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ABSTRACT: 
 
Digital Terrain Models (DTMs) are simply regular grids of elevation measurements over the land surface. DTMs are mainly 
extracted by applying the technique of stereo measurements on images available from photogrammetry and remote sensing. 
Enormous amounts of local and global DTM data with different specifications are now available.  However, there are many 
geoscience and engineering applications which need denser DTM grid data than available.  Fortunately, advanced space technology 
has provided much single (if not stereo) high-resolution satellite imageries almost worldwide. Nevertheless, in cases where only 
monocular images are available, reconstruction of the object surfaces becomes more difficult. Shape from Shading (SFS) is one of 
the methods to derive the geometric information about the objects from the analysis of the monocular images. This paper discusses 
the use of SFS methods with single high resolution satellite imagery to densify regular grids of heights. Three different 
methodologies are briefly explained and then implemented with both simulated and real data. Moreover, classification techniques are 
used to fine tune the albedo coefficient in the irradiance model. Numerical results are briefly discussed. 
 
 

1. INTRODUCTION 

DTMs are used for the analysis of topographical features in 
GISs and numerous engineering computations as well as 
scientific applications. Rajabi and Blais [2001] briefly reviewed 
and referenced a number of sources for DTMs and their 
applications in both engineering and science.  
 
Stereo measurements from pairs of aerial photographs or 
satellite images have mainly been used as the primary data in 
producing DTMs.  Information from double or multiple images 
in overlap areas ensures reliable and stable models for 
geometric and radiometric processing. Especially recently, with 
the rapid improvement in remote sensing technology, automated 
analysis of stereo satellite data has been used to derive DTM 
data ([Gugan and Dowman, 1988], [Simard et al, 1988], and 
[Tam, 1990]).  
 
Today, with the need for the better management of the limited 
natural resources, there are numerous geoscience and 
engineering applications which require denser DTM data than 
available. Unfortunately stereo satellite imagery is not available 
everywhere. Obviously, time and cost are two important factors 
that often prevent us from field measurements. While 
interpolation techniques are fast and cheap, they have their own 
inherent difficulties and problems, especially in terms of 
accuracy of interpolation in rough terrain. 
 
On the other hand, the availability of single satellite imagery for 
nearly all of the Earth is taken for granted nowadays. However, 
reconstruction of objects from monocular images is very 
difficult, and in some cases, not possible at all. Inverse 
rendering or the procedure of recovering three-dimensional 
surfaces of unknown objects from two-dimensional images is an 
important task in computer vision research. Shape from Shading 
(SFS) [Horn, 1970] [Horn, 1990], [Zhang et al, 1994] is one of 
the techniques used for inverse rendering which converts the 
reflectance characteristics in images to shape information. 
  

This paper discusses the application of SFS techniques to 
improve the quality of the interpolated DTM grid data with 
single satellite imagery of better resolution than the DTM data. 
The idea is highly motivated by the wide availability of satellite 
remotely sensed imagery such as Landsat TM and SPOT HRV 
imagery. Section 2 briefly reviews the general SFS problem and 
the methods implemented in this paper. Section 3 provides 
numerical tests of the methods explained in Section 2 in more 
detail. Last but not least, Section 4 provides some concluding 
remarks. 
 
 

2. SHAPE FROM SHADING 

2.1 Image Formation 

SFS is one of the methods which transforms single or stereo 2D 
images to a 3D scene. Basically, it recovers the surface shape 
from gradual variations of shading in the image. The recovered 
shape can be expressed either in terrain height z(x,y) or surface 
normal N or  surface gradient (p,q)= )y/z,x/z( ∂∂∂∂ . 
 
Studying the image formation process is the key step to solve 
the SFS problem. A Lambertian model is the simplest one in 
which it is assumed that the grey level at each pixel depends 
only on light source direction and surface normal. Assuming 
that the surface is illuminated by a distant point source, we have 
the following equation for the image intensity: 
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where ρ  is the surface albedo, N is the normal to the surface 

and L )l,l,l( 321=  is the light source direction. Even with 
known ρ and L, the SFS problem will still be a challenging 
subject, as this is one nonlinear equation with two unknowns 
for each pixel in the image. Therefore, SFS is intrinsically an 
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underdetermined problem and in order to get a unique solution, 
if there is any at all, we need to have some constraints. 
 
