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ABSTRACT:

This paper addresses the epipolar geometry of linear pushbroom imagery. Two images of a single scene are related by epipolar
geometry which contain all geometric information and is essential for the three dimensional reconstruction of the scene in computer
vision and remote sensing. It is told that the epipolar geometry of the linear pushbroom sensor is different from that of the
perspective one. In this paper, we propose an epipolarity model which does not require the ephemeris data but shows high
performance (in accuracy, processing time, etc.). We also quantitatively analyse various epipolarity models such as the epipolar
geometry of perspective and aerial imagery, the one by Gupta and Hartly and the one based on the Orun and Natarajan sensor model.
To analyze the accuracy of the proposed epipolarity model and others, we quantitatively measure the distance between the truth point
and epipolar lines on two types of linear pushbroom images; SPOT and KOMPSAT. The results show that the epipolarity model
based on the Orun and Natarajan sensor model is more accurate than that of perspective sensor and by Gupta and Hartly because the
ephemeris data of the satellite image is applied. The proposed epipolarity model shows a high accuracy similar to that of the Orun
and Natarajan sensor model without the ephemeris data. Our epipolarity model will be very useful when the ephemeris data are not
available such as IKONOS images or are not accurate.

1. INTRODUCTION For the quantitative analysis of the epipolarity models, we used
20 ground control points, measured using GPS receiver, as
modelling points and 30 conjugate pairs, accurately extracted

by an experienced operator, as independent checking points on

In general, two or more images of a single scene are related by
the so-called epipolar geometry. Since the epipolar geometry

contains all geometric information that is necessary for
establishing correspondence, it is commonly used for the
extraction of three-dimensional information in computer vision,
photogrammetry and remote sensing.

The epipolar geometry means that a point (a) in the image is
mapped to the point on the known linear line (epipolar line) or
non-linear curve (epipolar curve) in the other image (refer
figure 1). In case of aerial and perspective imagery, the epipolar
geometry is mathematically well founded and widely used in
computer vision and aerial photogrammetry [Zhang, 1998]. In
case of linear pushbroom imagery, however, the epipolar
geometry is modelled as very complex non-linear equations and,
based on the reviews, depends on the sensor model. It is also
told, but not proved, that the epipolar geometry of perspective
imagery cannot be applied to linear pushbroom imagery [Kim,
T. 2000]. Details of the epipolar geometry are described in
section 2.

In this paper, we propose a new epipolarity model based on the
simplified pushbroom sensor model, proposed by Gupta and
Hartly, which does not require the ephemeris data but show
high performance (processing time, accuracy, etc.). We also
verified the accuracy of the proposed epipolarity model in
comparison with other models for linear pushbroom imagery;
(1) the epipolarity model of perspective and aerial imagery, (2)
the one by Gupta and Hartly and (3) the one based on the Orun
and Natarajan sensor model.

two types of linear pushbroom imagery, SPOT and KOMPSAT
stereo image pairs.

epipolar ™, 12

lines (1)

right image
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Figure 1. The relation among sensor, image and objects.

Based on the results, the epipolarity model of perspective
imagery and by Gupta and Hartly show the mean accuracy
below 1 pixel although the error on several checking points was
large. The epipolarity model based on the Orun and Natarajan
sensor model is more accurate than that of perspective imagery
and by Gupta and Hartly. The accuracy of the proposed
epipolarity model is considerably high and similar to that of the
epipolarity model based on the Orun and Natarajan sensor
model although the ephemeris data is not applied. It can be
effectively applicable to the imagery which do not provide the
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ephemeris data such as IKONOS or when the quality of the
ephemeris data is low.

In section 2, the epipolarity models for perspective imagery and
linear pushbroom ones are reviewed. Section 3 describes our
proposed epipolarity model. In section 4, the results of
experiments are shown and discussed.

2. VARIOUS EPIPOLARITY MODELS

EPIPOLAR GEOMETRY OF PERSPECTIVE
AERIAL IMAGERY

The epipolar geometry of perspective and aerial imagery is
mathematically well founded and has been extensively studied
in computer vision and aerial photogrammetry. In these images,
the epipolar geometry is modeled as a 3x3 singular matrix
called as a fundamental matrix shown below.
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Where, (x, y) and (x,, y,) is the coordinates of each image
points and the matrix has only seven degrees of freedom.

