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ABSTRACT 
Relevant management decisions are directly subjected to our ability to characterize landscape pattern: the amount and 
arrangement of spatial variability.  The primary objectives of our project were (1) to develop new exploratory spatial data 
analysis (ESDA) methods to evaluate and quantify landscape spatial heterogeneity across spatial scales, and (2) to assess 
the sensitivity of widely used landscape measures. Findings of this research assist decision-making in spatial analysis by 
providing more coherent boundary detection techniques and more reliable measures of landscape spatial heterogeneity.  
Specifically, using local statistics to examine the spatial properties of spatial subsets of the landscape, subsets within global 
data sets, we developed several exploratory spatial data analysis methods to detect boundaries and to quantify spatial 
pattern.  Among them we are presenting here the local boundary cohesiveness index for evaluating boundary strength 
across scales.  By attaching significance values to boundaries, one could perform landscape level analysis using only sharp, 
or only transitional boundaries, or refine the analysis as a function of their importance as a function of scale 
(neighborhood).  This newly developed method is applied to forest data to assist sustainable forest management.  The 
combination of statistical foundation to attach significance to individual boundaries or even segments of boundaries and the 
analysis across scale of the persistency of these boundaries, increase the ability of the analysis to identify, characterize and 
compare different types of boundaries and their possible role within the landscape. 
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1. INTRODUCTION 
Finding (homogeneous) regions by identifying their boundaries is a frequent and sometimes critical element in spatial data 
processing (Mark and Csillag 1989). Most boundary detectors operate on local gradients in a heuristic fashion, and, 
therefore, are difficult to apply in multipurpose applications (Jacquez et al. 2000). It is particularly difficult to relate the 
performance of boundary delineation to local and global spatial statistical parameters, because (1) the definition of 
performance of boundary delineation varies among applications, and (2) most spatial statistical models and simulation 
efforts avoid boundaries. Numerous studies have examined the characteristics of boundary-finding techniques and their 
performance in landscape ecology, environmental resource studies, image interpretation, geographic information processing 
and statistics. The success, efficiency and consistency of boundary detection, whether human, interactive or automated, 
depends on a large number of factors (e.g., heterogeneity of the landscape, prior knowledge or hypotheses about 
boundaries, local variability). Therefore, there is a need to investigate the relationship between boundary-finding and the 
characteristics of the regions they separate. Results of such an investigation should provide guidelines to researchers and 
practitioners in data collection (e.g., what types of data are likely to be sufficient), in data analysis (e.g., what methods are 
likely to be efficient) and in the overall assessment of the accuracy and/or uncertainty in boundary detection. 
 
This paper present two approaches to investigate the detection and interpretation of boundaries as elements of landscape 
pattern. In the first one, we simulate landscapes on a grid, where patches are parameterized by their average, variance and 
spatial autocorrelation. We assess which combinations of these parameters lead to successful or partial identification of the 
patch boundaries using a local edge detector. In the second one, we evaluate the persistence of boundaries on a set of 
polygons applying local indicators of spatial association across changing neighborhoods. This analysis assigns local, 
regional or global significance to individual boundaries. In conclusion, we highlight the potential improvements in 
landscape pattern evaluation and interpretation using boundary characteristics. 
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2. METHODS 
The simulation is based on the "conditional autoregressive" (CAR) model (Cressie 1993), where the conditional probability 
distribution of a value at a location is: 
 
 P[z(si)]: ~ Gauss(ri*ave(z(Ni),ti) 
 
where ave(z(Ni) means the average of the neighbours of location si, and r (spatial autocorrelation) and t (conditional 
variance) are parameters. The simulation starts with one realization for which mutually exclusive but not necessarily 
exhaustive patches (contiguous regions) are defined. For each patch the average the spatial autocorrelation and the 
conditional variance can be prescribed. Our SPLUS implementation is a modification of the Gibbs-sampler (Cressie 1993), 
where the constraints of the simulation (the patch-related parameters) are enforced (Kabos and Csillag 2000). Assuming 
that there is one (arbitrary) boundary in a data set (i.e., there are two regions), one can examine the nature of this boundary 
by simulating landscapes for various combinations of the difference in patch averages, variances and spatial 
autocorrelation. 
 
The simulations used 50 × 50 pixels where two regions are separated by a crisp boundary with a known location. By 
changing the value of parameters and the difference between the average of each region several conditions can be defined. 
For the conditional variance the values are: 1, 2, 10; for the spatial autocorrelation (SA) the values assigned to the regions 
are: 0, 0.95, 0.9999; for the difference between the average of each region are: 0, 1, 2, 10. These three parameters lead to 72 
combinations. For example, Landscape 1 represent a landscape with no SA (ρ), with a difference (∆ reg.) of 10 between the 
average values of the regions and with a conditional variance (τ) of 1; Landscape 2 is a landscape where the SA is 0 for the 
upper region and 0.99 for the lower, where the difference between the values of two region is equal to 0 and the conditional 
variance is also at 1; Landscape 3 has no SA, the difference between the regions is 0 and the conditional variance is equal to 
10; and finally Landscape 4 is identical to Landscape 3 except that the SA is 0 for the upper region and 10 for the lower. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landscape 4: ρ = (0,0.99);  
τ = 10; ∆ reg. = 0 

