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ABSTRACT: 
 
In this paper we describe a novel integration of Hierarchy Theory and Linear Scale-Space for automatically visualizing, and 
modeling dominant landscape structures at multiple scales. Specifically, we describe 3D methods for modelling and visualizing 
landscape scale-domains by using scale-space events as critical domain thresholds. This novel approach provides the capacity to 
automatically define dominant landscape structures within varying shaped scale domains, as well as through (all) domains. We 
hypothesize that the resulting domain structures represent critical landscape scale thresholds; which could be used as templates to 
define the grain and extent at which scale-dependent ecological models could be developed and applied, and the limits over which 
landscape data may be uniquely scaled. 
 
 

1. INTRODUCTION 
 
Landscapes are complex systems that are composed of a large 
number of heterogeneous components that interact in a non-
linear way, are hierarchically structured, and scale dependent 
(Wu and Marceau, 2002). Remote sensing technology 
represents the primary provider of such landscape-sized data. 
Therefore, if we are to fully understand, monitor, model, and 
manage our interaction within landscapes, we require a 
multiscale framework capable of incorporating appropriate 
multiscale-theory and techniques to extract dominant 
landscape components from remote sensing data at their 
specific scales of expression (Marceau and Hay, 1999; Hay et 
al, 2002b). However, this is no trivial task. The notion of 
‘landscape’ varies between users, there is no ‘science of 
scale’, nor are there fixed scaling laws or rules for translating 
data between scales (Hay et al, 1997). In most cases we do 
not know the ‘correct’ scale for collecting remote sensing 
data at, but rather, are limited to resolutions defined by the 
state of sensor technology (i.e., spatial, spectral, temporal, 
radiometric). Furthermore, once we do acquire data, how and 
where we scale to and from is often arbitrarily defined (Hay 
et al, 2001). In an effort to reduce these challenges, we 
describe a novel framework that integrates Hierarchy theory 
and Scale-Space (SS) for automatically visualizing and 
modeling dominant landscape structures through multiple 
scales, and within uniquely defined scale domains. In 
particular, the primary objective of our study is to 
automatically link structures at unique scales in scale-space, 
to higher-order objects called ‘scale-space blobs’, and to 
extract significant features based on their appearance and 
persistence through all scales. Blob-like structures, which 
persist in scale-space, are likely candidates to correspond to 
significant structures in the image, and thus in the landscape. 
In addition, by considering scale-space events as critical 
domain thresholds, we are able to three-dimensionally model 
and visualize multiple ‘landscape scale-domains’. This novel 
approach provides a new capacity to automatically define 
dominant landscape structures within varying shaped scale 
domains, as well as through (all) domains. We hypothesize 

that these domain structures represent critical landscape scale 
thresholds; thus they may be used as templates to define the 
grain and extent at which scale-dependent ecological models 
could be developed and applied, and the limits over which 
landscape data can be scaled. 
 
In general terms, a hierarchy may be defined as ‘a partial 
ordering of entities’; thus hierarchies are composed of 
interrelated subsystems, each of which are made of smaller 
subsystems until a lowest level is reached. Within the formal 
framework of Hierarchy theory (Allen and Starr, 1982), a 
hierarchically organized entity can be seen as a three-tiered 
nested system in which levels corresponding to slower 
behavior are at the top (Level +1), while those reflecting 
successively faster behavior are seen as a lower level in the 
hierarchy (Level -1). The level of interest is referred to as the 
Focal level (Level 0). From a Landscape Ecology perspective, 
Hierarchy theory predicts that complex ecological systems, 
such as landscapes, are composed of relatively isolated levels 
(scale domains), where each level operates at relatively 
distinct time and space scales. Scale thresholds separate these 
domains, and represent relatively sharp transitions or critical 
locations where a shift occurs in the relative importance of 
the variables influencing a process. In general, interactions 
tend to be stronger and more frequent within a domain than 
among domains. Conceptually, these ideas enable the 
perception and description of complex systems by 
decomposing them into their fundamental parts and 
interpreting their interactions.  
 

