
HARDWARE-BASED TEXTURE EXTRACTION FOR BUILDING FAÇADES

Martin Kada

Institute for Photogrammetry (ifp), University of Stuttgart, Germany
Geschwister-Scholl-Strasse 24D, D-70174 Stuttgart

martin.kada@ifp.uni-stuttgart.de

Commission IV, WG 6

KEY WORDS: Extraction, Building, Texture, Visualization, Hardware, Graphics, Reconstruction

ABSTRACT:

The reconstruction of 3D city models has matured to the point where large data sets are now available. As most of the data collection
methods used are based on airborne sensors like e.g. aerial laser scanning or stereo imagery, the detailed geometry and material of
the building façades is typically not available. For visualisation purposes, however, the surface structure is essential to achieve a
good visual impression of the respective buildings. An efficient technique to provide the missing building façades is to extract
texture images from terrestrial photographs and map them to the polygonal faces of the reconstructed models. As the task of manual
texture extraction and placement is very time-consuming, an automatic approach is presented in this article that utilises the rendering
pipeline of modern 3D graphics cards. The problem of texture extraction can therefore be solved by using graphics algorithms that
are nowadays implemented in hardware and consequently are extremely fast. Since only parts of the building or even of a façade are
typically captured in one single image, self occlusions of the buildings are detected and several photographs taken from various
positions are fused to generate the final texture images. In order to gain high quality textures, the lens distortion of calibrated
cameras is corrected on-the-fly by the use of pixel shaders that are running on the programmable graphics processing unit.

1. INTRODUCTION

The acquisition of 3D city models has been of major interest
for the past years and a number of algorithms are now avail-
able both for the automatic and semiautomatic collection of
3D building models. Based on measurement from aerial ste-
reo imagery or airborne laser scanner data, the geometry of
buildings can be reconstructed on a large scale. (Baltsavias,
Grün and van Gool, 2001) e.g. give a good overview of ex-
perimental systems and commercial software packages. One
major limitation of these approaches is, however, that the re-
sulting models have rather coarse façades. (Früh and Zakhor,
2003) present a method that merges ground based and air-
borne laser scans and images. The additional terrestrial data
naturally leads to more detailed façades.
Key market for this type of data is the visualisation in the
context of city planning, three-dimensional car navigation,
virtual tourism information systems and location based ser-
vices. In addition to pre-rendered movies of the virtual envi-
ronments where the user has no freedom of movement, real-
time visualisation is getting more and more important. (Kada
et al., 2003) show e.g. that literally a complete city can be in-
teractively displayed in 3D on today’s consumer PC systems
(see Figure 1).
For the photo-realistic visualisation of urban landscapes, the
material of the building façades is essential for the visual im-
pression. An efficient technique to model building façades is
to extract texture images and place them on the coarse, po-
lygonal faces of the reconstructed models. Whereas roof im-
ages can easily be acquired from aerial photographs, such an
approach is not feasible for the building façades. It is there-
fore inevitable to use terrestrial images as the source for
high-quality façade textures. The manual texture extraction
and placement is, however, a tedious task and can easily take
up to several days per building for good results (see Figure

2). Such an approach is consequently not applicable for cap-
turing a large number of building façades.

Figure 1. A 3D landscape model of Stuttgart rendered in a

real-time visualisation environment. All façade
textures of buildings located in the main
pedestrian area were manually captured.

In this article, an approach is described that automatically ex-
tracts façade textures from terrestrial photographs and maps
them on geo-referenced 3D building models. If the exterior
orientation of the camera is known, a transformation can be
computed that projects the polygonal faces of the building
model into the image. (Klinec and Fritsch, 2003) determine
the rotation and translation of the exterior orientation by
searching for correspondences between object and image fea-
tures and use them in a photogrammetric spatial resection.

(a) (b) (c) (d) (e)

Figure 2. The manual texture extraction and mapping process involves (a) digital capturing of the building façade and removal of

lens distortions, (b) selection of quadrilateral image sections, (c) rectification of perspective distortions, (d) retouching of
occluded areas and (e) texture placement on building model.