The matrix can be represented as below.
kx, +hkyy +k,=0

Where,

ky = fux, + foy + fiss
ky = fuX; + o) + [
ky = fuX, + oy + [y

This equation implies that a point in the one image is projected
to points on the line called epipolar line in the other image. By
selecting over 7 conjugate pairs, this matrix can be calculated
using various numerical solutions such as, Gauss-Jordan, LU
decomposition and Singular value decomposition [Zhang,
1998]. To increase the accuracy of the modelling, the extensive
research such as the normalization of input data or the rank2
constraints, etc., is performed.

EPIPOLAR GEOMETRY BASED ON THE GUPTA AND
HARTLY SENSOR MODEL

In case of linear pushbroom sensor, differently from
perspective sensor, its position and attitude change during the
acquisition moment. Hence, its modeling called as a sensor
model is very difficult and computationally expensive. By
assuming the linear movement and the constant attitude of
sensor, Gupta and Hartly propose a simplified pushbroom
modell] which can be calculated from ground control points
without the ephemeris data. They also described its epipolarity
model.

The epipolar geometry by Gupta and Hartly is represented as a
4x4 singular matrix called as LP fundamental matrix as against
that of perspective imagery. This matrix is shown below.

"In this paper, we will call this model as the Gupta and Hartly
sensor model.
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Where, (x, y) and (x, y,) is the coordinates of each image
points and it contains no more than eleven degrees of freedom.
Similar to that of perspective imagery, the solution can be
acquired using over 11 corresponding points.

This matrix can be represented as below.

kx, +kyxy, +kyy, +k, =0

Where,
kl = Clyl +Cza
ky, =cyy,+cy,

ky =(csx, +¢)y, +(c;x, +¢),
ky = (cox; +¢0)y, (6% + ).

From this equation, we can certain that the epipolar geometry
by Gupta and Hartly is represented as a hyperbola curve, called
as an epipolar curve. This means that a point in the image is
mapped to points on the non-linear curve, differently from that
of perspective imagery, in the other image. We must note the
fact that it is represented as first-order polynomials for along-
track and across-track, respectively. Similar to that of
perspective imagery, the solution can be calculated from a set
of corresponding points using numerical solutions. In general,
this non-linear equation is approximated as a piece-wise linear-
line for the practical use.

EPIPOLAR GEOMETRY BASED ON THE ORUN AND
NATARAJAN SENSOR MODEL

As explained previously, the position and attitude of linear
pushbroom sensor changes during the acquisition moment.
Orun and Natarajan model the position as second-order
polynomials, the yaw variations as second-order polynomials,
and the pitch and roll angles as constants in the attitudeFl
Differently from the Gupta and Hartly sensor model, the Orun
and Natarajan sensor model necessarily needs ground control
points and the ephemeris data for the calculation. Although this
sensor model is mathematically complex and computationally
expensive, its accuracy is high. Most of commercial software
packages are based on this sensor model as well [Orun and
Natarajan, 1994].

The epipolar geometry based on the Orun and Natarajan sensor
model is represented as a mathematical equation shown below
[Kim, 2000].

kx, +kyy, +k,

Y, = .
(kyx, + ksy, + kg)sin OQ(x,) + (k;x, + kg y, + ky) cos O(x,)

Where, (x, y) and (x, y,) are the coordinates of each image
points, respectively, k;~ky are constants and Q(x,) is a quadratic
polynomial of x,.

2 In this paper, we will call this model as the Orun and
Natarajan sensor model



In this equation, we can find that the epipolar geometry of the
Orun and Natarajan sensor model is a hyperbola-like equation.
Although this model is considerably accurate, the ephemeris
data is necessarily required. Therefore, this epipolarity model
cannot be applied to images if the ephemeris data is not
provided, for example IKONOS or its accuracy is low. Similar
to that of the Gupta and Hartly sensor model, it is approximated
as a linear line for the practical use.