Based on the conceptual differences in the algorithms, there are 
three different strategies to solve the SFS problem [Rajabi and 
Blais, 2001]: 1. Minimization (regularization) approaches 2. 
Propagation approaches, and 3. Local approaches. A more 
detailed survey of SFS methods can be found in [Zhang et al, 
1999]. The following subsections very briefly review the 
minimization approach, which is widely used in to solve the 
SFS problem, and the other variants of the minimization 
approach which are used here to enhance the solution.  
 
2.2 Minimization Approach 

Based on one of the earliest minimization methods, the SFS 
problem is formulated as a function of surface gradients, while 
brightness and smoothness constraints are added to ensure that a 
unique solution exists [Ikeuchi and Horn, 1981]. The brightness 
constraint ensures that the reconstructed shape produces the 
same brightness as the input image. The smoothness constraint 
in terms of second order surface gradients helps in 
reconstruction of a smooth surface. Brooks and Horn [1985] 
defined the error functional:  
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where E(x,y) is the grey level in the image, N x  and N y  are the 

partial derivatives of the surface normal with respect to x and y 
directions respectively and the constants λ  and µ  are 
Lagrangian multipliers. As it can be seen the functional has 
three terms: 1) the brightness error which encourages data 
closeness of the measured images intensity and the reflectance 
function, 2) the regularizing term which imposes the 
smoothness on the recovered surface normals, and 3) the 
normalization constraint on the recovered normals. 
 
The functional is minimized by applying variational calculus 
and solving the Euler equation: The resulting fixed-point 
iterative scheme for updating the estimated normal at the 
location of (i,j) and epoch k+1, using the previously available 
estimate from epoch k is:  
 
 
 

 ( ) 









−

λ
ε+

λεµ+
=+ L . L . NMN k

j,ij,i

2
k

j,i2
j,i

1k
j,i E

4)4/(1
1 (3) 

 
 
where 
 
 
 )(

4
1 k

1j,i
k

1j,i
k

j,1i
k

j,1i
k

j,i −+−+ +++= NNNNM                   (4) 

 
 
There are two comments about this update equation. First, it 
seems that one has to solve for the Lagrangian multiplier ji,µ  

on a pixel-by-pixel basis. However, as it is seen ji,µ enters the 

update equation as a multiplying factor which doesn’t change 
the direction of the update normal, therefore we can replace that 
factor by a normalization step. The second comment is about 
the geometry of the update equation. As it is seen, the update 
equation is composed of two components. The first one comes 
from the smoothness constraint while the second one is a 
response to the physics of image irradiance equation. 
 
The main disadvantage of the Brook and Horn method or any 
other similar minimization approach is the tendency of over 
smoothing the solution resulting in the loss of fine detail. 
Selecting a conservative value for the Lagrangian multiplier is a 
very challenging issue in this method. However, in an attempt 
to overcome this problem, Horn [1990] starts the solution with 
a large value for the Lagrangian multiplier and reduces the 
influence of the smoothness constraint in each iterations as the 
final solution is approached. 
 
2.3 Modified Minimization Approaches 

As it was mentioned in the previous section, the update 
equation is composed of two components, the smoothness part 
and the data closeness part. As the first attempt to solve the over 
smoothing problem with the general minimization approach, an 
adaptive regularization parameter )j,i(λ  instead of a fixed λ  
is suggested to be used to adaptively control the smoothness 
over the image space [Gultekin and Gokmen, 1996]. In each 
iteration, the space varying regularization parameter at location 
(i,j) can be determined by the following function:  
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where c(i,j) is the control parameter, V T  is a time constant that 

regulates the rate of exponential decrease and minλ is a 

preselected minimum value that )j,i(λ may have. The control 
parameter is defined as c(i,j)=|I(i,j)-R(i,j)|, where |-| denotes the 
absolute value and the function newλ  is an exponentially 
decreasing function with the following properties:  
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so that the regularization parameter is only allowed to decrease 
with the iterations.  
 