The presented texture extraction approach ties in from when
the exterior orientation of the photographs is known. It de-
scribes an efficient way to get from the correspondences of
3D object and image points to a completely textured building
model that is ready for visualisation purposes. A naive way
to visualise this kind of data would be to define the corre-
sponding points in the image as texture coordinates and use
e.g. a VRML viewer for scene rendering. This is not a viable
approach, however, as complex geometric image transforma-
tions can not be realised due to perspective effects or lens
distortion.
By using the functionality of 3D graphics hardware, the
whole process can be realised very efficiently so that interac-
tive tools are possible. The user e.g. defines the input photo-
graphs and extraction parameters and observes the resulting
textured building model in real-time. Any self occlusions of
the model are detected automatically, so that several images
can be fused to get the final texture images. The camera dis-
tortions are removed transparent to the operator in the hard-
ware so that no extra care needs to be taken.
Because 3D APIs and SDKs nowadays provide powerful and
functional rich interfaces, such a texture extraction system
can be realised with very little programmable effort.

2. HARDWARE-BASED TEXTURE EXTRACTION

The texture extraction approach described in this article
utilises new technologies that can be found in today’s
commodity 3D graphics hardware. Especially three
developments are of greater importance and shall be briefly
discussed in the following sections.

2.1

2.2

2.3

Graphics Processing Units

The extraction of façade textures from digital images mainly
involves the transformation of vertices and the processing of
pixel data, computations that can be highly parallelized for
increased performance. Because the main CPU does not
exploit this parallelism very effectively, a software solution
is generally not an adequate approach. Graphics processing
units (GPU) that are integrated in today’s commodity PC
graphics cards, however, are optimised for this kind of data
processing. As graphics processors have evolved from a fixed
function to a programmable pipeline design, they can now be
utilised for various fields of applications.

Shader Languages

Shaders are small programs that are executed on the 3D
graphics card. They can be conceived of as functions that are
called within the GPU at specific points during the
generation of the image. Two types of shaders exist: vertex
shaders replace the transformation module in the geometry
stage and pixel shaders replace the processing of individual
pixels in the rasteriser stage of the graphics rendering
pipeline.
Nowadays, shaders can be developed using High-Level
Shader Language (HLSL developed by Microsoft) (Gray,
2003) or C for graphics (Cg developed by NVIDIA)
(Fernando and Kilgard, 2003). Both are based on the
programming language C and offer the flexibility and
performance of an assembly language, but with the
expressiveness and ease-of-use of a high-level language.
In the presented approach, pixel shaders are used to exert
control over (projective) texture lookups, the depth buffer
algorithm and to realise the on-the-fly removal of lens
distortions for calibrated cameras.

Floating-Point Texture Format

Textures in floating-point format can hold real 32 bit colour
values per channel. If used in combination with a pixel
shader, a texture must not necessarily hold colour values, but
rather all kinds of per pixel floating-point data can be stored
in it. The pixel shader knows how to interpret the data in
order to compute the output colour and depth values.

Through the use of standard 3D APIs like OpenGL or
Direct3D, the extraction algorithm is just a matter of setting
up the rendering pipeline and to provide the vector
information of the building geometry. The complexity of the
core algorithm amounts to only a few lines of code.

3. ALGORITHM

It is assumed that the building geometry is already available
as a 3D geo-referenced, polygonal surface model. The input
photographs were taken with a calibrated camera and their
exterior orientations are known. Hence, the transformations
that project the faces of the building model into the images

can be computed. Each projected polygon then overlays all
the pixels that unprojected will make up the final façade
texture (see Figure 3).

Figure 3. Projected 3D building model overlaid on the input

photograph (Rosensteinmuseum).

Because the façade textures have to be represented by
quadrilaterals, the polygons are substituted during the
extraction process by their bounding rectangles which are
given in three-dimensional world-space coordinates. The
texture extraction is basically performed by rendering a
quadrilateral with the colour values of the unprojected image
pixels of the bounding rectangle.
Lens distortions are removed on-the-fly in the pixel shader,
so the extraction works as if processing idealized images
where the calibration parameters are applied.

3.1 Texture Extraction

The first step is to set up the rendering pipeline to fill the
entire target buffer where the final façade texture will be
rendered to. For this purpose, all transformation-related states
(including the one for the projection) are initialised with the
identity matrix. Drawing a three-dimensional unit square
with vertices v0 = (-1, 1, 0), v1 = (1, 1, 0), v2 = (1, -1, 0) and
v3 = (-1, -1, 0) will render all pixels in the target buffer as
wanted. The four vertices can incidentally be thought of as
the projected vertices of the polygon’s bounding box into the
image plane.
So far, however, the rasteriser would only render a blank
façade image as no colour information is provided yet.
Therefore, a photograph must be assigned to the pipeline as
an input texture from where to take the colour information
from. As mentioned above, the polygon’s projected bounding
box defines the pixels to be extracted from the input texture.
So in addition to the above mentioned vertices, the texture
coordinates of the four vertices are specified as the four-
element (homogenous) world space coordinates of the
bounding box. Setting the texture transformation matrix with
the aforementioned transformation from world to image
space concludes the initialisation.
During the rendering of the target façade image, the rasteriser
linearly interpolates the four-dimensional texture coordinates

across the quadrilateral. A perspective texture lookup results
in the perspectively corrected façade texture (see Figure 4).
Some extra care has to be taken, however, as the results of
this transformation are in the range -1 to 1 and the final
texture coordinates are indexed in the range 0 to 1. A single
scale and bias will map the coordinates accordingly.