2. METHODS 
 
2.1 Study Site 
 
Due to the computational demands required by SS 
processing, analysis was performed on a high-resolution (1.0 
m) panchromatic IKONOS image (acquired in September, 
2001) that was linearly contrast stretched from 11- to 8-bits. 
A 2.0-km2 sub-area was then extracted and upscaled to 4.0 m 
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using Object-Specific Upscaling (Hay et al, 2001). 
Geographically, this area represents a highly fragmented 
agro-forested landscape in the Haut St-Laurent region of 
south-western Québec (Bouchard and Domon. 1997). 
   
2.2 Linear Scale-Space (SS) and Blob-Feature 

Detection 
 
All multiscale analysis is composed of two main components: 
the generation of a multiscale representation, and a feature 
detector. Linear Scale-space (SS) is used for generating a 
multiscale representation. Essentially, SS is an uncommitted 
framework for early visual operations that was developed by 
the computer vision community to automatically analyze real-
world structures at multiple scales – specifically, when there 
is no a priori information about these structures, or the 
appropriate scale(s) for their analysis (Lindeberg, 1994). The 
term uncommitted framework refers to observations made by 
a front-end vision system (i.e., an initial-stage measuring 
device) such as the retina or a camera that involves ‘no 
knowledge’, and ‘no preference’ for anything. When scale 
information is unknown within a scene, the only reasonable 
approach for an uncommitted vision system is to represent the 
input data at (all) multiple scales. Thus, the basic premise 
underlying SS is that a multiscale representation of a signal 
(such as a remote sensing image of a landscape) is an ordered 
set of derived signals showing structures at coarser scales that  
 

 
constitute simplifications of corresponding structures at finer 
scales. In practice, Gaussian filters are applied to an initial 
image at a range of kernel sizes resulting in a scale-space 
cube or ‘stack’ of progressively ‘smoothed’ image layers, 
where each new image layer represents convolution at an 
increased scale (Fig. 1). More explicitly, each ‘smoothed’  

 
layer is created by convolving the nth-order derivative of a 
Gaussian (DOG) function with the original image, where the 
scale of each derived signal is defined by selecting a different 
standard deviation for the DOG function (at each new 
iteration). In the presented work we have only use the zeroth 

order derivative. This results in a ‘scale-space cube’, or 
‘stack’ of increasingly ‘smoothed’ images, which illustrates 
the evolution of the original image through scale. Each 
hierarchical layer in a stack represents convolution at a fixed 
scale, with the smallest scale at the bottom, and the largest at 
the top.  
 
Blob-Feature Detection represents the second component of 
multiscale analysis. The primary objective of this non-linear 
approach is to link structures at different scales in scale-
space, to higher-order objects called ‘scale-space blobs’, and 
to extract significant features based on their appearance and 
persistence over scales. The main features that arise at each 
scale within a stack are smooth regions, which are brighter or 
darker than the background and which stand out from their 
surrounding. These regions are referred to as ‘grey-level 
blobs’ (Fig. 2a). When blobs are evaluated as a volumetric 
structure within a stack, it becomes apparent that some 
structures visually persist through scale, while others 
disappear (Fig. 1). Therefore, an important premise of SS is 
that blob-like structures which persist in scale-space are likely 
candidates to correspond to significant structures in the 
image, and thus in the landscape. In simple terms, grey-level 
blobs at each scale in the stack are treated as objects with 
extent both in 2D space (x, y) and in grey-level (z-axis) – thus 
3D. Grey-level blob delineation may best be defined with a 
watershed analogy. 

 
 

 

2a. 2b. 

 

 

 
 

2c. 2d. 
 
