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ABSTRACT: 
 
The use of KBSs based on evidential reasoning, for land-cover mapping based on remotely-sensed images is spreading widely. In 
recent years, KBS utilizing Dempster-Shafer Theory of Evidence (D-S ToE) were found most successful in wide range of remote 
sensing applications. One important feature of the D-S ToE is that it provides a measure for the evidential support (belief) 
accumulated for each object class at each pixel. Although cumulative belief values (CBVs) play a major role in classification 
decisions, their analysis has received little attention in the literature. The objective of the present study was to investigate and to 
characterize the added value of the KBS by the analysis of the CBV. For that purpose we applied a KBS based on D-S ToE to crop 
recognition in a wide heterogeneous region and compared its results with those of the application of ISODATA classification. We 
investigated the relationships between the distribution of the CBV of the different classes and their corresponding classification 
accuracy/reliability. The CBVs were found to be good indicators of levels of classification complexity in both the pixel and the class 
scales. In addition to that, levels of two class properties could be analyzed according to the distribution of CBVs of each class: 
heterogeneity and uniqueness. Moderate and high correlations (r2=0.69 and r2=0.94) were found between these two properties and 
classification efficiency of an unsupervised classification (US). Lower correlations were found between these properties and the KBS 
classification efficiency (r2=0.59 and r2=0.75). Moreover, US classification was highly affected by heterogeneity and uniqueness as 
referred from much higher slope coefficients (5 times higher): US classification efficiency decreased with increasing heterogeneity 
levels and decreasing uniqueness levels. These findings are suggesting that in contrast to the US classification the KBS facilitates 
identification of a class with little affect of its internal variability (heterogeneity) and its similarity with other classes (lack of 
uniqueness).  
 
 

1. INTRODUCTION 

1.1 General Instructions 

The use of KBSs based on evidential reasoning, for land-cover 
mapping based on remotely-sensed images is spreading widely. 
In recent years, KBS utilizing Dempster-Shafer Theory of 
Evidence (D-S ToE) were found most successful in wide range 
of remote sensing applications (e.g. Wilkinson and M´egier. J., 
1990; Kontoes et al., 1993; Peddle, 1995; Adinarayana and 
Rama-Krishna, 1996). One important feature of the D-S ToE is 
that it provides a measure for the evidential support (belief) 
accumulated for each object class at each pixel. Although 
cumulative belief values (CBVs) play a major role in 
classification decisions, their analysis has received little 
attention in the literature. One important feature of the D-S 
algorithm is that it provides a measure of the accumulated 
evidential support or cumulative belief value (CBV) for each 
recognition class (Ci) inferred at each image pixel (Xi,j). The 
advantage of KBSs lies in achieving recognition of a class 
despite incomplete, missing and conflicting evidences. The 
CBV for Ci at Xi,j depends on the overall applicable evidences 
(rules) for Xi,j supporting and/or conflicting Ci. For different 
compositions of environmental conditions different 
compositions of evidences will be applicable. The CBV 
increases with increasing number of supportive evidences and 
decreasing number of conflicting evidences and vise versa. 
There are few published researches regarding the relationship 
between KBS recognition accuracy and reliability of a class and 

the level of its CBV. It is to be expected that for classes or sites 
with no conflicting and/or incomplete evidences, high reliability 
and accuracy will be accompanied by a high accumulation of 
supporting evidence. In such cases it is expected that there is 
little or no need for the KBS approach. This assumption can be 
assessed by comparing the classification results of the KBS with 
those of an unsupervised classification (US). In complex classes 
or sites there are more conflicting and/or incomplete evidences 
and low supporting evidence is accumulated. It is important to 
determine how the KBS performs in these complex situations 
and whether low CBVs are necessarily accompanied by low 
accuracy or reliability. Also, recognition systems perform 
differently within a class, i.e. the same class in different sites 
may gain different CBVs. Analysis of the distribution of the 
CBV within a class will facilitate the determination of how 
unique and/or heterogeneous a class is. This in turn, will enable 
the investigation of whether heterogeneity and/or lack of 
uniqueness limit the classification accuracy and reliability of the 
KBS. The objective of the present study was to investigate and 
to characterize the added value of the KBS by the analysis of 
the accumulated supporting evidence. For that purpose we 
applied a KBS based on D-S ToE to crop recognition in a wide 
heterogeneous region and compared its results with those of the 
application of ISODATA classification. We first describe the 
study area and its heterogeneity. In the subsequent two sections 
we outline the principles of the D-S ToE and the GSA and 
describe the construction of the KBS. We conclude with the 
results and conclusions. 