Figure 4. Extracted façade textures.

The resulting façade texture can then be read from the frame
buffer and saved to file. Most 3D APIs provide special
functions for this task.

Figure 5. The 3D building model with the extracted

textures placed on the façade polygons.

3.2

1

2

Texture Placement

After the extraction, the textures need to be placed on the
corresponding polygons (see Figure 5). In order to find the
two-dimensional texture coordinates for the polygon vertices,
a function identical to glTexGen (Shreiner, 2003) of OpenGL
is used. The function automatically generates texture
coordinates s and t by a linear combination of the vertex
coordinates:

1 1 1

2 2 2

s A x B y C z D
t A x B y C z D
= + + +
= + + +

 (1)

A, B, C and D can be thought of as the definition of planes in
parameter form. The normal vector components A, B and C
of the two planes are defined by the vector from the bottom
left vertex to the bottom right vertex of the bounding box and
from the bottom left vertex to the top left vertex accordingly.
The values for D are simply computed by inserting the
bottom left vertex into the equation. The result of the linear

combination of the polygon vertices are then in the range 0 to
1 as required.

3.3

3.4

Detection of Self-Occlusions

The extraction of façade textures from photographs always
leads to the problem that parts of the facades are not visible
because of self-occlusions of the building. If no special care
is taken, then erroneous pixel values are extracted for the
occluded parts of the façade (see Figure 6 to Figure 8). To
avoid such artefacts, invalid pixels that belong to other
polygons must be identified and marked.
Pixel-wise occlusion detection is realised in this approach by
using the depth buffer algorithm. First, the depth value of the
closest polygon is determined for each pixel in the
photograph and stored in a depth texture. This can simply be
done by rendering all polygons with the hardware depth
buffer functionality enabled and by copying the resulting
depth buffer into a 32 bit floating-point texture. A more
efficient approach is to calculate the depth value in a pixel
shader and render directly into the depth texture. Modern 3D
graphics processors support the floating-point texture formats
even as render targets.
During texture extraction, the depth value is read out in the
pixel shader using the same texture coordinates as for the
colour lookup. After the perspective divide is applied to the
texture coordinates, the z-component holds the depth value
for the current polygon. A comparison of these two depth
values then determines if the pixel in the colour texture
belongs to the polygon. If e.g. the value from the depth
texture is lower then the computed value, then the polygon is
occluded at this pixel by another polygon. Figure 9 shows
some results where occluded pixel values have been
blackened out. To suppress artefacts caused by precision
errors, the depth test is done by applying a small depth bias
in the depth test.

Image Fusion

As only parts of a building or even of a façade are typically
captured in one single image, the colour information from
several photographs that were taken from various positions
need to be combined to generate the final façade textures.
One simple approach is to extract several textures for the
same polygon from all available photographs and then use
the one with the fewest pixels marked as occluded (see e.g.
Figure 10). Other criteria may possibly be the photograph
taken closest to the façade or the one with the best viewing
angle.
The problem of image fusion done in the hardware is how to
get the graphics pipeline to decide from which image a pixel
should be taken. The solution is to process all images and
make the hardware accept or reject pixel values by using the
depth, stencil or alpha test. Even though the approach is brute
force, it is still very efficient with the hardware support.
The presented per pixel approach merges the final façade
texture by using the colour value of only the closest, non-
occluded pixel found in all images. The occlusion detection
works as described in the previous section, but now with the
depth test enabled on the hardware. The output of the pixel
shader that is used for the hardware depth buffer test is the
calculated depth value for non-occluded pixels and 1.0 (the
farthest possible depth value) for occluded pixels. Because it
is usually better to have a wrong colour value rather then no

Figure 6. Input photograph showing Stuttgart State Theatre.

Figure 7. 3D building model without textures.

Figure 8. Building model automatically textured without

occlusion culling.

