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ABSTRACT

In this paper we propose a strategy for the orientation and auto-calibration of wide-baseline image sequences. Our
particular contribution lies in demonstrating, that by means of robust least-squares adjustment in the form of bundle
adjustment as well as least-squares matching (LSM), one can obtain highly precise and reliable results. To deal with large
image sizes, we make use of image pyramids. We do not need approximate values, neither for orientation nor calibration,
because we use direct solutions and robust algorithms, particularly fundamental matricesF, trifocal tensorsT , random
sample consensus (RANSAC), and auto-calibration based on the image of the dual absolute quadric. We describe our
strategy from end to end, and demonstrate its potential by means of examples, showing also one way for evaluation. The
latter is based on imaging a cylindrical object (advertisement column), taking the last to be the first image, but without
employing the closedness constraint. We finally summarize our findings and point to further directions of research.

1 INTRODUCTION

(Hartley and Zisserman, 2000) has transformed the art of
producing a Euclidean model from basically nothing into
text-book knowledge. As can be seen from recent exam-
ples such as (Nistér, 2004, Pollefeys et al., 2004, Lhuillier
and Quan, 2005) a very high level has been reached.

We also head into this direction, making it possible to gen-
erate a Euclidean three-dimensional (3D) relative model
(no scale, translation, and rotation known, i.e., seven de-
grees of freedoms undefined) from not much more than
the images and the knowledge, that the images are per-
spective and sufficiently overlapping. Besides the latter,
we make two in many practical cases reasonable assump-
tions, namely, that the camera is not too strongly (below
about 15�) rotated around its optical axis between consec-
utive images and that all images are taken with one set of
calibration (interior) parameters. The latter has to be true
only approximately. While we cannot deal with zooming,
we found empirically, that we can handle focusing.

The strategy, that we propose, particularly focuses on ro-
bust least-squares adjustment (Mikhail et al., 2001) in
the form of bundle adjustment and least-squares matching
(LSM). By means of affine LSM, we obtain highly precise
conjugate points. Together with bundle adjustment, which
we use for the computation of every fundamental matrixF
as well as trifocal tensorT , and after linking triplets via 3D
projective transformation, we obtain highly precise and at
the same time reliable solutions. This is demonstrated by
means of two examples, in one of which a cylindrical ob-
ject (advertisement column) was imaged with 28 images.
Even though the information, that for the last image the
first has been taken, has not been used in the adjustment,
the cylinder is preserved very well.

Basically, our strategy rests on extracting points which we
match highly precisely with LSM (cf. Section 2). Section
3 explains how hypothesis for conjugate points undergo
rigorous geometric checks by projective reconstruction via

computingF andT , robustified by means of random sam-
ple consensus (RANSAC), as well as linking triplets via
3D projective transformation. All, including intermediate
results of projective reconstruction are improved via robust
bundle adjustment, important issues for which we explain
in Section 4. As we deal with images of several Mega pix-
els, we employ image pyramids including tracking points
via LSM through the pyramid (cf. Section 5). The pro-
jective reconstruction is upgraded to Euclidean via auto-
calibration, described in Section 6. In Section 7 we demon-
strate the potential of our strategy, particularly the high ge-
ometric precision and reliability achievable by means of
LSM and bundle adjustment by means of an experiment
specifically designed to evaluate the precision of the 3D
reconstruction. Finally, we present a summary and direc-
tions for further research.

2 POINT EXTRACTION AND LEAST-SQUARES
MATCHING

We start by extracting F̈orstner (F̈orstner and G̈ulch, 1987)
points. An even distribution of the conjugate points on the
image is enforced if possible by regional non-maximum
suppression in the reference image of a particular matching
step. No suppression is employed in the other images, be-
cause due to noise and occlusions the regionally strongest
points in two images do not have to be the conjugate points.

Contrary to most approaches, we do not use the coordi-
nates of the points for the conjugate points directly, but we
determine relative coordinates by selecting one image and
determining the relative shift of image patches around the
points in the other images via LSM. This has the big ad-
vantage, that we obtain an estimate of the precision of the
match.

