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ABSTRACT: 

 

The least-squares matching algorithm (LSM) for area-based image matching is a well known technique in photogrammetry and 

computer vision since more than two decades. Differences between two or more images can be modelled by estimating geometric 

and radiometric transformation functions within the functional model. Commonly the affine transformation is used as geometric 

transformation. Since this approach is not strict in terms of the projective imaging model, it is worthwhile to investigate alternative 

transformation models. 

This paper presents an advanced least-squares matching algorithm that uses the projective transformation model and polynomial 

transformations to handle geometric distortions between the images. The projective approach is geometrically strict as long as object 

surface and image sensors are planes. The polynomial approach is supposed to be geometrically strict for plane image sensors and 

non-plane object surfaces. The possibility of this kind of expansions has been mentioned in several papers but up to now no publicly 

available investigation is known. First results of the new geometric model have been published by the authors in 2008, showing 

promising effects on non-planar object patches. 

 

 

                                                                 

*  Corresponding author 

1. INTRODUCTION 

Least squares matching (LSM) is a method for the geometric 

and radiometric matching of two or more image patches from a 

reference image (template) with respect to a search image. The 

method was developed in the beginning of the 1980ies. Förstner 

(1982) discussed the LSM approach for the one-dimensional 

case (applied to an image line) by integrating one translation 

parameter. Ackermann (1984), Pertl (1984) and Grün (1985) 

adopted the idea and enhanced it by additional geometric and 

radiometric parameters to the two-dimensional case with square 

or rectangular patches. All mentioned authors used an affine 

transformation as a linear geometric model. They have already 

stated that the applicability of affine transformation is restricted 

to small image patches if non-planar object surfaces appear. In 

the following years some interesting modifications of LSM have 

been published, e.g. the enhancement to multi-image adjustment 

with additional geometric constraints (Grün & Baltsavias 1988). 

More generalised approaches for object-oriented matching were 

developed by Wrobel (1987), Schneider (1990) and others. 

Since then he performance and practical usability has been 

demonstrated by many authors. 

 

This paper presents an advanced least-squares matching 

algorithm that uses the projective transformation model and 

polynomial transformations to handle geometric distortions 

between the images. Within LSM the geometric relationship 

between two image planes (i.e. partially plane object surface) is 

strictly defined by the plane projective transformation (eq. (6)). 

As a consequence, the functional model becomes more complex 

since the model is not linear. If the surface consists of 

curvatures within the matching patch, polynomials of second or 

higher order (eq. (23)) can be applied. 

In the following the functional models for the plane projective 

transformation and the second order polynomial transformation 

will be derived. Subsequently the geometric enhancement is 

investigated with respect to the matching accuracy. 

In test 1 the two-dimensional matching accuracy is verified by 

means of synthetic image data. In test 2 the enhanced geometric 

functions have been implemented into a program for free-form 

surface measurement. A calibrated reference body is then 

measured providing a direct comparison of measured 3D data 

with respect to the calibrated surface. 

 

 

2. THE FUNCTIONAL MODEL 

Given two image functions of two patches of the same size: 

 

),y(xg '''  (image 1) 

)","(" yxg  (image 2) 

 

The main idea for LSM is that image 1 can be projected into 

image 2 (in general image n) by geometric and radiometric 

transformation. Since the geometric model defines the 

functional relationship between both corresponding image 

patches, the coordinates of image 2 can be written as a function 

of the coordinates in image 1: 

 

)','(" yxfx x  

)','(" yxfy y  (1) 

 

Under consideration of the remaining noise functions e'(x',y') 

and e''(x'',y'') the geometric model between both image 

functions yields 
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Since the result of the transformation according to (1) is a non-

integer number, the greyvalue g" has to interpolated. 

In general, functions fx and fy can be formed by arbitrary two-

dimensional coordinate transformations. The here applied 

projective and polynomial transformations are described in 

detail in sections 2.1 and 2.2. 