3. PROPOSED EPIPOLARITY MODEL

In this section, we propose another epipolarity model based on
the Gupta and Hartly sensor model, which does not require the
ephemeris data but show high performance (processing time,
accuracy, etc.). To derive the epipolarity model between two
images (called as left and right image, respectively), let the
Gupta and Hartly sensor model for each images be shown as
below.

X, =AX+AY+A,Z+ 4,
AX+AY+AZ 4, @
CAX+AY+AZ A,
x,=B,X+BY+B,Z+B,

_ BX+BY+BZ+B,
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In the left pusbroom model (a), equations can be represented
about X and Y as below.

X = (ky, +ky)Z + (kyx,y, + kyx, + ks y, + ko)
Ly, +i, (c)
y = G+ 1)Z+ sy + Jux + Jsyi + Js)
W, t

Where, k;~k4, i;~i,and j;~js are constants.

By applying (c) to the right pushbroom model (), we can write
the right pushbroom model as below.

(myy, +my)Z = myx, y, + myx, + msx,y, + mex, +m, y, + mg

_ (my, +n))Z + (nyx,y, + n,x, + nsy, +ng)

r

(., + 1) Z + (ngx,y; + myoX, + 1y, v, +myy)
Where, m;~mg and n;~n,, are constants.

Combining two equations, we can derive a new equation as
shown below.

2 2
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Where, (x, y) and (x,, y,) are the coordinates of each image
points, respectively and ¢;~cy and d;~d, are constants.

(dy] +dyy, +dy)x, +(dyx, +ds)y] +(dgx, +dy)y, +(dgx, +dy)

This is our proposed epipolarity model and can be written as
below.

kx, +k,x y, +kyy, +k,=0

Where,
2
ki =cy +cy+c,
k,=dy +d,y +d,
ky=(dx + ds))ﬁz +(dex, +dy)y, + (dgx, + dy),

2
ky = (e +¢5)y" +(cox; +¢)y, + (6%, +6).

The proposed epipolarity model is a non-linear hyperbola curve
and similar to that by Gupta and Hartly in section 2.2.
However, differently from that by Gupta and Hartly, the along-
track (y;) is represented as second-order polynomials in the
proposed model. If we ignore the second term (y,), we can sure
that the proposed model becomes the one by Gupta and Hartly.
As against that of Gupta and Hartly, the proposed epipolarity
model can be represented as a 4x6 matrix shown below.

x1y12
0 f12 0 f14 fls fle y,2
%, 00) 0 Sn 0 Sy fzs S XV 0

f31 f32 f33 f34 f35 f3(7 Y,
f41 f42 f43 /. 44 f45 /. 46 X
1

Where, (x;, y) and (x,, y,) are the coordinates of each image
points, respectively. The proposed epipolarity model can be
calculated using only conjugate pairs without ground control
points and the ephemeris data.

4. EXPERIMENTAL RESULTS

The proposed epipolarity model is verified using two types of
linear pushbroom imagery; SPOT “Taejon” and “Boryung”
panchromatic images and KOMPSAT “Taejon” and “Nonsan”
EOC (Electro-optical) images over Korea. The resolution of
SPOT is 10 meters and its swath is 60 kilometers. The
resolution of KOMPSAT is 6.6 meters and its swath is 17
kilometers. Details of scenes are summarized in table 1.

The performance of the proposed epipolarity model is
compared with those of three other models; (1) the epipolarity
model of perspective and aerial imagery, (2) the one by Gupta
and Hartly and (3) the one based on the Orun and Natarajan
sensor model described in section 2.1, 2.2 and 2.3,
respectively.

20 conjugate pairs taken from 20 ground control points are
used to calculate the epipolarity model of perspective and aerial
images and the one by Gupta and Hartly. The proposed



Table 1. The information of SPOT and KOMPSAT stereo image pairs

SPOT Boryung SPOT Taejon KOMPSAT Taejon KOMPSAT Nonsan
Left Scenes Acquisition time Mar. 1 1997 Nov. 15 1997 Mar. 9 2000 May 1 2000
Viewing angle -25.8 4.2 26.0 19.456
Right Scenes | Acquisition time Nov. 15 1998 Oct. 14, 1997 Mar. 1 2000 April 28 2000
Viewing angle 0.6 25.8 -4.0 -12.305

Figure 2. The distribution of modeling and checking points (Modeling : triangle, Checking, rectangular). (1) KOMPSAT Taejon, (2)

KOMPSAT Nonsan, (3) SPOT Taejon, (4) SPOT Boryung

epipolarity model is computed using 20 ground control
points and the one based on the Orun and Natarajan sensor
model is acquired from the ephemeris data of the satellite
images and 20 ground control points.