To be able to deal with large baseline scenarios, we use as
search space the size of the image. This naturally leads to
a large number of hypotheses. As LSM is computational
expensive, we first sort out unlikely candidates for conju-
gate points by means of normalized cross correlation. We



particularly have found that correlating in red, green, and
blue and combining the outcome by means of multiplica-
tion is a good choice for making use of color information.
We employ a relatively low threshold of0:73 to keep most
of the correct points. Experiments with color spaces have
not been successful as we found the color information to
be mostly noisy, leading to bad correlation in the chromi-
nance, etc., band.

As color information has already been used, we do not
make use of it for LSM. For it, we employ affine geo-
metric transformation, because the parameters for a projec-
tive transformation cannot be reliably determined for im-
age patches in the range of11 � 11 pixels. Additionally
to the the six affine geometric parameters, we determine a
bias and a drift (contrast) parameter for the brightness. For
two images we just match the second to the first. For three
and more images we determine an average image in the
geometry of the reference image. Matching against it, we
avoid the bias by a radiometrically badly selected reference
image (e.g., distorted by occlusion).

The result of this step are highly precise image coordinates
for the conjugate points including an estimate of the pre-
cision. This value is mostly over optimistic (one often ob-
tains standard deviations in the range of one hundredth of a
pixel), but they still give a good hint on the relative quality
of the solution obtained.

3 ROBUST PROJECTIVE RECONSTRUCTION

The conjugate points of the preceding section are input for
projective reconstruction. Basically, the goal is reconstruc-
tion of the whole sequence. Because of the inherent noise
and due to problems with similar and repeating structures
as well as occlusions, the strategy needs to be rather robust,
and at the same time efficient.

We have decided to use triplets as the basic building block
of our strategy. This is due to the fact, that by means of
the intersection of three image rays one can sort out wrong
matches, i.e., outliers, highly reliably. Opposed to this,
one cannot check the depth for image pairs, as the only
constraint is, that a point has to lie on the epipolar line.
Even though using triplets as basic building block, com-
binatorics suggests to actually start with image pairs, re-
stricting the search space via epipolar lines. For the ac-
tual estimation of the relations of pairs and triplets we em-
ploy F andT (Hartley and Zisserman, 2003). Triplets are
computed sequentially and are linked by means of project-
ing points of the preceding triplet via the newT into the
new last image resulting into (n+1)-fold points as well as
computing the projection matrix of the last image via 3D
projective transformation for the first and second but last
images. (Projection matrices forF andT can be obtained
with the standard algorithms explained in (Hartley and Zis-
serman, 2003).) Finally, points not yet seen are added.

Of extreme importance for the feasibility of our strategy is
the use of robust means, particularly RANSAC (Fischler
and Bolles, 1981), that we use for the computation ofF

and T . As we are dealing with a relatively large num-
ber of outliers in the range of up to 80%, RANSAC be-
comes especially for the computation ofT extremely slow.
This is mostly due to the fact, that for reliably estimating
T , it is necessary to compute a point-wise bundle adjust-
ment. We use a modified version of RANSAC speeding up
the computation by more than one order of magnitude for
high noise levels, where as shown in (Tordoff and Murray,
2002), often much larger numbers of iterations are needed
to obtain a correct result than predicted by the standard for-
mula given in (Hartley and Zisserman, 2003).

4 ROBUST BUNDLE ADJUSTMENT

Bundle adjustment is at the core of our strategy. We have
found, that only by adjusting virtually all results, we ob-
tain a high precision, but also reliability. The latter stems
from the fact, that by enforcing highly precise results for a
large number of points, one can guarantee with a very high
likelihood, that the solution is not random.

Basically this means, that when estimatingF andT , we
compute the optimum RANSAC solution for junks of sev-
eral hundreds of iterations and then we run a projective
bundle adjustment on it. This is done a larger number of
times (we have found empirically five to be the minimum
number), as the bundle adjustment solution is partly much
better than the RANSAC solution and its result can vary a
lot. But having several instances of bundle solutions, there
is nearly always one which is sufficiently precise and rep-
resenting the correct solution.

We employ projective as well as Euclidean bundle adjust-
ment, both including radial distortionds = 1:+ k2 � (r
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0
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) with r the distance of a point to the

principal point (or its estimate) andr0 the distance where
ds is 0. r0 = 0:5 is used as recommended in literature and
empirically verified. We have found by a larger number of
experiments, that it is important to employ radial distortion
only after outlier removal. It is not used at all for the deter-
mination ofF or T , but only after we have tracked down
points to the original image resolution (cf. below).