Figure 9. Building model automatically textured with

occlusion culling. The black pixels were marked
as occluded texture pixels.

Figure 10 The resulting textures with the fewest occluded

pixels were chosen as the façade texture and
placed on the building model.

colour value, the pixel colour is always written. The
hardware depth test ensures that always the closest pixel is
taken and the artificial depth value of 1.0 gives precedence to
non-occluded pixels. The result can be seen in Figure 11.

(a)

(b)

Figure 11 (a) Façade texture extracted from two input
photographs using per-pixel fusion. The images
were taken from two different positions.
(b) The extracted façade textures placed on the
building model.

3.5

a

a

Removal of Lens Distortion

If a calibrated camera is being used to capture the building
facades, the lens distortion in the images are corrected on-
the-fly in the pixel shader. The major benefit of this approach
is that the extraction process works with the original images.
Image pixels are therefore filtered only once during the
whole process as opposed to the alternative approach where
the idealised image is computed beforehand. The result is
that the extracted façade textures are of higher quality.

The lens distortion is described by the parameter set
introduced by (Brown, 1971) and denotes the transition of
pixels from the distorted to the idealized image. Here, the
following subset is used as in (Fraser, 1997):

i r d

i r d

x x x x x
y y y x y

∆ = ∆ + ∆ + ∆ + ∆

∆ = ∆ + ∆ + ∆ + ∆
 (2)

Change of interior orientation:

0

0

i

i

xx x c
c
yy y
c

c

∆ = ∆ − ∆

∆ = ∆ − ∆
 (3)

Radial distortion:

2 4 6

1 2
2 4 6

1 2

()

()
i

i

3

3

x x r K r K r K

y y r K r K r K

∆ = + +

∆ = + +
 (4)

Decentring distortion:

2 2

1
2 2

1 2

(2) 2

2 (2)
d

d

2x r x P xy

y xyP r y

∆ = + +

∆ = + +

P

P
 (5)

Affinity and shearing:

1

0
a

a

2x xB yB
y

∆ = +

∆ =
 (6)

Because the extraction process needs the transition of pixels
from the idealized to the distorted image and the formula is
not invertible, an iterative method is be used. Unfortunately,
arbitrary iterations are not supported by current 3D graphics
hardware. But because the graphics API Direct3D 9.0
(Microsoft, 2003) already defines dynamic flow control in
Pixel Shader 3.0, graphics cards are likely to include this
feature in the near future. The removal of lens distortion can
at that time be completely computed in hardware.
Until then, an alternative approach must be used. The 2D
transition vectors are pre-computed for all pixels in the image
and stored in a two times 32 bit floating-point texture. In the
pixel shader, a first texture look-up gets the transition vector
and adds the correction values to the texture coordinates. The
new coordinates are then used for the depth and colour
lookup.

4. IMPLEMENTATION AND RESULTS

The design goal of the implementation was to have a vendor
independent system, which means that the algorithms should
work with a broad variety of 3D graphics cards. The graphics
API of choice was therefore Direct3D 9.0, which also
includes the high-level shader language (HLSL).

The calibration of the camera was done using the bundle
program Australis (Fraser, 1997). Camera calibration files are
automatically loaded and the correction textures are
generated as needed. The input photographs were taken at
resolution 1280 * 960 pixels, but resolutions up to 2048 *
2048 are also supported. This limitation comes from the fact
that textures in the graphics hardware are limited to this size.
The output resolution of the façade textures is at this point
fixed at 256 * 256 pixels.
The performance analysis has been conducted on a standard
PC with an Intel 4 3.0 GHz Processor, 1 GB of DDR-RAM
and a graphics card that is based on the ATI 9800 GPU with
256 MB of graphics memory. The test results are given in
Table 1. It should be noted that 8 or 16 input photographs for
per pixel image fusion is not practical. This rather high
number was solely used to show the speed of the approach.
Nevertheless, the extraction time with all features enable is
still below one second.

time #
images Extraction Process model

A
model B

1 31 ms 47 ms
1 Lens Correction 32 ms 62 ms
1 Occlusion Detection 32 ms 63 ms
1 Occlusion D. + Lens C. 46 ms 78 ms
8 Image Fusion (per Pixel) 172 ms 328 ms
8 Image Fusion + Lens C. 203 ms 391 ms

16 Image Fusion (per Pixel) 375 ms 813 ms
16 Image Fusion + Lens C. 422 ms 829 ms

Table 1. Extraction times measured for model A

(Rosensteinmuseum, 71 polygons) and model B
(Stuttgart State Theatre, 149 polygons).