Another method to solve the over smoothing problem is to use a 
robust error kernel in conjunction with curvature consistency 
instead of a quadratic smoothness. The robust regularizer 
constraint function can be defined as [Worthington and 
Hancock, 1999]:  
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where )(ηρσ is a robust kernel defined on the residual η and 
with width parameter σ . Among different robust kernels, it is 
proved that the sigmodial-derivative M-estimator, a continuous 
version of Huber’s estimator, has the best properties for 
handling surface discontinuities [Worthington and Hancock, 
1999] and is defined by: 
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Applying calculus of variations to the constraint function using 
the above mentioned kernel results in the corresponding update 
equation. Here σ , the width parameter of the robust kernel, is 
computed based on the variance of the shape index. Based on 
Koenderink and Van Doorn [1992] the shape index is another 
way of representing curvature information. It is a continuous 
measure which encodes the same curvature class information as 
the mean and Gauss curvature, but in an angular representation. 
In terms of surface normals, the shape index is defined as 
[Koenderink and Van Doorn, 1992]: 
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where the second subscripts 1 and 2 correspond to the x and y 
components respectively. The variance dependence of the 
kernel in eq. (7) is controlled using the exponential function: 
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where 0σ  is the reference kernel width which we set to  one, φc 
is the shape index associated with the central normal of the 
neighborhood, N j,i , φl is one of the neighboring shape index 

values and ∆φd is the difference in the shape index between the 
center values of adjacent curvature classes  which is equal to 1/8 
[Koenderink and Van Doorn, 1992]. 
 
The other modification that can be done on the minimization 
approach is on the data closeness part of the update equation. 
We know that the set of surface normals at a point which satisfy 
the image irradiance equation define a cone about the light 
source direction. In other words, the individual surface normals 
can only assume directions that fall on this cone. At each 
iterations the updated normal is free to move away from the 
cone under the action of the local smoothness. However, we can 
subsequently map it back onto the closest normal residing on 
the cone. This has not only numerical stability advantages but 
also all normal vectors in the intermediate states are solutions of 
the image of irradiance equation. In other words, the update 
equation for the surface normals can be written as: 
 
 

 k
j,i

1k
j,i )(R MN θ=+    (11) 

 
where 
 
 

 Ecoscos 1
k

j,i

k
j,i1 −− +














−=θ

LM

L  . M
.                (12) 

 
 

k
j,iM in eq. 11 is the surface normal that minimizes the 

smoothness constraint while )(R θ  is the rotation matrix of 
angle θ  which maps the updated normal to the closest normal 
lying on the cone of ambiguity (Figure 1). The axis of rotation 
is found by taking the cross product of the intermediate update 
with the light source direction: 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The ambiguity cone. L is the light source vector, 
M k

ji, is the surface normal which minimizes the smoothness 

constraint and N 1
,
+k
ji is the updated surface normal. 

 
 

3. NUMERICAL TESTS 

 
3.1 Processing Steps 

The main goal of this investigation is to improve the accuracy 
of the interpolated DTM grid data by applying SFS techniques 
to the corresponding single satellite imagery, while the original 
DTM data are used as boundary constraints in the SFS problem.  
  
The basic assumption here is that the satellite imagery has one 
dyadic order better resolution than the original DTM data. We 
also assume that 1) the surface is Lambertian (which is 
questionable in reality), 2) the surface albedo is known (by 
applying classification techniques to multispectral satellite 
imageries), 3) the surface is illuminated by a distant point 
source (Sun), and finally 4) the position of the light source is 
known.  
 
Our approach deals with a patch at a time (Figure 2) with forty 
nine points. Sixteen grid points have known heights (dark 
circles) from DTM grid data and the other thirty three are points 
with the interpolated heights (unmarked grid points). Our main 
objective is to improve the accuracy of the interpolation for the 
five innermost unknown points.  
 
The method essentially consists of three stages: 1) 
preprocessing, 2) processing, and 3) postprocessing. The 
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preprocessing stage itself has three steps. In the first step, using 
interpolation (bilinear) techniques, the heights of the unknown 
points in the patch are estimated. When dealing with the real 
height data, if there is a gap in height measurements due to any 
reason (such as existing rivers or lakes), the whole patch is left 
untouched. 
 
Classification of the image data is the second step of 
preprocessing stage. The Mahalanobis classifier [Richards, 
1986], which is one of the supervised classification methods, is 
used to classify the image data. The choice of Mahalanobis 
classifier is because of its simplicity while using the covariance 
information. After the classification is done, the average grey 
level data in each class is used to tune the albedo coefficient in 
irradiance model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A patch: Circles are the grid points with known 
heights from DTM grid data and the unmarked ones are the 

points with the interpolated heights. 
 
In the third step of preprocessing stage, using the known grid 
points, the relative orientation of the inner most square in the 
patch with respect to the light source is estimated. If this 
relative orientation implies that the patch is in the shadow, then 
there would be no useful shading information to improve the 
accuracy of the interpolated heights. Therefore, in this case the 
interpolated heights are considered the final height values. 
 