We originally wanted to employ standard least-squares ad-
justment without Levenberg Marquardt stabilization (Hart-
ley and Zisserman, 2003), to avoid a bias during estima-
tion. Therefore, we are using the SVD-based minimal pa-
rameterization proposed in (Bartoli and Sturm, 2001) for
the first camera for projective bundle adjustment. Yet, we
have found, that only by means of a Levenberg Marquardt
stabilization we can deal with the large initial distortions
of the solution caused by outliers. Particularly, this means,
that we multiply the elements of the diagonal of the normal
equations with1 + stab, the stabilization parameterstab
being adaptively determined by means of varying it with a
factor of 10 between 1.e-5 and 1.

We base the robustness of bundle adjustment on standard-
ized residuals�vi = vi=�vi

involving the standard devia-
tions�vi

of the residuals, i.e., the differences between ob-
served and predicted values. As a first means we employ



reweighting withwi =
p
2 + �vi2 (McGlone et al., 2004).

Additionally, having obtained a stable solution concerning
reweighting, outliers are characterized by�vi exceeding a
threshold, which we have set to 4, in accordance with the-
oretical derivations and empirical findings, eliminating the
outliers for the next iteration.

For bundle adjustment, efficient solutions are extremely
important. E.g., a 29 image sequence as the one presented
below leads to more than thirty thousand unknowns, mak-
ing straightforward computation impossible. We therefore
follow (Mikhail et al., 2001) and reduce the normal equa-
tions in two steps: First, we reduce the points. Secondly,
we also reduce parameters which are common to all, or at
least sets of images, namely the calibration and / or (ra-
dial) distortion parameters. This results into a tremendous
reduction in computation time and storage requirements,
even when computing also�vi

.

5 HIERARCHICAL PROCESSING VIA
PYRAMIDS

As we deal with relatively large images in the range of 5
Mega pixels or above and we assume at the same time, that
we do not know the percentage or direction of overlap of
the images, only a hierarchical scheme allows for an ade-
quate performance. We particularly compute image pyra-
mids with a reduction factor of2. For the highest level we
found that a size of about100 � 100 pixels is sufficient in
most cases. On this level we computeF. T are computed
on the second highest and for images with a size of more
than1000� 1000 pixels also on the third highest level.

We do not computeT on the fourth highest or lower lev-
els, firstly due to the complexity of the matching and sec-
ondly because already on the second or third highest level
we obtain for most sequences hundredth of points, more
than enough for a stable and precise solution. To still use
the information from the original resolution, we track the
points via LSM down to the original resolution once the
sequence has been oriented completely on the second or
third highest level. This is rather efficient also for images
of several Mega pixels. As reference image we use for ev-
ery point the image, where the point is closest to the center
of the image, assuming that there the perspective distortion
of the patches around the points is minimum on average.
After tracking, a final robust projective bundle adjustment
is employed, at this time including radial distortion.

6 AUTO-CALIBRATION

To proceed from projective to Euclidean space, one needs
to estimate the position of the plane at infinity�1 as well
as the calibration matrix

K =

2
4

c c � s x0
c � (1 +m) y0

1

3
5

with c the principal distance,m the scale factor betweenx-
andy-axis, needed, e.g., for video cameras with rectangu-
lar instead of quadratic pixels,x0 andy0 the coordinates of

the principal point inx- andy-direction, and finallys the
sheer, i.e., the deviation of a90� angle between thex- and
they-axis. The latter can safely be assumed to be zero for
digital cameras.

To computeK and a transform to upgrade our projective to
a Euclidean configuration, we use the approach of Polle-
feys (Pollefeys et al., 2002, Pollefeys et al., 2004). It is
based on the image of the dual absolute quadric

!� � KK> � P
�P>

which is related to the calibration matrix multiplied with
any scalar6= 0 (K) and the dual absolute quadric
�, pro-
jected by the projection matricesP. (Pollefeys et al., 2002,
Pollefeys et al., 2004) employ knowledge about meaning-
ful values and their standard deviations for the parameters
of K to constrain the computation of
� such as, that the
principal distance is one with a standard deviation of nine
and all other parameters are zero with standard deviations
of 0:1 for the principal point andm and0:01 for s. The re-
sult is a transformation matrix from projective to Euclidean
space and oneK for every image.

We have experienced, that the resulting Euclidean config-
uration can be some way off the final result, especially for
longer sequences. I.e., for the sequence of 29 images be-
low, the estimated principal distance, known to be con-
stant, varied between0:3 and3. To avoid this problem,
we have found it to be sufficient to compute the calibration
for the first few images and transform the rest of the se-
quence accordingly. Though this has worked for our exper-
iments, a better way might be to define a number of images
n, say three or five, and compute the calibration, which is
of very low computational complexity, for all subsequent
n images. Finally, the solution should be taken with the
smallest summed up standard deviation of all parameters
for the averageK.

As demonstrated, e.g., by the experiments below, robust
bundle adjustment including radial distortion is an absolute
must after calibration. We start with configurations where
the back projection errors can be in the range of several
hundred pixels. This stems from the fact, that the cali-
bration procedure produces locally varyingK (cf. above).
Using Levenberg Marquardt stabilization, it is possible to
bring down theses large values to fractions of a pixel. In
the beginning the multiplication factor for the elements on
the main diagonal can be as high as two, i.e.,stab = 1.

Because also after projective bundle adjustment there still
can be a large number of outliers, also the strategy for bun-
dle adjustment was found to be very important. This is due
to the fact, that we accepted sound configurations in pro-
jective space, which yet can imply relatively differentK.
Optimizing all parameters of an averageK simultaneously
can lead to initially very wrong values forx0, y0, ands.
It was therefore found to be very important to first opti-
mize onlyc andc � (1 +m), and to optimize the rest of the
parameters only when this adjustment has converged. Op-
timizing c andc � (1 +m) independently makes the whole
procedure less stable on one hand, but allows on the other
hand to check the quality of the result by comparing both.



7 EXPERIMENTS AND EVALUATION

In this section we report about results for the proposed
strategy and propose one means to evaluate results. All
images used in the experiments shown here have been ac-
quired with the same camera, namely a Sony P100 5 Mega
pixel camera with Zeiss objective using the smallest possi-
ble focal length / principal distance to optimize the geom-
etry of the intersections. To guarantee sharp images (and
to make the experiments more difficult), the camera was
allowed to auto-focus, leading to slightly varying princi-
pal distances. We first present the result for one example
out of tens, namely the scene yard, for which our strat-
egy works reliably using the same set of parameters. I.e.,
one acquires the images, runs the program implementing
the strategy and obtains the result consisting of 3D points,
camera translations and rotations as well as the calibration,
all including standard deviations.

Additionally, we report about one experiment we have de-
vised to evaluate the quality of the solution. For it we ac-
quired 28 images of an advertisement column, which is
close to a perfect cylinder. The images have been taken
walking unconstrained, so there is some flexibility in the
orientation. Though, by always trying to be able to see the
whole width of the column, there was a strong constraint
to actually take the images from positions on a circle.

The scene yard consists of eight images taken in a back-
yard. The first three images and the last image are given in
Figure 1. Figure 2 shows a view on the resulting VRML
model. For the sequence we have obtained 426 threefold
points, i.e., points which could be matched in three im-
ages, 377 fourfold, 228 fivefold, 103 sixfold, and 20 sev-
enfold points resulting in an uncalibrated back projection
error�0 of 0.39 pixels and a�0 of 0.3 pixels after calibra-
tion. Further parameters such as the calibration matrixK
can be found in Table 1.

Figure 2: Visualization of points (red) and cameras (green
pyramids) of model yard

number images 8
�0 projective / Euclidean 0.39 / 0.30 pixel

K
1:247 �0:001 �0:004

1:251 0:0024
1

k2 / k4 (radial distortion) -0.041 / -0.069

Table 1: Results for sequence yard

Of the 28 approximately evenly spaced images of the ad-
vertisement column / cylinder, the first three and the fifth
are shown in Figure 3. Four other images, showing the va-
riety of texture found on the column, are given in Figure
4.

For the evaluation we have devised three experiments. The
first is with the original resolution of2592 � 1944 pixels,
the second with the resolution reduced by a factor of three,
i.e.,864� 648 pixels, and for the last experiment we have
reduced the resolution by a factor of three and the number
of images, wherever there is enough texture, by a factor of
two. I.e., we have taken the first, third, and fifth image,
etc., as shown in Figure 4.