5. CONCLUSION AND FUTURE WORK

This article described the concept and the implementation for
hardware-based texture extraction of photo-realistic façade
textures. The implementation of such a system is shown to be
very simple by using standard 3D APIs and shader
languages. Fast extraction is possible on commodity PC
hardware equipped with a 3D graphics processing unit and
the resulting façade textures proved to be of very high
quality. The resulting building models are automatically
mapped by perspectively correct textures and can therefore
be used for real-time visualisation.
As the system has a low response time, it has the potential to
be extended towards a semi-automatic tool, which allows the
refinement of the model based on manual measurement in
terrestrial images. The manual fitting of available building
geometry to terrestrial images is often required due to
remaining errors in the building model. Such errors are of
nuisance when the correspondence between object and image
is not exactly given and lead to artefacts or even wrong
façade textures. Hardware-based texture extraction will allow
a real-time visualisation of the textured 3D model, so that the
operator can immediately observe the geometric changes.
The future work will be to speed-up the overall process by
doing some pre-processing of the geometry on the main
CPU. Backface culling could e.g. be pre-computed for each
image and stored in a backface table. Not all images would
need to be processed for each polygon anymore. Another

area of improvement is the quality for per pixel texture
fusion. Alpha blending might help to reduce artefacts if parts
of the texture can not be aligned correctly because of errors
in the exterior orientation. As a combination of per-polygon
and per-pixel image fusion promises the best results, adapted
algorithms shall further be developed.
In order to address occlusions by other objects, the presented
system could be extended to a semi-automatic tool where the
operator marks pixels or regions in the photograph as invalid.
These pixels will not be used in the final texture, but rather
colour values from other photographs are used or the missing
pixel colours are reproduced by subsampling algorithms.

6. ACKNOWLEDGEMENTS

The research described in this paper is founded by “Deutsche
Forschungsgemeinschaft” (DFG – German Research
Foundation). The research takes place within the Center of
Excellence No. 627 “NEXUS – SPATIAL WORLD MODELS FOR
MOBILE CONTEXT-AWARE APPLICATIONS” at University of
Stuttgart. The geometry of the building models is provided
by Stadtmessungsamt Stuttgart.

7. REFERENCES

Baltsavias, E. Grün, A. and van Gool, L., 2001. Automatic
Extraction of Man-Made Objects from Aerial and Space
Images (III). Swets & Zeitlinger B.V., Lisse, The
Netherlands.

Brown, D.C., 1971. Close-Range Camera Calibration.
Photogrammetric Engineering, 37 (8), pp. 855-866.

Fernando, R. and Kilgard, M., 2003. The Cg Tutorial.
Addison-Wesley.

Fraser, C.S., 1997. Digital Camera Self-Calibration. ISPRS
Journal of Photogrammetry and Remote Sensing, Vol. 52,
pp. 149-159.

Früh, C. and Zakhor, A., 2003. Constructing 3D City Models
by Merging Aerial and Ground Views. IEEE Computer
Graphics and Applications, Vol. 23 No. 6, pp. 52-61.

Gray, K., 2003. The Microsoft DirectX 9 Programmable
Graphics Pipeline. Microsoft Press.

Kada, M., Roettger, S., Weiss, K., Ertl, T. and Fritsch, D.,
2003. Real-Time Visualisation of Urban Landscapes Using
Open-Source Software In: Proceedings of the ACRS 2003
ISRS, 24th Asian Conference on Remote Sensing & 2003
International Symposium on Remote Sensing, Busan, Korea.
(On CD-ROM)

Klinec, D. and Fritsch, D., 2003. Towards Pedestrian
Navigation and Orientation. In: Proceedings of the 7th South
East Asian Survey Congress, SEASC’03, Hong Kong. (On
CD-ROM)

Microsoft, 2003. DirectX Documentation for C++. Microsoft
DirectX 9.0 SDK. http://msdn.microsoft.com/library/
default.asp?url=/downloads/list/directx.asp

Shreiner, D., Woo, M. and Neider, J., 2003. OpenGL
Programming Guide (Version 1.4), Addison-Wesley.

	INTRODUCTION
	HARDWARE-BASED TEXTURE EXTRACTION
	Graphics Processing Units
	Shader Languages
	Floating-Point Texture Format

	ALGORITHM
	Texture Extraction
	Texture Placement
	Detection of Self-Occlusions
	Image Fusion
	Removal of Lens Distortion

	IMPLEMENTATION AND RESULTS
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