For the radiometric transformation usually a linear contrast 

stretching with two parameters is applied: 
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The function is solved by least-squares approach where the 

square sum of greyvalue differences between the image patches 

is minimised. After substitution the noise functions to 
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the observation equations are defined by  

 

)','('))','(),','(("

)''()','(

10 yxgyxfyxfgrr

yxvyxl

yx 


 (5) 

 

 

2.1 Projective transformation 

Applying the plane projective transformation as the geometric 

model in (1), the following equations are used: 
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Eight parameters are to be determined whereby a0 and b0 define 

the relative displacement between both image patches in x- und 

y-direction. Applying the transformation equations in (3), the 

linearised correction equation yield: 
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It has to be pointed out that the differential quotients for 

parameters c1 and c2 appear twice, since partial derivatives are 

built in each fx and fy. They can be combined later (eq. (21) and 

(22)). 

The partial derivatives of the geometric parameters are formed 

by the derivatives of the outer function (image function) and the 

inner function (geometric transformation). The derivatives of 

the outer function correspond to the image gradients 
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The greyvalue gradients can be determined by suitable 

operators, e.g. Roberts gradient. 

In particular the differential quotients of all ten unknowns are 

given by: 
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Applying the differential quotients in (7), equations (16) and 

(13) as well as (11) and (19) can be combined: 
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2.2 Polynomial transformation 

Applying the polynomial transformation as the geometric model 

in (1), the following equations are used: 
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Parameter n defines the polynomial order and will be set to n=2. 

Consequently, the 12 parameters a00,a10,a11,a20,a21,a22, 

b00,b10,b11,b20,b21,b22 are to be determined as unknowns. The 

coefficients a00 and b00 define the relative displacement between 

both image patches in x- und y-direction. 

In analogy to (7) linearised correction equation must be formed. 

The differential quotients yield: 
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Now the equation system of linearised correction equations can 

be formed. The vector of unknowns x̂  contains the corrections 

of the transformation parameters, the design matrix A contains 

the differential quotients, the observation corrections are stored 

in vector v and the greyvalue differences are kept in vector l. 

The following equation system must be solved: 

 

nuunnn .,1,1,
x̂Avl   (38) 

 

 

where 

n: number of observations (= number of pixels in  

  reference image) 

u number of unknowns (8 or 12 geometry  

  parameters and 2 radiometry parameters) 

 

Least squares adjustment according to L2 norm yields: 
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 (39) 

 

Using identical weights for all observations, the weight matrix P 

becomes the identity matrix. In some cases it might be useful to 

use individual weights, for instance if particular parts of the 

reference image are of higher importance for the matching, e.g. 

the centre of the window. Some of these weighting functions 

have been discussed by Piechel (1991). 

 

Equation (39) will be solved iteratively. Since some of the 

differential quotients contain unknowns, the A matrix must be 

set up in each iteration. 

 

3. INVESTIGATIONS 

Two different test scenarios are described in the following 

section. In test 1 the accuracy of calculated image coordinates 

after matching is investigated, hence the quality of parameters 

a0 and b0. For this purpose synthetic image data is created so 

that nominal values for the geometric transformation parameters 

are known. In this way the effectiveness of the enhanced models 

can be investigated with respect to arbitrary geometric 

transformations, limitations, required initial values and other 

input values. 

 

For test 2 the enhanced functions have been implemented into 

our program system PISA (Photogrammetric Image Sequence 

Analysis) which is used for free-form surface reconstruction in 

dynamic scenes. For accuracy assessment a 3D surface 

reference body has been developed which has been calibrated 

by a CMM with an accuracy of about 10µm (Fig. 7). Based on 

calibrated and oriented stereo cameras the surface is measured 

by different matching approaches and compared to the reference 

surface. In this manner absolute quantitative accuracy figures 

can be determined. In addition, by means of colour coded 

deviation maps systematic errors and matching outliers can 

easily be visualised. First experiences with the 3D reference 

body and the PISA package have been published by Luhmann 

et al. (2008) and Bethmann et al. (2009). 