 

 
2. STUDY AREA 

Two agricultural areas in Israel, which comprise 33% of the 
overall cultivated areas in the country, were investigated. The 
southern area lies along the Coastal Plain. It covers 700 km2 
and is characterized by topographic fluctuations between sea 
level and 240 m. Annual precipitation ranges between 400 and 
500 mm and over 60% of the soils are suitable for agriculture. 
Agriculture is the main land use (over 50%), and developed 
areas form approximately one-third of the total. There are 
relatively wide natural habitats on both the eastern and western 
sides of the study area. The northern area covers 1600 km2, and 
there are steep west-east topographic and climatic gradients. 
The height of the Jordan Valley on the east is 300 m below sea-
level, and 17 km to the west of the valley the Gilbo’a Mountains 
rise to 570 m above sea level. In addition, to the west, the 
proximity of the Yizra’el Valley to the Carmel Mountains 
creates enormous height differences over limited horizontal 
distances. The annual average rainfall decreases along this 
gradient from approximately 650 mm/year in the west to less 
than 200 mm/year in the east. Soil types vary between Terra-
Rossa, brown and light rendzina, groumosoils, red-loam, dark-
brown soils and sandy soils. Cultivated areas form 50% of this 
study area, in which the environmental variations cause wide 
variability in natural vegetation types, crop types, and in the 
crop seeding and harvesting periods. 
 

3. METHODOLOGY 

3.1 KBS and the Dempster-Shafer Theory of Evidence 

KBSs as a type of expert systems address real-life problems 
and, therefore, they must deal with uncertain data, information, 
and knowledge. During the mid-1970s Shafer (1976) 
crystallized and formalized the mathematical theory of evidence 
based on earlier ideas of Art Dempster, which since then has 
been known as the “Dempster-Shafer Theory of Evidence” (D-S 
ToE). D-S ToE and its Gordon and Shortliffe approximation 
(GSA) (Gordon and Shortliffe, 1985), when applied to a body 
of evidence, have domain-independent inference capabilities to 
combine evidence while representing some levels of ignorance, 
bias and conflicts. The fundamental aspects of the D-S ToE will 
be described here in most general terms, with reference to its 
application to crop recognition in remote sensing images, 
following the work of Gordon and Shortliffe (1985) and Cohen 
(2000). 
 
3.1.1 Frame of Discernment  
Suppose an interpreter needs to analyze a satellite image of an 
agricultural site. To his knowledge, this area contains only two 
summer crops: cotton (cn) and sunflower (cf); and two winter 
crops: wheat (wh) and pea (pe). The set of possible hypotheses, 
which is called a Frame of Discernment (FoD) is defined as:  
Θ = {cn, sf, wh, pe} Where each compatible possibility (crop) 
in Θ is called a singleton. Since the hypotheses in � are 
exhaustive the empty set, �, is considered as a false hypothesis 
in Φ. In addition to the singletons there are subsets of Θ 
representing hypothetical possibilities of combinations such as 
summer crops or {cn, sf} in our example. The set of all subsets 
of Θ is denoted 2Θ, and a set of size n has 2n-1 true hypotheses. 
 
3.1.2 Basic Probability Assignment 
Suppose that there is a body of evidence in support of the non-
empty subset A of 2Θ. A function m{A}, called the Basic 
Probability Assignment (BPA), assigns to hypothesis A, a 

degree, denoted m, to which the evidence supports the 
hypothesis.  Degrees of support are numbers in the range of 
[0,1] and must sum to 1 over all possible hypotheses.  
 
3.1.3 Combination of Belief Functions 
Dempster’s rule of belief functions combination enables the 
computation of the degree of support gained by combining 
multiple belief functions that refer to a set of possible 
hypotheses A of 2Θ. Suppose that one piece of evidence 
supports summer crops and one supports cotton to degrees of 
0.4 (m1) and 0.7 (m2) respectively. Three new BPAs' are defined 
by the D-S combination rule, denoted m1⊕m2 calculated by 
means of the following table: 
 

      m1 
m2 {cn}(0.7) �(0.3) 

{cn, 
sf}(0.4) 

{cn}(0.4*0.7)=(0.28) {cn, sf}(0.4*0.3)=(0.12) 