Otherwise, the processing stage for each patch consists of three 
steps. In the first step, the smoothed surface normals (based on 
one of the three methods explained in Section 2 are computed. 
Then in the second step these surface normals are mapped onto 
the corresponding ambiguity cones. Finally in the third step, the 
surface normals are passed to an overdetermined (74 equations 
and 33 unknowns) linear adjustment process to solve for the 
heights. In this process, the updated surface normals are 
considered as the observations while the interpolated height 
values are the unknowns. This is simply done by approximating 
p and q with finite differences in terms of heights. The control 
goes back to the first step of this stage unless the average 
difference between the calculated and original image grey 
values of all the pixels in the patch is less than a predetermined 
threshold. 
 
The last stage, postprocessing, consists of taking arithmetic 
means of two solutions for the unknown (interpolated) heights 
located on the boundary of the innermost square in each patches 
coming from the neighboring patches, except for the outsides of 
the peripheral patches. 
  

3.2 Experimental Tests 

In order to check the validity of the methodologies explained in 
Sections 2 and 3, a number of numerical examples using both 
simulated and real world data set are used. The following 
subsections describe the test procedures in more detail. 
 
3.2.1 Simulated Data Set: First, one synthetic object and its 
corresponding synthetic imagery are created. The synthetic 
object is a 1024 by 1024 pixel convex hemisphere with a radius 
of 250 units, sampled at each 0.5 unit. The corresponding DTM 
(one dyadic order less than the object, i.e., 512 by 512 pixels) is 
extracted out of the object. Meanwhile, its corresponding image 
is created using a Lambertian reflectance model with a much 
denser version of the object while the albedo coefficient is set to 
255. Then the grey level of each pixel is scaled to one of the 
randomly selected different levels trying to simulate the Earth 
surface with three different types of coverage . 
 
The differences between the original object, the Interpolated 
Grid Solution (IGS) and the three SFS solutions, each in turn, 
in  three different cases are analysed. In the first case (Table 3), 
the assumption is that the albedo coefficient is the same for all 
the pixels, i.e., same coverage type everywhere, and therefore 
no classification is done. In the second case, the Mahalanobis 
classifier with three different classes is used to classify the 
image pixels. 100 pixels for each class are used as the training 
data set. Once the pixels are assigned to a class, the average 
grey value of each class is used as the albedo coefficient for any 
pixel in that class. In the third case, using the interpolated 
height values and albedo of 255 for all the pixels, the image of 
each patch is reconstructed and is compared to the 
corresponding grey values in the original image file. The mean 
difference between these two grey values is used to scale the 
assumed albedo. Table 3 shows the percentages of the 
improvements in accuracy of DTM densification resulting from 
these analyses.  
 

 Case 1 Case 2 Case 3 
SFS1 vs IGS 18.2% 38.2% 20.5% 
SFS2 vs IGS 23.2% 41.8% 26.2% 
SFS3 vs IGS 25.6% 42.1% 28.7% 

 
Table 3. Improvement percentages relative to corresponding 
IGS. Cases 1, 2, 3 show the No Classification, Classification 

with Mahalanobis classifier and Patchwise Classification cases 
respectively. 

 
3.2.1 Real Data Set: The second object is a real terrain data 
set from southern Alberta (Waterton), Canada with 25 metre 
spacing in UTM coordinate system. A set of 1024 by 1024 grid 
with over 1300 metre height differences is selected from the 
four quadrants of NTS 82H04 DTM provincial data file. The 
originally measured DTM data consists of 100 metre spacing 
grid in addition to the feature points. These measurements had 
been used to interpolate the provincial 25-metre and other DTM 
grids.  
 
The corresponding satellite imagery is a three channel SPOT 
data file with 20 metre resolution which was originally 
georeferenced to an extended UTM coordinate system. By 
extracting the coordinates of the predominant terrain features 
from the corresponding 1/20000 topographic map sheets, the 
SPOT imagery is georeferenced to the same coordinate system 
as the DTM data. For this purpose 23 points with good 



 

 

distribution in the area under investigation are used. A second 
order polynomial is used for the purpose of georeferencing. The 
RMS of georeferencing in easting and northing directions are 
2.96 m and 1.40 m respectively. 
 
Using PCI software (from PCI Geomatics Enterprises Inc.), a 
principal component transformation is applied and the first 
channel with 88.52% energy is selected for these experiments. 
Then the satellite imagery pixel size is changed from 20 m to 25 
m using a bilinear interpolation method.  
 
