCLUSIONS

