
INCREMENTAL DATA EVOLUTION -
 COMPLEMENTARY APPROACH TO SCHEMA EVOLUTION OF ORGANISATION’S

LARGE OPERATIONAL GIS DATABASES

L. Salo-Merta

Institute of Business Information Management, Tampere University of Technology, P.O.Box 541, FIN-33101 Tampere,
Finland – leena.salo-merta@tut.fi

Commission IV, WG IV/4

KEY WORDS: Application, Database, Design, Development, GIS, Management, Software, Spatial

ABSTRACT:

The paper addresses database development and schema evolution from the geographic information provider organisation’s and
system integrator’s point of view. The applicability of incremental approach to database schema evolution is considered, and
incremental data evolution (IDE) is introduced and proposed as a complementary method for schema evolution and data
restructuring of large geospatial datasets in operational use. The hypothesis is that IDE combined with full data conversion strategy
would provide a flexible approach in the schema evolution of large operational databases. The applicability of the IDE approach is
considered with a real-world case.

1. INTRODUCTION

1.1 Development pressures in GI provider’s evolving digital
environment

According to European Union, geographic information (GI) is
by far the largest type of public sector information in Europe,
comprising 38,5 per cent of all public sector information
(European Union, 2001). The computer penetration into the
field of GI follows a general pattern: First it is adopted in the GI
provider organisation for speeding up the production process.
At this stage there are no significant changes in the end
products. In the second phase the potential of computerized
environment is exploited more widely and the market for GI in
digital form starts to develop. In the third phase completely new
products and activities arise from the digital culture.

The pioneer organisations that started to digitise GI early, have
faced all the stages one-by-one. However, the stages are
concurrent and ongoing, and are shown as layers of activities in
Fig. 1. In the time being the ‘geo–e-business’ will be absorbed
into the ‘normal’ service production layer, but at the moment it
is feasible to examine it as a layer of its own. The project
portfolios of organisations tend to grow into new topics, and the
most appealing questions from the manager’s or technologically
oriented researcher’s point-of-view may lie in the expansion of
technology and new applications, rather than re-engineering the
existing parts.

However, databases (DB) and data management are the true
cornerstones of the whole and they take effect on each activity
layer, directly or at least indirectly. Commercial solutions for
geographic data management (GDM) have developed rapidly
during the past few years, showing the evolution of architecture
from rather closed monolithic systems towards client-server
architectures with open, standardized interfaces. GI provider
organisations have made great investments to establish their

existing large datasets in digital form. Their concern for their
asset is three-fold: Firstly, how to maximize the exploitation of
the digital content. This is the driving factor for expanding into
new dissemination technologies, like the WWW and mobile,
and new types of products and services. These actions are very
apparent and promoted. Secondly, the methods and techniques
in the data production layer need improving for more economic
and efficient data updating. To address these questions,
incremental updating of databases has recently become an issue
of research and development. Last but not least, user
organisations are concerned as to how to keep up with the
evolving data management technology and ensure the
sustainable platforms for their information asset. Because GI
datasets are typically data-intense both in size and complex
structure, the solutions and new arrangements in data
management have significant impacts on all actions. For user
organisations of GIS, database re-design and schema evolution
are challenging tasks in the development of their next-
generation systems. They are more ‘back-end’ –processes,
partly invisible and less promoted, but nevertheless significant
and anything but trivial.

1.2 Databases in next-generation system projects

Next-generation GIS projects are current in many organisations.
By next-generation projects we mean substantial development
projects in an environment that already comprises a previous-
generation GIS and digital datasets. Next-generation GIS
projects usually include a database project, where data is
translated from the existing data storage into a new database
management system (DBMS). DBMS is typically a
Commercial-Off-The-Shelf (COTS) component in an integrated
system. A DBMS with spatial capabilities has been strongly
associated to certain vendor specific client solutions and
product families, but the situation is changing rapidly. Currently
one has alternative clients, components and development tools
to choose from. It is also possible to implement the ‘business

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

intelligence’, or should we say here: the ‘geospatial
intelligence’ in different layers of the software architecture: the
database server, the middleware or the client.

Figure 1. Activity layers of a GI provider organisation

In a next-generation GIS project, the user organisation needs a
practical solution for database management, and it needs it now.
Although the latest technology always seems to be three months
ahead, one just has to try to make the best out of what is
available here and now (Kucera et al., 1999). According to our
experience a practical solution can be defined with three
keywords: Economy, Maintainability and Technical
requirements. Economy stands for both investment cost and
operational costs. Maintainability stands for the wish to choose
a provider and platform with a good probability to survive and
be competitive and technologically advanced in the future.
Technical requirements include general and specific database
capabilities, and issues concerning architecture, interfaces,
scalability, extendibility and programming facilities. All of
these need to be examined in the context of the user
organisation, to determine the ‘customer need’. As the DBMS is
a central component of the system, major development actions
invoke needs to develop the other subsystems as well. In the
most dramatic case it means the replacement of existing clients
with new ones.

1.3 Content of this study

The focus of this paper is on primary schema evolution, as it is
seen from the system integrator’s point of view. By primary
schema evolution we mean structural changes to user’s data
tables. The fundamental questions are: Is primary schema
evolution possible with existing large geospatial datasets?
Could it be carried out without significant disturbance for
production? Can we allow pluralism in schema definitions and
storage structures as a permanent, or at least long-lasting state,
and how do we support pluralism?

First we introduce taxonomy of DB development activities and
consider the factors that influence these activities in
organisations. Then we consider the applicability of incremental
approach to DB schema evolution. A method called incremental
data evolution (IDE) is introduced. The hypothesis is that IDE
combined with full data conversion strategy would be a flexible
approach in the schema evolution of large production databases.

The IDE approach is considered in a case study, where the
possibilities of interrupting the production use of the DB for
data conversions or any other reason are limited. The principle
of the needed DB interface is introduced.

In conclusions the advantages and disadvantages of IDE
approach are considered. Finally the question is raised whether
we actually need primary schema evolution and for what
reason? And if we don’t, for how long are we able to survive?

2. TAXONOMY OF DATABASE DEVELOPMENT

ACTIVITIES

Based on experience, we find it feasible to study the
development of a system’s DBMS environment as three basic
types of activities: Database product change, Version migration
and Schema evolution (Fig. 2).

DB Development

DB Product change

Version migration

Schema evolution

Behavioral

Administrative

Primary

Schema change Data migration
*

1
*

1

Figure 2. Taxonomy of database development activities

The database product change projects include:

• Design and implementation of the new DB schema
• Preparation of data translation
• Data translation
• Data validation
• Further data re-structuring (if included at this stage)

It is noteworthy that because of the history of proprietary
DBMS solutions for geospatial data, considerable effort may be
required for other software activities in database product change

DATA PRODUCTION LAYER
Production DBs & applications

GEO - E-BUSINESS LAYER
On-line WWW & mobile services

SERVICE PRODUCTION LAYER
Service DBs & applications

Data products (digital & traditional)

Requirements

Foundation

projects. It may be necessary to change the client applications as
well or to re-write the interfaces to the existing ones. For this
reason the activities concerning the database itself are probably
only a part of a large software project, and the pressure to
minimize the size of the project by altering the data as little as
possible at this stage may be substantial.

Version migration means upgrading the system to a higher
version of the same DBMS product. The changes are product
driven: It may include internal changes in data storage,
indexing, partitioning etc. On the logical level there may be
changes in system tables, e.g., metadata table structures. With
new DBMS functionality and capabilities version migration
may inspire the customer to further development, but as is, it
includes no customer-driven changes in the logical structure of
the database. DBMS vendors usually provide migration tools
with their products to facilitate the shift into the latest
technology and guarantee the evolution in this sense.

Schema evolution means altering the structure of the database,
here especially the customer-driven changes. Basically it means
changes in table definitions, but as other types of objects (e.g.,
views, triggers, DB functions and procedures) are stored in the
DB as well, it needs to be concerned in a wider sense. However,
the consequences of committing a behavioural change (e.g.,
inserting a new function into a package of DB functions) are
quite different from the attempts to commit structural changes
in stored data. Purely administrative tasks dealing with physical
storage and performance (e.g. table space definitions and
indexes) can be considered as another group of tasks. Therefore
three subtypes of schema evolution activities are identified:
Administrative changes, Behavioural changes and Primary
changes. Primary changes concern structural changes to user’s
data tables. If the data tables are populated, primary changes
mean two things: Schema change and Data migration. We use
primary database evolution in a broad sense to cover all actions
that are needed to change the schema and propagate the changes
to the data, regardless of the existence and capabilities of
DBMS’s schema evolution facilities. If the DBMS’s schema
evolution facilities do not support the actions needed, they have
to be carried out by other means, e.g. by creating new or
temporary tables and implementing ad-hoc migration modules.

3. FACTORS OF DATABASE DEVELOPMENT

ACTIVITIES

The factors that influence database development activities are
discussed below. They are: Data conversion cost, Evolution
strategy, Developing DBs in operational use and Pluralism in
DBs.

3.1 Data conversion cost

Converting the existing data into the new system as quickly and
painlessly as possible may be a key question in an
organisation’s DBMS implementation project. Therefore,
commitment to the old design may become a critical factor in
the design of the application data model. (Salo-Merta et al.,
2001). For a very large database with objects with complex
structure, which geographic objects appear to be, each extra
step included in the conversion process may have a dramatic
effect in the throughput time, if it causes a need for operator
intervention. Data quality may become the bottleneck in the
conversion process, if the target system’s validation rules are
tighter than the source system’s. Relatively small numbers of

exceptions that need to be handled manually may turn into vast
number of working hours, if we consider millions of objects.
3.2 Step-by-step evolution

All the user requirements can seldom be satisfied at once, and
they keep on changing. Yet the data acquisition for digital geo-
spatial datasets is expensive and time consuming, there is a
strong motivation to preserve the existing data and pass it on to
the next system generation. We claim that the lifetime of a
dataset can exceed the lifetime of the DBMS that is used to
maintain it (Salo-Merta et al., 2001). Therefore the development
of the data system’s database environment gets a step-by-step
evolutionary nature.

In a step-by-step evolution strategy one proceeds with a series
of development steps to achieve the desired state. For example,
in the Next-Generation System Project of the Topographic Data
System, The National Land Survey of Finland used this
approach to restructure the data. The primary data loading into
the new database included basic validation of attributes and
topological conditions, and polygon reconstruction. Further
data restructuring was carried out as a later stage. In this case it
contained the merging of objects that had previously been
fragmented by map sheet’s edges. (Salo-Merta et al., 2001).

3.3 Developing databases in operational use

Perhaps the migration to a new DBMS is made with minimum
changes to the structure of the data, with the intention to evolve
the schema later in the future. However, the same principal
problem, - how and when to propagate the structural changes to
the data, - arises again if we need database schema evolution.
For very-large production databases this may be a real life
constraint in the system development and design, because the
operational use of the database should not stop during a lengthy
conversion phase. It may not be possible to stop the production
for a full conversion. Instead, other alternatives have to be
considered.

3.4 Pluralism in databases

Kucera (1999) discussed pluralism in geospatial databases and
suggested the acceptance of data heterogeneity in contrast to a
monolithic database, which reconciles any pluralism as part of
the update process. In a pluralistic system a geographic feature
may have several different representations stored ‘as-is’, as they
existed in provided datasets, without attempts to integrate
schemas, generalise, resolve spatial discontinuity, or otherwise
encourage consistency in representation. Pluralistic data
management and representation require specific techniques: e.g.
versioning, metacontent description, feature linking with same-
as links, on-line schema mapping etc.

4. INCREMENTAL DATA EVOLUTION APPROACH

4.1 Origin of incremental approach

The incremental approach originates from the software industry,
where it has been applied for incremental development and
compiling of software modules. In the context of GIS, it has
previously been proposed for generalisation (Kilpeläinen &
Sarjakoski, 1995).

Incremental updating of databases has recently become an issue
of research and development. The International Cartographic

Association established a working group on Incremental
Updating and Versioning in 1999. The working group’s main
interest relies on the management of updates between the base
dataset supplier and the value-added dataset provider. Research
issues include: bi-directional, multi-level, historical and
temporal updating, planning for future changes, database
maintenance, feature identifiers, modularity (dimension,
context, layer, theme and size), inconsistent updating and
simultaneous updating by field teams (Cooper & Peled, 2001).
The implementation of new features to support incremental
updating and versioning are likely to put pressure on product
change or schema evolution on existing systems as well.

4.2 Production discontinuity problem

Traditionally database schema evolution is carried out by full
data conversion strategy using the following sequence:

• Stop production
• Change the schema / Create a new schema
• Migrate all data to the new structure defined in the

changed schema
• Continue production with the new schema

Here we assume that schema evolution includes such structural
changes to the data, that a specific software module is required
for migration (Fig. 3). This migration module may be a SQL-
script, a database program, an application program or a
translation process with external transfer files. We do not
consider the implementation technology here. The
characteristic of the migration process is the discontinuity that
it causes to normal production. Normal production is carried
out with software A using DB interface a. Data that conforms
the new schema, has to be accessed with an updated interface
a’. Therefore two versions of the DB interface are needed.

Figure 3. Migration module propagates schema changes to
data. Migration causes discontinuity in production,
because application program’s DB interface needs
updating to conform the new schema.

This approach can be described as one very-long transaction.
From the production applications’ point of view, the database
is in inconsistent state during the migration. Since the
migration starts, the whole database is not accessible for client
A 1 anymore, but on the other hand, only the migrated objects
are accessible to client A 2.

If the basic problem is the duration of data change and we
assume that it cannot be solved reasonably, we should consider
ways of managing the production and the migration
simultaneously. Could it be possible to use versions 1 and 2 of
client A and run the migration process in combination? In
theory this could be possible in certain conditions. We need to
be able to partition the data. That means recognizing and
isolating meaningful and appropriate subsets of data for
processing. In some data systems feasible partitioning criteria
can be found, e.g. in working area based map production, but
that is not always the case.

4.3 Principle of incremental data evolution

It may be a characteristic to a data system that the updates are
made object-based and on-request. The requests scatter all
around the dataset and no partitioning criteria for isolation can
be found. In that case we suggest the acceptance of pluralism in
schema definitions of object classes and consider means to
manage it. We introduce an approach called incremental data
evolution (IDE) with the following definition: Incremental
data evolution is an approach where only those objects that are
touched as part of the normal production process are migrated
to the new structure defined in the changed schema.

We accept the fact that a feature may have alternative schema
definitions as a permanent or at least long lasting state of the
DB. To manage this kind of pluralism, we suggest certain
changes in the DB’s read/write –interface and embedding the
migration module in the updating client (Fig. 4).

 Figure 4. Migration module embedded in the production

software module.

We call this approach incremental object evolution, because the
schema evolution is propagated to the data incrementally, as the
objects are touched in the normal production. It is not forced to
the whole dataset, but only to those objects that are most actual.

4.4 Implementation aspects

We try to encapsulate the read/write –interface between the DB
and applications to hide the pluralism and to encourage the data
conversion from the old structure to the new. The database
interface needs to be modified so that ‘read’ operations retrieve
objects primarily from the new structure, and secondarily, for
the objects that were not found, from the old structure (Fig. 5).
Depending on the application case, the result sets for read
operation may be separate or merged. ‘Write’ operations always
save the objects only into the new structure, freeing the old

PRODUCTION
DISCONTINUITY

Software A v.1 Software A v.2

SCHEMA CHANGE

DATA CHANGE db db’
Migration

module

s’s

Interface a Interface a’

Software A v.1

SCHEMA CHANGE

db db’

s’s

Interface a

PRODUCTION &
DATA CHANGE

Software A v.2

Migration
module

Interface a’

structure. Therefore every processed object will be converted
from the old structure into the new structure. If there are any
problems in the merging, conversion or validation, they will be
solved by the operator during the normal production work.

Read

Write

ReadNewStructure ReadOldStructure

Uses always
new
structure

Figure 5. Principle of DB read/write interface implementation

5. CASE STUDY

The suitability of the incremental object evolution approach is
considered on the Finnish Land Parcel Identification System
(FLPIS). FLPIS is a national database for controlling the
farmers’ parcel-area-based subsidies that come from the
European Commission. FLPIS is a subsystem of the Ministry of
Agriculture and Forestry’s data system for managing the
farmer’s subsidies. All activities on FLPIS have been
contracted, currently to Genimap Ltd. The contractor is
responsible for both the production work and the production
environment, including system integration.

5.1 General description

Annually 20 000 farmers’ data are updated by the contractor,
according to requests from farmers and the controlling
authorities. The production year is tightly time-scheduled with
severe economic delay sanctions.

The system comprises the farmer information, orthophotos of
the country and the parcel information including boundaries in
vector form. The main functions of the system are to digitise the
parcel boundaries, identify the parcels and calculate the parcel
areas. The system preserves history of each project year’s final
states, which can be queried, viewed and compared to previous
and later states.

The database is updated both based on the announcements from
the farmers, and the requests from the controlling authorities.
Both the farmers and the controlling authorities are served with
massive document output, including maps.

The database can be divided into two parts: the core with the
actual parcel data, and the extension for managing the
production. There are client applications for:

• Data exchange (with Ministry’s system)
• Document registration and management

• Digitising
• Validation
• Quality control (internal and external)
• Document output
• Reporting the production
• Extracting data on request

The database environment is Oracle Spatial 8.1.5. The client
applications are implemented with a variety of tools including
MapInfo Professional, MapBasic, Visual Basic, PL/SQL and
Oracle Reports.

5.2 Motivation for change

The evolution of Ministry’s data system for managing the
farmer’s subsidies follows the general pattern shown in Fig. 1.
First the data production layer was established, with limited
services: First paper documents only, then file extracts on
request.

In 2000 the Ministry started the development of an
intranet/extranet service pilot for the controlling authorities.
The service is based on a service database. In the beginning it
was a read-only –service, but new features for managing digital
update requests with graphics from the authorities are
developed and tested. The ultimate goal is to offer an up-to-date
on-line service to the farmers as well, and reduce the need for
paper documents.

The role of the production database has changed from a rather
isolated system with only a few off-line interactions a year with
the Ministry’s systems, to a core dataset that needs to be
replicated to the service database continuously. However, only
those changes that have passed the two-phased quality control,
are allowed to show. This generates new requirements to long
transaction and version management. The major schema
evolution challenges concern the modernisation and
enhancement of the spatio-temporal capabilities of the system.
More intelligence concerning the management of geographic
objects would be implemented in database instead of the client
application.

5.3 Applicability of incremental data evolution

The IDE approach is appealing to FLPIS for the following
reasons:
• The project year is tightly scheduled. The scheduled breaks

last only a couple of weeks, and causing longer breaks in
production for conversions is not possible.

• The amount of historical data in the system is high, since
the production started in 1996. The storage and
management of historical data could remain as-is.

• IDE in combination with full conversion of subsets
selected on area-basis would make an ideal processing
method for FLPIS, because of it’s flexibility.

On the implementation level, a new digitising client with
embedded migration module and read/write DB interface would
be needed. The data exchange module would need updating, but
with streight-forward changes. The changes for document
output client would be manageable.

6. CONCLUSIONS

This paper considers the applicability of incremental approach
to database schema evolution, and proposes a complementary
method for schema evolution and data re-structuring of large GI
databases. It is proposed and considered as a resolution to a
practical problem of schema evolution of a production database,
in a situation where the possibilities of interrupting the
production are limited. The options are either to arrange the
data conversion concurrently with the ongoing production, or to
forget about the schema evolution. The applicability of IDE
approach is considered in a case study, but so far there is no
implementation and therefore no proof of concept.

The advantage with incremental object evolution is that one
does not have to run down the production line for the migration
process. The schema evolution can be propagated to the data
‘on-line’ during normal production. The combination of IDE
and full-conversion of selected subsets offers a flexible
processing method.

 There are risks in the IDE approach. If we consider a schema
evolution step with data conversion as a very-long transaction,
there is no reasonable ‘rollback’, if the conversion takes place
embedded in the normal production. On the other hand, do we
ever have a real rollback option in system change projects?

The database schema becomes more complicated as pluralism is
accepted. But the pluralism does not have to be forever – the
old structures may be deleted when there is no need to access
them anymore. The pluralism within object definitions may be
hidden by using DB views and encapsulation in the read/write
interfaces, e.g. by database programming.

User requirements change in time, but so does the platform for
database management. The advances in DBMS technology
create a internal pressure for further development, as the
changing user requirements create an external pressure. One has
to migrate to new versions of DB products to keep one’s system
sustainable and watch out not to become obsolete. But do we
actually need primary schema evolution that generates from
technical advances? ‘Why fix it if it ain’t broken?’

The relational model is simple and provides a fairly low level of
abstraction with tables, rows and columns. For geospatial data,
a higher level of abstraction would be preferred, to make the
investment cost of a new application reasonable, and to
facilitate standards. Higher level data models for geometry and
topology, that have been provided by proprietary GIS’s, are
coming into mainstream general DBMSs as well. Oracle has
been developing the spatial concept step-by-step since the first
release of Spatial Data Object (SDO) in 1994, including new
features in each product version. However, the specific
geospatial features provided with Oracle 9 Spatial are still far
behind from some GIS vendor’s DBMSs, e.g., there is no
support for storing topology.