 

If least squares matching is applied a number of different 

aspects affect the final result significantly: 

 

- greyvalue distribution of image functions (texture) 

- patch size of template (reference window) 

- amount of geometric distortion between both images 

- quality of initial values, especially for shift parameters  

- selection of transformation functions for matching 

 

The main objective of the following investigations is the better 

understanding of the effect on matching quality for different 

geometric approaches. For sake of comparison only the 

geometric transformation function is modified in the following 

tests. 
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3.1 Test 1 

For the first test an image is modified by projective and 

polynomial transformation with given parameters (Fig. 1): 

 

 
Fig. 1: Generation of synthetic image data (projective and 

polynomial) 

 

Subsequently both image pairs are matched by LSM using 

affine, projective and polynomial transformation (template size: 

20 x 20 pixel). The following diagrams show the differences 

between nominal and measured data for the shift parameters a0 

and b0 after 15 iterations. Fig. 2 shows the results for the image 

pair that has been resampled by projective transformation. 

 

 
Fig. 2: Deviations of shift parameters for the projectively  

distorted image pair 

 

Using the affine transformation a systematic offset of about 1/10 

pixel remains after 7 iterations. As expected, using the 

projective transformation the nominal values are achieved after 

8 iterations. If the polynomial function is used the nominal 

values are also obtained, yet after 11 iterations. It can be 

concluded that the polynomial approach is able to handle 

projective distortions. Since the polynomial function can not be 

derived from the projective transformation and vice versa, the 

latter result is of major importance. 

 

Fig. 3 shows the differences between nominal and measured 

data for the shift parameters a0 and b0 after matching of the 

image pair that has been resampled by polynomial 

transformation: 

 

 
Fig. 3: Deviations of shift parameters for the polynomially  

distorted image pair 

 

The results show that affine and projective transformation yield 

to similar systematic errors in the order of 1/4 to 1/3 pixel. 

Again as expected, the polynomial approach leads to nominal 

values. 

 

The tests have been repeated for further image pairs that are 

similar to the images shown in Fig. 1 but different with respect 

to the amount of the geometric distortions. Fig. 4 gives an 

impression about applied image deformations. Applying the 

advanced geometric models to these image pairs yields to 

almost the same results as they are described above. 

 

 
Fig. 4: Synthetic image data (projective and polynomial) 

with different geometric distortions 

 

Summarising it can be stated that only the use of the polynomial 

approach yields to the correct match of both image examples. 

 

For both approaches (projective, polynomial) the correlations 

between the estimated unknowns have been investigated. For 

the projective model partially high correlations (>0.9) can be 

observed, in particular for parameters c1, c2 and parameters a1-2 

and b1-2. (see Fig. 5:). Further investigations will concentrate on 

significance and automated elimination of parameters. Using the 

polynomial model correlations of >0.7 do not exist in any case 

(see Fig. 5:).  
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Fig. 5: Correlation coefficients (projective, polynomial) 

 

 

 

3.2 Test 2 

For test 2 the 3D reference body of Fig. 7 is observed by two 

high-speed cameras MiniVis Eco 2 (1.3 Mega pixel, focal 

length c = 12.5 mm, object distance h = 700 mm, stereo base 

b = 600 mm).  

 

 

 
Fig. 6: 3D reference body 

 

Both cameras are calibrated previously and oriented by means 

of coded targets that are attached to the reference body. The 

stereo images are processed with PISA using three different 

geometric approaches (affine, projective, polynomial). For 

matching a patch size of 25 x 25 pixel (equivalent to 18 x 18 

mm in object space) has been used which adapts to the texture 

resolution of the object surface. 

 

 

 
Fig. 7: Experimental set-up with MiniVis cameras 

 

The object surface is measured with a point spacing of about 

3 mm yielding about 23000 points. Fig. 8 shows the comparison 

of measured points against calibrated data. 

 

Affine and projective approach lead to very similar results, thus 

only projective results are displayed. It can clearly be seen that 

systematic errors appear for the "valleys" (positive deviations) 

and for the "hills" (negative deviations). The same effect is 

visible for the histograms of deviations in Fig. 8 The error 

distribution shows a wide shape which is not normally 

distributed. Only in areas that are relatively flat the deviations 

lie within an interval of about ±0.050 mm. Table 1 summarizes 

the achieved accuracies.  

 

 

 
Fig. 8: 3D deviations after matching (left: projective; right:  

polynomial) 

 

Using the polynomial approach no systematic errors are visible. 