Landscape 1: ρ = (0,0); τ = 1;  
∆ reg. = 10 

Landscape 3: ρ = (0,0); τ = 10; 
∆ reg. = 0 
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Landscape 2: ρ = (0,0.99);  
τ = 1; ∆ reg. = 0 
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Our boundary detection is based on lattice-wombling (Fortin 1994), which essentially computes slope according to partial 
derivatives on each 2 × 2 window. Once the local slope values are calculated NB of them will be treated as a boundary 
element (BE), where NB, is a parameter (e.g., as a given percentage of grid cells or as a given value of slope). These BEs, 
their number and arrangement can be tested via randomization against various null hypotheses (e.g., their total number, the 
number of singletons, the length of the connected subgraphs, the diameter of the connected subgraphs, see Jacquez et al. 
2000). 
 
3. RESULTS 
To evaluate the sensitivity of finding the boundary between two regions with given difference in patch averages, variance 
and spatial autocorrelation we ran twenty realizations of a series of simulations for a 50-by-50 grid that was split to two 
smooth (constant) patches by one (arbitrarily fixed at 2% and 10%) boundary. Results are illustrated in Figure 1 and 
summarized in Table 1. 
 
 
Figure 1. Number of boundary by pixel. 
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Table 1. Mean number of BEs, their standard deviation and the number of significant (p<0.01) direct overlap statistics out 
of 20 replicates. Note that the true number of BEs was 48. 

∆ regions 0 1 2 10 
ρ τ mean stdev # sig. mean Stdev # sig. mean stdev # sig. mean stdev # sig. 
 1 1.45 0.94 0 4.55 2.87 6 17.05 3.44 20 48.00 0.00 20 

0,0 2 2.05 1.15 0 1.65 1.60 1 4.65 2.21 7 47.05 0.89 20 
 10 1.65 1.42 0 1.65 1.53 0 1.30 1.08 0 3.35 1.57 0 
 1 1.95 1.73 1 3.05 1.73 2 6.10 2.05 12 45.60 1.23 20 

0,0.95 2 1.40 1.73 1 1.75 1.59 1 3.10 1.55 2 28.60 4.22 20 
 10 2.25 1.45 0 1.40 1.23 0 2.05 1.05 0 2.60 1.60 0 
 1 2.20 1.77 0 2.70 0.87 0 5.35 2.41 9 43.00 2.43 20 

0,0.99 2 1.80 1.11 0 2.25 1.68 1 2.75 2.00 1 24.10 3.91 20 
 10 2.70 1.75 2 2.40 1.60 0 1.50 1.15 0 3.25 1.62 2 
 1 1.05 1.23 0 2.20 1.36 0 2.85 2.58 3 34.50 5.10 20 

0.95,0.95 2 1.30 1.42 0 1.30 1.13 0 1.95 1.50 0 13.65 3.56 20 
 10 1.35 1.39 0 1.05 0.94 0 1.65 1.50 0 1.60 1.19 0 
 1 0.75 0.97 0 1.75 1.12 0 3.20 2.09 4 30.50 3.91 20 

0.95,0.99 2 0.85 1.04 0 1.40 1.47 0 1.45 1.28 0 11.70 3.06 20 
 10 1.40 0.82 0 1.55 1.10 0 1.40 0.94 0 1.65 1.31 0 
 1 1.40 1.00 0 2.45 1.88 1 1.75 1.71 1 27.95 3.36 20 

0.99,0.99 2 1.55 1.23 0 1.45 1.36 0 1.45 1.05 0 11.35 3.87 19 
 10 1.75 1.16 0 1.05 0.83 0 1.45 1.28 0 2.90 1.62 2 

 
Not surprisingly, the local lattice-wombling is very sensitive to the "sharpness" of the boundary (i.e., the difference between 
the patch averages). Within the general trend - the "sharper" the boundary, the more successful boundary detection is - the 
impact of within-patch spatial autocorrelation is clearly identifiable. At very low "sharpness" great difference between the 
spatial autocorrelations of the patches slightly increases the chance of finding the boundary. At higher "sharpness" the 
success of finding the boundary is greatest if there is no spatial autocorrelation, somewhat less if there is a large difference 
between the spatial autocorrelations and lowest when there are patches with high spatial autocorrelations on both sides of 
the boundary.  
 
4. CONCLUCION 
The need to utilize spatial pattern in spatial data management and interpretation has stimulated the development of 
numerous conceptual and practical approaches to a diverse set of problems related to the measurement and assessment of 
pattern. There are wide gaps in the data processing flow between the detection and identification of boundaries (e.g., using 
expert interpreters or image analysis software) and the intepretation of these boundaries either individually or as part of the 
entire landscape pattern (e.g., using a GIS). For example, when evaluating landscape fragmentation, presently all 
boundaries are considered equal. By attaching significance values to boundaries, one could perform landscape level 
analysis using only sharp, or only transitional boundaries, or refine the analysis as a function of their importance as a 
function of scale (neighborhood). Our approach provides the statistical foundation and the practical tools to attach 
significance to individual boundaries or even segments of boundaries, which will increase the ability of the analysis to 
identify, characterize and compare different types of boundaries and their possible role within the landscape. 
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