Figure 2a. 2D Grey-level blob at scale 20. (2b) 3D Grey-level 
blobs illustrated as a topographical surface from which a blob-
delineation watershed analogy is described (scale, 20). (2c). 
Binary blob defined from 3a. (3d) Idealized hyper-blob 
illustrating four different SS-events: annihilations (A), 
creations (C), merges (M) and splits (S). The number of scales 
between SS-events represents the lifetime (Ltn) of a SS-blob.  
 

 
Figure 1. This illustrates a linear scale-space stack composed of 
200 scales. The smallest scale is on the bottom; the largest is on 
the top. Note the diffusive patterns and persistence of scale-
space objects through scale. For reference, the 500 x 500 pixel 
Ikonos image is also provided (bottom). 



 

 
 
At each scale in the stack, the image function of all blobs may 
be considered as a flooded 3D landscape (i.e., a watershed see 
Fig. 2b). As the water level gradually sinks, peaks appear. At 
some instance, two different peaks become connected. The 
corresponding ‘connected’ elevation levels are called the 
‘base level’ of the blob. They are used for delimiting the 2D 
spatial extent or ‘region of support’ of each blob, which is 
defined as a binary blob (Fig. 2c). 2D binary blobs at all 
scales are then combined within a new stack to create 3D 
hyper-blobs. Within a single hyper-blob there are four 
primary types of visible structures or ‘bifurcation events’: 
annihilations (A), merges (M), splits (S), and creations (C) 
(Fig. 2d). The ability to define these SS-events is a critical 
component of SS, as scales between bifurcations are linked 
together forming the lifetime (Ltn) and topological structure 
of individual SS-blobs. Next, the integrated normalized (4D) 
volume (x, y, z, t) of each individual SS-blobs is defined.  
 
As blob behavior is strongly dependent upon image structure, 
it is possible that an expected image behavior may exist. Thus 
statistics are extracted from a large number of stacks resulting 
from random images1. These statistics describe how random 
noise blobs can be expected to behave in scale-space, and are 
used to generate a normalized 4D SS volume for each SS-
blob.  
These resulting normalized volumes are then ranked, and an 
arbitrary number of significant SS-blobs are defined, from 
which the scale (t) representing the maximum 3D grey-level 
blob volume (x, y, z) of each hyper-blob is extracted. From  

                                                                 
1 In our processing we generated 100 individual stacks 
resulting from different random images the same size as the 
original 500 x 500 pixel IKONOS image. Each random SS 
stack was composed of 200 layers with a scale increment of 
one. 

these layers the 2D spatial support (i.e., binary blob) is 
identified and related back to the corresponding structures in 
the image for further examination (Fig. 3). Thus, based on the 
underlying initial premise, 4D scale-space blobs are 
simplified to 3D grey-level blobs, which are further 
simplified to their 2D support region (x, y), and then to their 
corresponding real-world object in the original image. For a 
more detailed non-mathematical description of SS and Blob-
Feature Detection, see Hay et al., 2002a. 
 
2.3 Integrating Hierarch Theory and Scale-Space 

 
A limitation of SS is that within a SS-cube a significant 

amount of redundant data results in large stack sizes, which in 
our research range from 200 MB to 980 MB each. In order to 
reduce the memory requirements when defining SS-blob 
topology, we have integrated a three tier approach from 
Hierarchy theory with the programming capability of IDL 
(interactive data language) to ‘parallel-process’ 
multidimensional array structures. Thus, instead of loading 
the entire stack into memory, we only need to load three 
scales of a SS-cube into memory at a time. From a Hierarchy 
theory perspective, we evaluate the blob locations at the 
‘focal’ scale, and establish links with blobs in the scale above 
and with those in the scale below. We then shift up an 
additional scale in the cube, while dropping the bottom scale. 
Always keeping only three scales in memory at once. We 
then repeat this procedure until the last scale has been  

 
processed.  
In order to overcome evaluation problems resulting from the 
large number of ranked SS blobs that visually obscure each 
other when overlaid on the study area (Fig. 3), we suggest 
that SS-events represent critical thresholds within a hyper-
blob, where fundamentally different geometric structures 
exists both in scale and the landscape. Thus from an 
ecological perspective, the lifetime of a SS-blob may be 

 

 
 
Figure 3. Ranked blobs converted to individual queriable 
vectors. Note how polygons from many different scales appear 
to overlay each other making analysis non-trivial. 
 