�(0.6) {cn}(0.6*0.7)=(0.42) Θ(0.6*0.3)=(0.18) 

 
where: m1⊕m2 {cn} = 0.28+0.42 = 0.7; m1⊕m2 {cn,sf} = 
0.12; m1⊕m2 {�} = 0.18. 
Suppose m2 was attached to wheat, i.e., m2{wt} = 0.7. In such 
cases of conflicting evidence, the support in each hypothesis is 
raised by 1/(1-k), where k is the support committed to Φ:  
m1⊕m2 {wt} = 0.58; m1⊕m2{cn,sf} = 0.16; m1⊕m2 {�} =  
0.25.  
A pairwise addition of the following form allows more than two 
BPAs' to be combined:  
m1⊕m2 >>> (m1⊕m2) ⊕ m3 >>> ((m1⊕m2) ⊕ m3) ⊕ m4… 
 
3.1.4 Cumulative Belief Value (CBV) 
Integration of all applicable rules (evidence) for each pixel 
provides the formal basis for the calculation of cumulative 
belief values (CBV) of each class (hypothesis). In this way, 
each pixel initially has a CBV for each class. Final recognition 
requires application of decision criteria for selecting the most 
probable class, i.e., the class with the highest CBV is selected. 
 
3.2 Knowledge-based crop recognition system: 
Construction and Implementation 

An evidential reasoning mechanism based on the Gordon-
Shortliffe Algorithm was realized in C++. The operation of the 
GSA is carried out on the basis of three input files, which 
represent the knowledge base: Database, Rule-Base and 
Hierarchic Representation. In each operation of the GSA 
program, the evidential values of all applied rules for each class, 
for each pixel, are combined in order to calculate the class 
convergent belief value (CBV). Each pixel is then classified 
into the most probable class, i.e., the class with the highest 
CBV. 
 
3.2.1 Database construction 
Information layers required for the database formation were 
derived from three main sources: imagery data, Israeli GISs, and 
existing maps. The spatial database comprised a total of nine 
layers: 
� 5 multi-temporal NDVI layers generated from Landsat TM 

images (Table 1); 
� 1 unsupervised classification layer based on the NDVI 

layers; 
� 1 averaged annual rainfall data layer from the Israeli 

Meteorological Service; 



 

� 1 soil types layer from the GIS of the Ministry of 
Agriculture of Israel; and 

� 1 land use layer from the Israeli National GIS. 
 

Sensor Image date 

Landsat TM 10-Nov-96; 14-Feb-97; 19-April-
97; 21-May-97; 22-Jun-97 

Spot-
panchromati

c 
20-Jun-96 

Table 1.  Images available to study area. 
 

3.2.2 Hierarchic representation 
The GSA makes it possible to use evidence, which may apply 
not only to a single hypothesis (e.g., sunflower), but also to sets 
of hypotheses (e.g., sunflower, cotton), that together comprise a 
concept of interest (e.g., summer crops). A specific KBS 
hierarchic representation should relate to semantic affinity 
between classes, and to indicative information which can be 
obtained from the database sources. Figure 1 displays the 
hierarchic representation of crop types and their generalized 
super-classes. It can be inferred from the tree that there are only 
9 final classes (underlined): other (non-vegetated formations), 
mixed natural vegetation, shrubs/forests, citrus, wheat, legume, 
other crops, cotton, and sunflower. Each relates to different 
number of super-classes. 
 

Figure 2: Hierarchic tree representation of land-cover/use 
and crop types. 

 
3.2.3 Rule base Formation 
In general terms, a rule here represents the support value m 
given to a hypothesis A, assuming that indicators X, Y, Z are 
valid:  

if X and Y and Z and… then A with m 
Rule base formation involves learning the relationships between 
potential indicators and object classes (potential hypotheses). 
The learning process was conducted through analysis of domain 
literature and interviews with experts from the Ministry of 
Agriculture. The results of this process were used to learn 
growth rates of crop types, optimal environmental conditions 
for crop growth in the various climatic areas of Israel, and the 
effects of environmental modifications on crop growth rate and 
quality. In addition, field survey plots were used to learn how 
growth rates and quality are reflected in imagery data. This was 
achieved by both visual interpretation and GIS analysis. Rules 
were related to all classes from all levels. Indications of various 
kinds and with various affinities (support values) were found, 
and selection was applied in order to exclude indications with 
poor affinity. In terms of support values, only indications with 
more than 50% support were included. The resulting rule-based 
composition demonstrates the priority given to imagery data, as 
90% of the rules included imagery indicators. In addition, 20% 
of the rules utilized soil type properties, 20% used precipitation 
properties, and 13% used INGIS land-use information. 

