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ABSTRACT: 
 
Modern geostatistical mapping methods are being applied to various types of data to produce more realistic and flexible 
characterizations of a natural random process.  The Bayesian Maximum Entropy (BME) is a well-known geostatistical estimation 
method, especially for the use of soft knowledge as well as exact measurement data. Although development in geostatistical methods 
helps us to solve limitations on the format of available data, real studies always present in situ problems.  Spatial scale of mapping 
(grid) points in a mapping model is usually not considered at the spatial scale of measurement data, especially in the studies that 
involve health-related data.  Moreover, the spatial scale of measurement data may not be uniform, but varies among different 
measurements.  For example, in studies of epidemiology or environmental health exposure, spatial scale of available measurement 
data is often limited and becomes different from the interesting spatial scale that is sought for in the estimation of the unknown 
random fields.  It may be difficult and unrealistic to obtain measurement data at the scale of interest.  Most current geostatistical 
methods have difficulty explaining physical phenomenon of unknown random fields over a continuous mapping domain at a scale 
smaller than that available from measurement data.  This study explores how we can define these different scales in a geostatistical 
mapping model, and attempts to generate a meaningful spatiotemporal map of estimates of unknown random fields at the scale of 
interest.  The estimation process of this study is based on the BME method to allow the probabilistic type of "soft" data, which are 
not actually observed, but simulated at the local scale to the measurement scale.  This new modelling approach has been called multi-
scale or local-scale mapping model.  With actual mortality data collected over the 58 counties of the state of California, USA, we 
applied this multi-scale modelling approach, and obtained more accurate and realistic spatiotemporal maps of mortality rate 
estimates over California.  We compared these estimates with those found by another approach that did not account for multiple 
scales on the same data.  It was verified by actual mortality data obtained at the zip-code scale.  These estimates found by the multi-
scale approach were considered to be more accurate than those from the other modelling approach. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Spatiotemporal mapping analysis had been originally 
introduced by D. G. Krige in 1951, but not until 1971 was it 
actively developed by G. Matheron.  Today, geostatistical 
analysis is applied to various spatial problems, although it 
initially addressed the area of mining engineering.  Recently, 
applications to health-related studies have been made, for 
example kriging estimation of epidemiological data on 
influenza-like illness in France (Carrat and Valleron, 1992) and 
spatio-temporal mapping based on BME (Bayesian Maximum 
Entropy) of mortality data in the state of California in USA 
(Choi et al., 2001a).  When mapping analysis is applied to 
spatial data, especially related to disease patterns, we search for 
transmission mechanisms, possible risk factors, and other useful 
information for health risk management (Christakos and 
Hristopoulos, 1998).  With data collected at different locations 
for a natural process, we can find variations and uncertainties in 
these natural processes.  For example, a stochastic process can 
be characterized by the spatial and temporal variations that we 
find based on available data for that process.  We can obtain 
insights that might inform natural variation in processes by 

understanding the spatial distribution in available data of these 
processes. 
 
Different stochastic estimation methods may provide different 
estimation results depending on the assumptions and limitations 
of the methods.  BME method allows more flexible data to be 
used in the estimation of a stochastic process than other 
mapping methods.  In this procedure of BME estimation, we 
can use various types of uncertain knowledge called "soft" data, 
such as interval, probabilistic or functional types of available 
data (Christakos, 2000; Choi et al. 1998).  Often, meaningful 
characterizations of a natural process may involve the 
appreciation of its spatiotemporal variation at multiple scales, 
rather than a fixed scale over a mapping domain of space.  
Rigorous description of the situation depends on the scale at 
which phenomena are considered, rather than the scale at which 
measurements are taken (Choi et al., 2001b).  In 
epidemiological studies, we often are interested in the spatial 
distribution of epidemiological variation at a smaller spatial 
scale than that of the measurements which were made.  
However data often are collected at a larger scale in most 
surveillance systems or health studies. Moreover, observed data 
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may be available only at arbitrary discrete locations rather than 
over a continuous spatial domain.   
 