Let’s assume an organisation that has implemented it’s GIS on
Oracle’s BLOBs (Binary Large Objects) or first versions of
spatial with the idea of getting a standard mainstream solution.
However, Oracle’s geospatial solution has not been adequate
yet, and therefore plenty of proprietary features have been
implemented in the database and the application programs by
the system integrator, e.g. the management of topology and
temporal dimension. As the DBMS’s geospatial capabilities
improve in the new product versions, they remain unexploited

in the application, because the issues are handled already – with
a proprietary, non-standard and probably complicated way.
Under these circumstances, we may need to fix, although it
wasn’t actually broken, to survive and to gain the benefits of
openness and standards. The tools for not only storing, but
really managing geospatial data in the DBMS are in our hands,
but do we want to take them to use?

Research and development on incremental updating and
versioning of databases, generalisation and multiple
representation, pluralism and new concepts that deal with
spatio-temporality change our way of thinking. Technological
advances are being made and new features become available,
also in DB management. Therefore, we should raise a question:
Do we actually need primary schema evolution? And if we
don’t, how are we going to survive and for how long? It
depends on the case, but I should say that yes we do need
primary schema evolution - if we can manage it. Managing the
evolution is the challenge.

REFERENCES

Cooper, A., Peled, A., 2001. Incremental updating and
versioning. In: 20th International Cartographic Conference,
Conference Proceedings, Beijing, China, Vol. 4, pp. 2804-
2809.

European Union
http://www.cordis.lu/euroabstracts/en/june01/feature02.htm
(accessed 2 Feb. 2002)

Finnish Land Parcel Identification System FLPIS. Genimap
Ltd., Ministry of Agriculture and Forestry in Finland.
(Unpublished system documentation)

Kilpeläinen, T., Sarjakoski T., 1995. Incremental Generalization
for Multiple Representations of Geographic Objects. In: Müller,
J-C, Langrane J-P, Weibel R., (eds) GIS and generalization,
Gisdata 1, ESF, Masser, I., Salgé, F. (series eds.), Taylor &
Francis, pp. 209-218.

Kucera, G., 1999. Pluralism in spatial information systems.
Paper on the IV International Conference on
GeoComputation, USA, on 25-28 July 1999.
http://www.geovista.psu.edu/sites/geocomp99/Gc99/060/gc_06
0.htm (accessed 19 Feb. 2002)

Kucera, H., Lalonde, B., Lafond, P. 1999. GEO-
2001:Designing and Building a Spatial Information Warehouse.
19th International Cartographic Conference, Ottawa, Canada.
(unpublished workshop material)

Salo-Merta, L., Tella, A., Vanhamaa, I. 2001. Database Design
in Migration from Traditional to Object-Oriented GIS – the
Evolution Story of the Topographic Database of Finland. In:
20th International Cartographic Conference, Conference
Proceedings, Beijing, China, Vol. 2, pp. 1393-1400.

ACKNOWLEDGEMENTS

The author wishes to acknowledge Mr. Matti Vilander from the
Ministry of Agriculture and Forestry and Mr. Juha Haapamäki
from Genimap Ltd. for their support and co-operation, and Prof.
Tuija Helokunnas from Tampere University of Technology for
support and comments concerning this paper.

http://www.cordis.lu/euroabstracts/en/june01/feature02.htm
http://www.geovista.psu.edu/sites/geocomp99/Gc99/060/gc_060.htm
http://www.geovista.psu.edu/sites/geocomp99/Gc99/060/gc_060.htm

	INTRODUCTION
	Development pressures in GI provider’s evolving digital environment
	Databases in next-generation system projects
	Content of this study

	TAXONOMY OF DATABASE DEVELOPMENT ACTIVITIES
	FACTORS OF DATABASE DEVELOPMENT ACTIVITIES
	Data conversion cost
	Step-by-step evolution
	Developing databases in operational use
	Pluralism in databases

	INCREMENTAL DATA EVOLUTION APPROACH
	Origin of incremental approach
	Production discontinuity problem
	Principle of incremental data evolution
	Implementation aspects

	CASE STUDY
	General description
	Motivation for change
	Applicability of incremental data evolution

	CONCLUSIONS