 
4. RESULTS 

The KBS generates two outputs for each pixel: its recognition 
class and its CBV. The present section will describes 
classification results and the CBV distribution separately.  
 
4.1 Classification results    

Assessment of the confusion matrix for an US classification is 
most important, since it indicates the locations of phenological 
conflicts between crop types and thus facilitates assessment of 
the resolved and unresolved confusion introduced by using the 
KBS. Application of the US ISODATA classification yielded 
good results for four crop categories and very poor results for 
orchards, shrubs and mixed natural vegetation categories (Table 
2). These results demonstrate the high information content in 
the NDVI phenologies (Cohen and Shoshany, 2002).  
 

Table 2: Confusion Matrix of US Classification. 
 

Table 3: Confusion Matrix of KBS Classification. 
 
The recognition achieved by applying the GSA is best 
characterized by the following principle cases: 
� Considerably better recognition of legume, orchards, shrubs 

and natural vegetation;  
� Considerably better distinction between winter crops and 

natural vegetation;  
� Better distinction between orchards areas and shrubs;  
� Better distinction between cultivated areas and ‘other’;  
 

Reference→ 

Class.↓ 
wheat legume cotton sun-

flower orchards shrubs nat. 
veg 

wheat 77.8% 8.9%   0.5% 3.4% 1.6% 

legume 4.0% 72.2%   4.7% 6.0% 28.3% 

cotton   99.7% 5.6% 0.6% 1.1% 0.1% 

sunflower    91.3% 0.3% 0.6% 0.0% 

orchards 1.7%    65.0% 32.0% 0.4% 

shrubs     3.5% 28.9% 12.2% 

nat. veg 7.1% 5.5%   1.7% 3.6% 30.1% 

other crop    3.1% 0.9% 1.8%  

other 9.3% 13.3% 0.3%  22.8% 22.6% 27.2% 

Reliability 87.1% 67.4% 94.0% 98.8% 55.7% 81.4% 42.6% 

No. of pixels 9529 7058 9315 7653 10897 7085 3890 

Reference→ 

Class.↓ 
wheat legume cotton sun-

flower orchards shrubs nat. 
veg 

wheat 89.9% 7.9%   3.9% 0.3% 3.5% 

legume 6.4% 91.3%   2.5% 0.2% 0.6% 

cotton   99.7% 5.6% 0.9% 0.2% 0.1% 

sunflower    91.3% 0.6%   

orchards 3.2%    77.0% 0.5% 0.3% 

shrubs     1.5% 80.6% 1.3% 

nat. veg     0.3% 1.4% 82.8% 

other crop    3.1% 1.4%   

other 2.5% 0.8% 0.3%  12.0% 16.7% 11.5 

Reliability 88.0% 87.5% 94.6% 99.1% 96.0% 96.3% 96.1% 

No. of pixels 9529 7058 9315 7653 10897 7085 3890 

All 

Vegetation 

Cultivated Natural vegetation 

Crops Citrus 

Summer crops Winter crops 

 Other
Crop 

Cotton Sunflower Wheat Legume 

Shrubs/Forest Mixed 

Other 



 

4.2 Convergent belief values  

Distributions of CBV of the different classes are presented in 
Figure 2. This distribution reflects a hierarchy among these 
classes:  
1. Crops present dominancy of high CBVs in which summer 
crops (cotton and sunflower) exhibit very high proportions of 
high belief level (PHBL; ~95%), whereas winter crops (wheat 
and legumes) gained only moderate PHBLs (68% and 51% 
respectively). 
2. Orchards presented a mixture of high, medium and low CBV 
figures.   
3. Natural vegetation areas and shrubs/forest areas present 
dominancy of low and poor levels, with low proportions of 
PHBL. 
 

Figure 2: Proportions of cumulative belief levels.  
 
In spite of this, as presented in Table 3 orchards, shrubs and 
natural vegetation achieved by the KBS accuracy of around 
80% and reliability of 95%. These accuracy and reliability 
figures leads to a proposition that medium and low CBVs do 
not necessarily imply for wrong classification decisions by the 
KBS. 

5. DISCUSSION 

Relationships between recognition accuracy/reliability of both 
classification methods and CBVs for each class were assessed. 
Two characteristics of a class have attracted attention through 
the analysis of these relationships: 
Heterogeneity: In similar way to ecological characterization of 
species diversity, the CBVs attributed to pixels of a certain 
land-cover class, represent the different variants of this class. 
Heterogeneity of an ecological system is examined among other 
indexes by its species' diversity. Analogues to that, 
heterogeneity of a class may be examined through its CBV 
diversity. CBV diversity of a certain class was measured 
according to Shannon-Weiner information index: 

CBV Diversity (CBVD) = �
=

20

1

ln*
i

ii pp  (1) 

   
 where i stands for the 5% intervals of the CBV (e.g., i=1 is 0%-
5% CBV and i=20 is 95%-100%) and p stands for the 
proportion of each interval relative to the overall class. 
 