The percentage of point within the interval of ±0.050 mm rises 

from 15% to 65%, while the mean square error drops from 

0.178 mm to 0.056 mm (see Table 1). 

 

 affine projective polynomial 

RMS  [mm] 0.222 0.178 0.056 

points within ± 

0.050mm 

11% 15% 65% 

points within ± 

0.100mm 

30% 40% 95% 

 

Table 1: RMS values and number of points within  

±0.050 mm and ±0.100 mm 

 

 

In conjunction with this test the above mentioned patch size for 

matching has to be discussed. Additional tests have shown the 
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remaining systematic errors become less for affine and 

projective transformations with smaller patch sizes. 

 

In practice the limiting factors for minimising patch sizes are, 

on the one hand, the selected transformation model and hence 

the number of estimated unknowns. On the other hand, object 

texture and imaging resolution play an important role for 

selectable patch sizes. Therefore, the theoretically miminum 

patch size can not be used. In addition, even with minimum 

patch sizes systematic deviation remain in the measured data. 

For applications with highest accuracy specifications the type of 

geometric model, the resolution of texture and imaging devices 

and the maximum curvature of the object surface have be taken 

into account in order to select the most useful configuration. 

 

 

4. SUMMARY 

The article presents two enhancements for least squares 

matching concerning the geometric transformation model. The 

approaches of plane projective transformation and of 

polynomial transformation have been investigated.  

 

Within two test series it could be shown that affine and 

projective transformations yield systematic errors for the 

measured coordinates which depend on the selected matching 

patch size. In addition it could be demonstrated that the 

polynomial approach allows for a high accurate reconstruction 

of curved surfaces. In all tests the polynomial transformation 

generates result without remaining systematic errors whereby 

the results are, within reasonable limits, independent of the 

selected patch size.  

 

 

5. REFERENCES 

Ackermann, F. (1984): Digital image correlation: performance 

and potential in photogrammetry. Photogrammetric Record 11 

(64), S. 429-439. 

Bethmann, F., Herd, B., Luhmann, T., Ohm, J. (2009): 3D-

Erfassung von Freiformflächen aus Bildsequenzen unter 

Berücksichtigung von Störobjekten. In: Publikationen der 

Deutschen Gesellschaft für Photogrammetrie, Fernerkundung 

und Geoinformation e.V., Band 18, S. 303-315. 

Foerstner, W. (1982): On the geometric precision of digital 

correlation. International Archives of Photogrammetry and 

Remote Sensing, 24 (3): S. 176-189. 

Gruen, A. W. (1985): Adaptive least-squares correlation – a 

powerful image matching technique. South African Journal of 

Photogrammetry, Remote Sensing and Cartography, 14 (3): S. 

175-187. 

Gruen, A. W., Baltsavias, E. P., (1988): Geometrically 

constrained multiphoto matching. Photogrammetric 

Engineering and Remote Sensing, 54 (5): S. 633 – 641. 

Luhmann, T., Bethmann, F., Herd. B., Ohm, J. (2008): 

Comparison and Verification of Optical 3-D Surface 

Measurement Systems. International Archives for 

Photogrammetry and Remote Sensing, Vol. 37, Part 5B, 

Beijing, pp. 51-56. 

Pertl, A. (1984): Digital image correlation with the analytical 

plotter Planicomp C-100. International Archives of 

Photogrammetry and Remote Sensing 25 (3B), S. 874-882. 

Piechel, J. (1991): Qualität der automatischen Höhenmessung 

in Stereobildern durch flächenbasierte Kernlinienkorrelation. 

Deutsche Geodätische Kommission bei der Bayrischen 

Akademie der Wissenschaften, Dissertationen, Reihe C, Heft 

Nr. 376. 

Schneider, C. T. (1991): Objektgestützte Mehrbildzuordnung. 

Dissertation, Deutsche Geodätische Kommission, Reihe C, Nr. 

375. 

Wrobel, B. (1987). Digitale Bildzuordnung durch Facetten mit 

Hilfe von Objektraummodellen. Bildmessung und 

Luftbildwesen (BuL), Band 55, Heft 3, S. 93-101. 