In this study, we introduce a recent development of a new 
modeling approach called multi-scale modeling (Choi, 2001) 
which accounts for multiple scales in the estimation of 
spatiotemporal random fields considering those data that were 
at limited scales of different discrete spatial areas.  The multi-
scale modeling approach is developed based on the BME 
estimation method, and simulates soft data at the scale of 
mapping interest not using the data actually observed at the 
limited scales from the natural field. From these features, the 
new approach can explain more realistic stochastic variation 
and find more accurate estimates for the random processes than 
other approaches that do not account for the multiple scales.  
We applied the multiple-scale approach to a real-world study 
that involves mortality data collected at the spatial scale of 
counties in the State of California, USA.  We generated a map 
of estimated mortality rates using simulated data at the local 
scale. 
 
First, we review the Spatiotemporal Random Field (S/TRF) 
representation of a natural process and the framework of BME 
estimation.  Then we present the multi-scale modelling 
approach that considers phenomena at multiple scales.  Finally, 
we apply this approach to mortality data obtained at the scale of 
counties of the State of California, USA.  Realistic and 
meaningful maps of estimates are generated.  This approach is 
verified using mortality data collected at an actually local scale 
to the counties but which was not used for the estimation. The 
multi-scale approach produced more accurate maps than those 
found by other approaches. 
 
 

2. SPATIOTEMPORAL RANDOM FIELDS AND 
OVERVIEW OF THE BME METHOD 

2.1 S/T Random Fields 

To describe randomness of a natural process, we define a 
spatiotemporal (s/t) random field ),( tX s  that takes real values 

at points 2),( Rss yx ∈=s  and 1
,0 +⊆∈ RTt  in a domain of 

two-dimensional space and time.  In most studies, a random 
field is assumed isotropic and characterized by mean and 
isotropic covariance functions.  Stochastic trend of the isotropic 
random field is explained by a mean function )],([ tXEmx s=  
at any point in the domain of interest.  Stochastic variation is 
explained by an isotropic spatiotemporal covariance function 

])(][)([),( xxx mXmXErc −′−= ppτ  that assumes correlation 
between random fields at any pair of points, ),( tsp =  and 

),( t ′′=′ sp  for TR ×∈′ 2,pp  depends only on the spatial and 
temporal lag distances || pp ′−=r  and || tt ′−=τ  between the 
pair of points.  In this study, Greek letter χ  is used to represent 
for the value of a random variable, and small letter x  is used to 
denote a random variable for the random field.   Bold letter x  
is used to denote a vector of variables or values. 
 
2.2 Overview of the BME Method 

The BME estimation (Christakos, 1992) consists of three main 
stages: prior, case-specific, and posterior.  Each has 
corresponding knowledge.  Prior stage processes general 
knowledge (G ), such as statistical moments or underlying 

physical laws that we can obtain from past experience and 
studies about the process.  In prior stage, a prior probabilistic 
density function )( mapχχχχGf , ),( datamap kχχχχχχχχχ =  is 
formulated based on available prior knowledge.  The case-
specific stage (also termed the specificatory stage) involves 
certain and uncertain types of data.  A unique advantageous 
feature of the BME method is uncertain knowledge (called 
"soft" data) softχχχχ  which is considered in the estimation 
procedure as is data from exact measurements, or "hard" data 

hardχχχχ .  Soft data can be any uncertain type of knowledge about 
the process such as probabilistic distribution functions or 
intervals.  We denote case-specific or specificatory knowledge 
( S ) in terms of both hard and soft data as 
 
 

),...,(),(  :  1softharddata mχχ== χχχχχχχχχχχχS . 
 
 
Below are several typical types of soft data softχχχχ  formulated for 
the BME estimation. 
 
 
Interval type        :   ),...,( 1soft mm II

h
+=∈Iχχχχ  

Probabilistic type : )(][ soft ζζζζζζζζ SS FP =≤x  

Functional type    : ),(],[ kkksoft ζζ ζζζζ  ζζζζ SS FxP =≤≤x  
 
 
In the posterior stage, both general and case-specific knowledge 
are combined to generate a posterior probabilistic density 
function )( kf χK  as  
 
 

∫ Ξ= −
Dk fAf d )()()( mapsoft

1 χχχχχχχχ GK χ  

 
 
where ∫ ∫Ξ=

D D k fA dd )()( mapsoft χχχχχχχχ Gχ   and  ),,( softhardmap kχχχχχχχχχχχχχ = . 