 CBVD PHBL US-CEM KBS-CEM 

Cotton 0.75 95% 94% 95% 

Sunflower 1.17 94% 91% 92% 

Wheat 2.00 68% 78% 88% 

Legume 2.53 51% 67% 88% 

Orchards 2.19 37% 65% 77% 

Shrubs 2.42 14% 29% 81% 

Nat_Veg 2.76 10% 30% 83% 
Table 4: Values of CBVD, PHBL, US-CEM and KBS-CEM 

for each class. 
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Figure 3: Relationships between heterogeneity index 

(CBVD) and classification efficiency measures (CEM) of US 
and KBS classifications. 

 
A high CBVD is expected when there is a wide range of CBV 
values attributed to a class, which indicates heterogeneity and, 
conversely, a low CBVD is expected for cases in which there is 
dominancy of a certain signature. As inferred from Table 4, 
summer crops are very homogeneous, whereas wheat, orchards, 
legumes and shrubs are more heterogeneous. It may be 
hypothesized that as class heterogeneity increases, the 
recognition ability of a classification decreases. This hypothesis 
is partially supported by the classification results. When the 
classification efficiency (CEM) is regarded as a measure 
representing the lower value between accuracy and reliability of 
each class, there was found moderate correlations (r2 = 0.69) 
between CBVD and CEM for the US and lower for the KBS (r2 
= 0.59; Figure 3). However, the US classification efficiency is 
highly more affected by the heterogeneity. Slope of linear trend-
line of the US is five times higher then this of the KBS (0.3 vs 
0.065). These moderate correlations indicate that heterogeneity 
alone does not fully characterize the limitedness of the US 
classification, and there is a need to analyze how unique is each 
class.   
Uniqueness: is represented by the PHBL obtained for each 
class (Table 4). Wherever a class is composed solely of unique 
variants it gains a relatively high PHBL (e.g., cotton) as there 
are negligible conflicts in most of its pixels. High correlation (r2 
= 0.94) was found between the CEM of the US and the PHBL 
(Figure 4). In addition to the moderate correlation found with 
the CBVD it can be concluded that the success of an ‘off-the-
shelf’ US classification diminishes with increasing 
heterogeneity of a class, and to a greater extent than its 
diminution with decreasing uniqueness.  
In contrast, the CEM of the KBS presented moderate 
correlation with PHBL (Figures 4), and with five times lower 
slope. Together with the moderate correlation eith the CBVD 
and low slope it is suggested that the KBS facilitates 
identification of a class beyond its internal variability 
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(heterogeneity) and its similarity to other classes (lack of 
uniqueness). 
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Figure 4: Relationships between uniqueness index (PHBL) 

and classification efficiency measures (CEM) of US and KBS 
classifications. 

 
6. SUMMARY AND CONCLUSIONS 

The use of KBSs based on evidential reasoning, for land-cover 
mapping based on remotely-sensed images is spreading widely. 
Secondary products of such classification techniques are the 
CBVs which are unique features of the Dempster-Shafer 
algorithm. However, despite the major role of CBVs in KBS 
classification decisions, their analysis has received little, 
attention in the literature. In the present study relationships 
between CBVs of the different classes and the 
accuracy/reliability of their corresponding classifications were 
investigated. The CBVs were found to be good indicators of the 
level of classification complexity on both the pixel and the class 
scales. In this framework we added two new parameterizations 
for the CBV distribution: PHBL and CBVD, two parameters 
which contribute to the analysis of the heterogeneity and the 
uniqueness of a class. 
Correlations were found between US and KBS classification 
efficiency and levels of heterogeneity and uniqueness of a class. 
However, US classification efficiency was much more affected 
by the heterogeneity and uniqueness levels of a class as referred 
by five times higher slopes of the trend-lines. In other words, 
the KBS facilitates identification of a class beyond its internal 
variability (heterogeneity) and its similarity with other classes 
(lack of uniqueness). Finally, contrary to the intuitive 
expectation, CBVs do not indicate the reliability of 
classification. Low CBVs are indicative of complex situations 
or difficulties but do not necessarily imply that they cannot be 
resolved by the KBS. 
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