For the quantitative assessment of the accuracy, we devise a
robust method which measure the minimum distance between
the truth point and the epipolar lines. Except the epipolar
geometry of perspective imagery, the epipolar geometry is
represented as a non-linear curve in other models. To apply
this measure, we estimated a non-linear curve as a linear one

because a non-linear curve can be regarded as a linear line in
locally [Kim, 2000]. We take 30 corresponding points,
accurately extracted by an experienced operator, as
independent checking points. The checking and modelling
points are distributed to entire images as shown in figure 2.

The results are summarized in table 2. The errors of 30
independent checking points are shown in figure 3, 4, 5 and
6. As shown in the results, the epipolarity model of
perspective and aerial imagery and by Gupta and Hartly show
the average accuracy below 1 pixel although the errors on
several checking points are large. We think that the
epipolarity model of perspective imagery can be applicable to




linear pushbroom imagery. To clarify the results, more
experiments are necessary using various linear pushbroom
images. The epipolarity model based on the Orun and
Natarajan sensor model show high accuracy than that of
perspective images and by Gupta and Hartly. However, this
model cannot be computed without the ephemeris data. The
accuracy of the proposed epipolarity model is considerably
high and similar to that based on the Orun and Natarajan
sensor model although the ephemeris data is not applied. The
proposed model is also not so computationally expensive. It
means that the proposed epipolarity model can be effectively
applicable to the imagery which do not provide the ephemeris
data such as IKONOS or when the quality of the ephemeris
data is low. In this experiments, the proposed epipolarity
model is derived using ground control points. However, it
can be acquired from only conjugate pairs as described in
section 3.

5. CONCLUSIONS

In this paper, we proposed a new epipolarity model which
does not require the ephemeris data but show high
performance (accuracy, processing time, etc.). We also
quantitatively analyzed various epipolarity models to verify
the applicability for linear pushbroom imagery.

The analysis of the proposed epipolarity models and others
are performed using two types of linear pushbroom imagery;
SPOT and KOMPSAT. The results show that the proposed
epipolarity model can model the epipolar geometry of linear
pushbroom

images although the ephemeris data is not used. It means that
the proposed epipolarity model is effectively applicable to
the

linear pushbroom imagery which does not provide the
ephemeris data because of various reason for example
IKONOS, etc.

In this paper, we verified the proposed epipolarity model on
two types of linear pushbroom imagery; SPOT and
KOMPSAT. However, we think that the proposed model will
work in other types of linear pushbroom images. Our future
research is focused on applying the proposed and other
models to the reconstruction of the digital elevation model.
We will report results of such experiments in the future.
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Table 2. Performance analysis for each epipolarity models (in pixels)

Perspective Gupta and Hartly Proposed Orun and Natarajan
Epipolarity model Epipolarity model Epipolarity model Epipolarity model
SPOT MEAN 0.309 0.358 0.275 0.240
Borvun STD. D 0.190 0.223 0.178 0.177
YUne - RMS 0.363 0.422 0.327 0.298
SPOT MEAN 0.716 0.924 0.299 0.504
Tacion STD. D 0.669 0.701 0.222 0.392
! RMS 0.981 1.160 0.373 0.639
MEAN 0.509 0.519 0.528 0.505
K%I;/InPsiﬁT STD. D 0.377 0.452 0.340 0.336
RMS 0.634 0.689 0.629 0.607
MEAN 0.537 0.568 0.521 0.498
KOMPSAT T'sTD. D 0.267 0.365 0.302 0.244
! RMS 0.600 0.676 0.602 0.554
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Figure 3. The errors for each independent checking points in SPOT Boryung area (in pixels)
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Figure 4. The errors for each independent checking points in SPOT Tacjon area (in pixels)
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Figure 5. The errors for each independent checking points in KOMPSAT Nonsan area (in pixels)
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