 
Table 1 shows integration domain D  and operator )( softχχχχΞ  
in the posterior function according to specificatory knowledge.  
BME estimate is found by various selection rules such as mode 
or mean estimate from the posterior function )( kf χK .  
Estimation uncertainty for BME estimate is explained by a 
mean squared error based on the posterior function. 
 
 

    S                          D    )( softχχχχΞ  

 Interval                     I    softχχχχ  

 Probabilistic             I    )( softχχχχSF  

 Functional            kII ∪                  ),( soft kF χχχχχS  
 

Table 1.  Integration domain D  and operator )( softχχχχΞ  
 
 



 

3. MULTI-SCALE MODELING APPROACH 

When we estimate unknown random fields, stochastic variation 
of the random fields is derived from available measurement data 
at the scale that the measurements have been made rather than 
at the scale that is estimated.  The scale of estimation points is 
taken uniformly and at a sufficiently fine scale that we can 
consider those estimation points to cover a continuous mapping 
domain.  However, regardless of the scale we are interested in 
for the estimation of a process, the spatial scale of measurement 
data is exclusively dependent on the scale of available data.  
The scale of measurement data is usually large compared with 
the scale of estimation points and may not be uniform among 
the data.  For example in the mortality study over the state of 
California (Choi et al., 2001a), mortality data were collected at 
the scale of counties that are different from one another in their 
sizes and shapes.  The new multi-scale modelling approach 
(Choi, 2001) takes it into consideration not only the scale of 
estimation points, but also the scale of measurement data so that 
it can account for the multiple scales for the grid points of 
estimation and data of a natural process over a continuous 
mapping domain. Rigorous and more realistic description of 
stochastic variation becomes obtainable at the scale that 
phenomena are considered for the estimation of random field by 
the multi-scale modelling approach. 
 
Let us denote a random field defined at a measurement scale as 

),( tZ s , and a random field defined at the local scale to the 
measurement scale as ),( tX s  for a natural process of interest.  
These two random fields can be explained by each other as in 
Eq. (1).  
 
 
 ∫ ∈

−=
)(

1 ),(||)(||),(
su

uuss
D

tXdDtZ  (1) 

 
 
where ||)(|| sD  is the size of )(sD .  Assuming that the random 
fields are isotropic, we can easily derive a same mean function 

xz mm =  for the random fields as each other from the equation 
above.  Let  zc  and xc  be denoted for isotropic s/t covariance 
functions respectively for the random fields defined at 
measurement scale and at its local scale.  These covariance 
functions are also related to each other as shown below in Eq. 
(2), which is derived from Eq. (1) and the definition of isotropic 
covariance functions.  For spatial and temporal lags || ss ′−=r  
and tt ′−=τ , it is obtained 

 
 

∫∑ ∈′∈
−− ′−′′=

)()(
11 )|,(|||)(||||)(||),(

rD xDz cddDDrc
u0u

uuuuss ττ  . 

       (2) 
 
We cannot find the covariance xc  directly from measurement 
data since xc  represents local stochastic variation for random 
field ),( tX s .  With an initial guess for xc , we obtain zc  from 
the relation in Eq. (2).  And zc  can approach the experimental 
covariance at the measurement scale, which we obtain from the 
measurement data.   Change models for xc  by trial-and-error so 
that zc  obtained by Eq. (2) from xc  becomes close enough to 
the experimental variation obtained from the measurement data. 
 

Once we have found the isotropic characteristics for the local 
random field ),( tX s , we simulate a set of local scale random 
fields { ),( tX u , )(su D∈∀ } to the measurement scale of 

),( tZ s .  By making a large enough number of simulations, we 
apply the central limit theorem so that any initial probabilistic 
distribution can be accepted for the simulation of ),( tX u .  
With the isotropic property of ),( tX s , the multi-scale approach 
takes local data that are distance-dependent between estimation 
and data points from the simulated random fields 
{ ),( tX u )(su D∈∀ } rather than taking one of the simulated 
values at a certain point (e.g., a centroid).  Then, we find an 
estimate by applying the BME method with the knowledge of 
covariance and simulated data (not observed) at the local 
random fields.  Local scale data can be of any type that the 
BME method can process (as explained earlier).  In the next 
section, we apply this multi-scale approach to real mortality 
data and generate a map of estimates over the state of 
California.  Verification of the estimated results follows. 
 