 
Figure 4. This is an example of 8 threshold-domain surfaces 
visually modeled from a stack of 100 layers (thus the value 800 
in the scale axis), and an x, y dimension of 200 x 200 pixels. 
Each domain layer is modeled one above the other for visual 
interpretation. Each domain surface stacks exactly upon the 
surface underneath it, with no peak protruding into the upper or 
lower surface. Peak locations represent the bifurcation point of 
each scale-space blob defined within a single hyper-blob. 



 

considered as levels within a specific scale-domain. To define 
this domain, each hyper-blob is topologically registered as a 
unique entity, and its corresponding SS-events are isolated. 
That is, the first SS-event of all hyper-blobs are geometrically 
defined regardless of where, and what scale they exist within 
the stack (i.e., x, y, t). Then the second, third, and nth-events 
of each hyper-blob are isolated until the last possible event is 
defined. These event values are then considered as ‘scale 
domain attributes’ and are assigned to their corresponding 
ranked blobs. This domain attribute provides a unique way to 
query, partition, and evaluate the resulting multiscale 
‘domain’ surface structures, as many blobs can and do exist 
within a single domain, but no more than one blob can exist 
within the same ‘x, y, z, domain’ space. Thus the problem of 
overlapping ranked blobs is resolved (Fig 3.) and it allows us 
to evaluate the resulting multiscale surface structures in terms 
of critical scale-specific thresholds.  
 
In addition, by integrating these hierarchical concepts with 
geostatistics and 3D visualization techniques, domains can be 
visually modeled as 'scale-domain manifolds’. To visualize 
these domain structures, we define the center pixel of each 
bifurcation blob, apply Delaunay triangulation to all points, 
and then interpolate with a Quintic polynomial function to 
generate a smooth surface [Fig. 4 - see Hay et al, (2002b)]. 
Furthermore, we suggest that this structure correspond to the 
‘scaling ladder’ as conceptualized by Wu (1999) in his 
description of the Hierarchical Patch Dynamics Paradigm.  
 

3. CONCLUSION 
 
In this paper we describe a novel integration of Scale-Space 
and Hierarchy Theory for automatically visualizing, defining 
and modeling dominant landscape structures at multiple 
scales. Scale-space originates from the computer vision 
community, where it was developed to analyze real-world 
structures with no a priori information about the scene being 
assessed. Its basic premise is that a multi-scale representation 
of a signal (such as a remote sensing image of a landscape) is 
an ordered set of derived signals showing structures at coarser 
scales that constitute simplifications of corresponding 
structures at finer scales. The primary objective of our study 
has been to define and link structures at different scales in 
scale-space to higher-order objects, called “scale-space 
blobs”, and to extract significant features based on their 
appearance and persistence over all scales. Blob-like 
structures, which persist in scale-space, are likely candidates 
to correspond to significant structures in the image, and thus 
in the landscape. Furthermore, by integrating concepts from 
Scale-Space and Hierarchy Theory, we are able to three-
dimensionally model and visualize multiple ‘landscape scale-
domains’ based on the novel idea of using scale-space events 
as critical domain thresholds. This novel approach provides 
the capacity to automatically define dominant landscape 
structures within varying shaped scale-domains, as well as 
through (all) domains. Spatial statistics are used to describe 
these significant landscape structures, and 3-D tools have 
been developed to visualize and describe their multi-
dimensional morphology. Our next objective is to ascertain 

relationships between the dominant patterns within each 
domain, and the (potential) processes that formed them, in 
order to better understand the multi-scale dynamics of this 
landscape, and to evaluate the efficacy of the integrated 
theory and techniques. 
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