The efficiency of the SFS methods with the real data set is 
analysed by trying to reconstruct the 25 m DTM from 50 m 
DTM and 25 m SPOT imagery. Similar to the simulated data 
case, the differences between the original object, the 
Interpolated Grid Solution (IGS) and the three SFS solutions 
each in turn in three different cases are analysed. In the first 
case, the assumption is that the albedo coefficient is the same 
for all the pixels, i.e., same coverage type everywhere, and 
therefore no classification is done. In the second case, the 
Mahalanobis classifier with the assumption of three different 
classes (water, soil and vegetation) is used to classify the image 
pixels. In doing that all the information in three channels of 
satellite imagery is used. 100 pixels for each class are used as 
the training data set. Once the pixels are assigned to their 
corresponding class, the average grey value of each class in the 
principal component transformed file is used as the albedo 
coefficient for any pixel in that class. In the third case, using the 
interpolated height values and albedo of 255 for all the pixels, 
the image of each patch is reconstructed and compared to the 
corresponding grey values in the principal component 
transformed file. The mean difference between these two grey 
values is used to scale the assumed albedo. Table 4 shows the 
results of these analyses.  
 

 Case 1 Case 2 Case 3 
SFS1 vs IGS 32.3% 42.2% 46.3% 
SFS2 vs IGS 41.1% 48.6% 54.7% 
SFS3 vs IGS 47.8% 51.4% 57.2% 

 
Table 4. Improvement percentages relative to corresponding 
IGS. Cases 1, 2, 3 show the No Classification, Classification 

with Mahalanobis classifier and Patchwise Classification cases 
respectively. 

  
4. CONCLUDING REMARKS 

The experimental results in Tables 3 and 4 have been analysed 
and it is concluded that: 
 
1. In all of these cases, applying any of the SFS methods will 

give us a more accurate densified DTM than the 
interpolation method. However, the percentage of 
improvement is different in each case. Generally speaking, 
it is seen that using a SFS method based on the curvature 
index will result in a better solution in comparison to the 
other SFS methods in the same case.  

 
2. It is realized that the improvement percentages in the SFS 

solutions are higher with the real data set. That seems to 
imply that our simulated image generation was not as 
realistic as could be expected. 

 
3. Applying classification methods to calibrate the albedo 

coefficient in the image irradiance model seems to improve 

the SFS solutions. However, in case of simulated data set, 
the Mahalanobis classifier works better than the pacthwise 
classifier. There seem to be two main reasons for this. 
First, in the simulation process, the differences between 
albedo coefficients of different surface types were 
deliberately considered high. Then it is obvious that 
Mahalanobis classifier can classify the pixels with better 
accuracy in comparison to the real data case. Second, the 
distribution of pixels from different classes in the 
simulated image is too random to be compatible with the 
real data set. In other words, in simulating the image with 
different surface coverages, no correlation between 
neighboring pixels is considered which is not the case in 
reality. This seems to imply that patchwise interpolation is 
not appropriate for these simulated data sets. 

 
4. Patchwise classification works better with the real data set 

case than the Mahalanobis classifier. This might be 
because of insufficient number of training data sets or 
inappropriate assumed numbers of classes. Having access 
to a land use map or other source of information such as 
aerial photography of the region can improve the 
classification quality in this case. Moreover, each patch in 
our case study is just an area of 150 m by 150 m which can 
easily satisfy the assumption of having the same ground 
type in the patch.  

 
Based on the results of these experiments, future work will 
include: 
 
1. Studying the behaviour of SFS techniques with different 

terrain types and DTM resolutions as well as satellite 
imageries of different quality. 

 
2. As the SFS solutions used in these experiments are 

apparently suffering from over simplified irradiance 
models, more sophisticated image formation equations 
should be more deeply investigated especially for satellite 
imageries. 

 
3. The terrain properties in the statistical analysis results 

shown here are assumed to be homogeneous and 
stationary. However, these assumptions are not true in 
reality. Obviously, domain segmentation is required and 
has to be taken into consideration. It goes without saying 
that the effectiveness of the SFS method in densifying 
DTM should be studied in rough terrain applications. 

 
4. Each scene of satellite imagery usually covers a wide area 

of the Earth and the resolution can be as high as one metre 
or less. When dealing with such applications, tremendous 
amounts of computations have to be expected. Using 
parallel processing techniques in these types of 
applications is a must for general implementations. 
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