 

4. THE CALIFORNIA MORTALITY STUDY 

We applied the new multi-scale approach for mapping analysis 
to mortality data from the Statistics Health Department of the 
State of California.  Mortality is a more certain indicator 
variable that can be useful in studies of environmental exposure 
or epidemiological risk.  The spatial scale of mortality data was 
available only at the resolution of California counties (N=58).  
We aimed to obtain a map of estimated mortality rates at a 
uniform and smaller scale by applying the multi-scale approach.  
Mortality data collected at the scale of zip-code were not used 
for the estimation, but allowed us to later verify the estimation 
results based on the county scale. 
 
 
 

 
 
Figure 1.  County map with centroids (circles) and identity 
numbers according to the order of county names. 
 
4.1 Mortality Data 

From the data set of death counts collected over the 58 counties 
of California during 1989, we selected death records only for 
California residents that were identified by ICD-9 (International 



 

Classification of Death) code under 800.  The total number of 
selected records for this study was 219,182.  The map of 
California in Figure 1 shows county boundaries and county 
identity numbers on the county centroids according to the order 
of county names. 
 
We obtained mortality rates by dividing the number of deaths 
by the population of each county, and used them as 
measurement data to generate estimated values.  Using a 
smoothing technique (Choi, 2001; Choi et al., 2001a), we 
obtained space/time trends over these mortality rates.  By 
leaving the trends out, we obtained a residual process of 
mortality rate ),( tZ s  at the county scale, which was assumed to 
be isotropic.  Figure 2 shows the temporal trend (lined) over the 
mortality rate data (with circles) during the study year in the 
unit of days. 
 
 

 
 
Figure 2.  Mortality rates (with circles) and the temporal trend 
(lined) for the counties of 500,000 residents in California 
(deaths per 100,000 people per day). 
 
4.2 Knowledge at the Local Scale 

By applying the multi-scale modelling approach for the 
estimation of mortality rates over California, we first obtained 
experimental covariance at the county scale, shown in Figure 3 
with circles.  We approached the experimental county scale 
covariance with the covariance model ),( τrcz  at the county 
scale obtained from various covariance models ),( τrcx  at the 
local scale by trial-and-error as explained above.  The nested 
exponential model in Eq. (3) is an optimal covariance function 
for ),( τrcx  that we finally obtained at the local scale: 
 
 

 ∑ = −−= 2
1

33 )exp()exp(),(
,,i aa

r
ix

itir

crc ττ    (3) 

 
 
where  c1=8.09, ar,1=1.14, at,1=43.5, c2=4.37, ar,2=51,  at,2=990.  
From the values of c1 and c2, we can see that the covariance 
model ),( τrcx  in the above is characterized more by the first 
nested structure that by the other.  The second nested structure 
of ),( τrcx  has a wider range both in space and time than the 
first nested structure.  There was an additional third term in 
finding the ),( τrcx , which was so small and ignored in Eq. (3).  

Figure 3 shows the optimal covariance model ),( τrcx  at the 
local scale and experimental covariance together with its fitting 
model ),( τrcz  at the county scale.  In the Figure 3, different 
covariance functions are shown on different y-axes.  The left y-
axis is used for the covariance at the county scale, and the right 
y-axis is for the covariance ),( τrcx  at the local scale. 
 
 

 
 

Figure 3.  Isotropic spatiotemporal covariance of mortality rate 
(deaths per 100,000 people per day)2 as the functions of spatial 
lag (top plot) and temporal lag (bottom plot). 
 
 
 

 
 

Figure 4. Probabilistic Soft data (in deaths per 100,000 people 
per day) at zero-lag of local distance between estimation and 
local data points to (a) county Alameda and (b) county Amador 
on January 1, 1989. 
 
We simulated 10,000 local-scale random fields to each county 
and took the probabilistic type of soft data of the distance-
dependent simulated values.  Figure 4 shows the soft data for 
the residual process of mortality rates per 100,000 people per 
day at zero-lag of local distance between estimation and data 
points to county Alameda and county Amador on January 1, 
1989.  Since the soft data in Figure 4 is for the residual process 
of mortality rates, it ranges from negative to positive.  With the 
soft data and covariance obtained at the local scale, we applied 
the BME estimation method and found mortality rate estimates 
throughout California.  



 

 
 
4.3 Estimation Result and Verification 

Using this multi-scale approach, we obtained estimates of 
mortality rates over a continuous spatial domain of California at 
any day during the study year.  Figure 5 shows the spatial 
distribution of estimated mortality rates on Jan. 1, 1989.  In this 
map, same mortality rates are shown on a same contour line.  
We compared these estimates with those obtained by a different 
modelling approach not accounting for the multiple scales.  
Figure 6 shows the spatial distribution of the estimates of 
mortality rate by a measurement scale (county scale) approach 
based on the same data set (Choi et al., 2001a). Figure 5 appears 
to show a more realistic spatial variability than in Figure 6 
obtained by the measurement scale approach. 
 
 
 

 
 
Figure 5.  Spatial distribution of mortality rate estimates over 
California on Jan. 1, 1989 obtained by the multi-scale 
modelling approach  (deaths per 100,000 people per day). 
 
Then, actual mortality data were used at the zip-code scale to 
determine which modelling approach found closer estimates.  
To exclude computational error caused by mortality rates not 
relating to any modelling approach, we calculated the average 
of estimation errors that were above a threshold value θ  
representing the computational error.  We compared in several 
ways the estimated mortality rates with others based on the 
average error as a function of θ , which were obtained by two 
different modelling approaches at the county scale and the 
corresponding local scale.  We calculated the percentage of 
reduction in average error obtained by the multi-scale approach 
with respect to the average error obtained by the measurement 
scale approach.  In Figure 7 (top), we see the values are all 
negative, suggesting as much reduction by the multi-scale 
approach as the percentage value.  As we can see (Figure 7), the 
reduction increases as the threshold θ  increases.  This tells us 
that, as the average estimation error becomes larger, we can 
expect more reduction of the average estimation error by 
applying the multi-scale approach. 
 
 
 

 
 
Figure 6.  Spatial distribution of mortality rate estimates over 
California on Jan. 1, 1989 obtained by the measurement scale 
modelling approach  (deaths per 100,000 people per day). 
 
Figure 7 (bottom) shows that the ratio of the counts for these 
approaches have smaller average errors than that by the other 
approaches.  The numerator of the ratio is the count that the 
multi-scale approach has smaller error than that by the 
measurement scale approach, and denominator is the other case 
for the measurement scale approach.  The ratios are above 1 for 
almost all θ , which means that the multi-scale approach found 
estimates with less estimation errors more often than the 
measurement-scale approach.  We conclude based on these 
comparisons that  the multi-scale approach found estimates 
more accurately (i.e., closer to the actually local observations) 
than did the measurement scale approach . 
 
 

5. CONCLUSIONS 

To obtain a meaningful spatial distribution of a natural process 
from a limited scale of measurement data, we have introduced 
the recent development of multi-scale modelling.  Stochastic 
variation of a random field was estimated, we believe 
realistically, at a scale local to the measurement scale which is 
usually limited by availability of data.  Spatial analysis was 
studied conceptually over a continuous domain of space, 
although data were not observed in the continuous domain.  
Indeed, the scale of measurement data is usually not available at 
a uniform scale.  By describing different scales of random fields 
for a natural process, we can represent more realistic variation 
for the process at the local scale to the available scale of actual 
measurement data.  This multi-scale modelling approach seems 
to present more accurate spatial distribution of random field 
estimates than any other modelling approaches that do not 
account for multiple scales.  This new modelling approach finds 
estimates based on the BME method so that realistic simulated 
soft data can be used.  By collecting mortality rates at a local 
scale (California counties), it was verified that the estimates 
found by multi-scale approach were more accurate than those 
by county scale modelling approach accounting for only the 
measurement scale.  Depending on available data and study 
purposes, the multi-scale modelling approach can be used to 
find geostatistical estimates at any scale of interest without 
being restricted by the scale of observed data. 
 



 

 
 

Figure 7.   Top plot is the reduction percentage obtained by the 
multi-scale approach with respect to the average estimation 
error by the county scale approach.  Bottom plot is the ratio of 
counts with smaller average estimation errors by the 
approaches.  If the ratio is greater than 1, the multi-scale 
approach found estimates more often with smaller estimation 
errors than by the other approach. 
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