On the original resolution we obtained 2498 threefold,
3387 fourfold, 2559 fivefold, 1085 sixfold, 309 sevenfold,
and 45 eightfold points, as well as one ninefold point re-
sulting in a back projection error of�0 = 0:1 pixels on the
third highest pyramid level and of�0 = 0:29 pixels after
tracking down to the original resolution. Auto-calibration
resulted into estimatedc = 1:04 andc � (1 +m) = 1:05.
The resulting configuration is given in Figure 5 left. The
back projection error has been in the range of 500 pixels
before bundle-adjustment. Bundle adjustment reduced it
to 0:19 pixels. The final result is very close to a perfect
cylinder as proven by Figure 5 right.

Table 2 shows a comparison of the results. They are
rather similar for the original and the reduced resolution
sequence. This suggests, that probably because of the rela-
tively small pixel size of the employed mid-end Sony P 100
consumer camera, the original resolution does not convey
much more information than the reduced resolution. Sim-
ilar findings have been made for other sequences. On the
other hand, the results for the sequence with the reduced
number of images are rather different. This probably stems
from the fact, that the overlap between the images is small
and the view angles on the surface are partly rather large.
For large areas of weak or no texture, such as in image thir-
teen (cf. Figure 4), we even had to use the original configu-
ration. One can see this, e.g., as a hole in the upper right of
the cylinder in Figure 5, right. The comparison of Tables
2 and 1 shows, that even though the time between acquir-
ing the cylinder and the yard sequence was about one year,
all the parameters including the distortion are rather simi-
lar, if enough images were used for the cylinder sequence.
(Please remember, that the same camera has been used.)

For the evaluation of the different versions of the cylinder
sequence, we have taken the first image to be the last image
of the sequence as well. Instead of using this information
in the bundle adjustment, we employ it for evaluation by



Figure 1: First three images and image eight, i.e., last image, of sequence yard

Figure 3: First three images and fifth image of the original sequence cylinder with 28 images

Figure 4: Images eight, thirteen, eighteen and twenty three of the original sequence cylinder

Figure 5: Result for the original sequence cylinder before (left) and after (right) robust Euclidean bundle adjustment. The
first and the last camera are marked as black and blue and the rest of the cameras as green pyramids. Points are shown in
red.

comparing the parameters of the first and the last camera,
which ideally should be the same. Table 3 gives two dif-
ferent types of descriptions, namely the translation inx-,
y-, andz-direction of the first= last camera in relation to
the radius of the circle constructed by all cameras, as well
as the difference in rotation (this is the rotation angle of an
axis-angle representation), the latter also in terms of a sin-
gle image. One can see, that the difference is rather small
for the original as well as for the sequence with reduced
resolution. Only for the sequence with the reduced num-
ber of images there is a significant reduction of the quality.

8 SUMMARY AND CONCLUSIONS

We have shown, that via least-squares adjustment based
techniques, particularly least-squares matching and bundle
adjustment, highly precise and at the same time reliable
results can be obtained. This has been demonstrated by
means of a cylindrical object, for which it was shown, that
the ring of cameras closes very well and for which at least
visually also the shape is preserved extremely well. By
means of enlarging the distance between the cameras, we
have shown difficulties of the strategy when using a weaker



original resolution reduced by 3 reduced number images
number images 29 29 22
�0 projective / Euclidean 0.29 / 0.19 pixel 0.12 / 0.08 pixel 0.24 / 0.13 pixel

K
1:239 0:0002 0:002

1:241 0:0001
1

1:242 0:0001 0:003
1:241 �0:0003

1

1:168 �0:0006 �0:0015
1:179 �0:0062

1
k2 / k4 (radial distortion) -0.040 / -0.060 -0.043 / -0.053 -0.041 / -0.069

Table 2: Results for sequence cylinder

original resolution reduced by 3 reduced number images
dx / dy / dz in % of radius circle images 3.5 / -0.36 / 0.74 3.8 / -0.81 / 0.8 7.1 / -1. / 1.1
d� global /d� per image 5� / 0:18� 5:8� / 0:21� 8:7� / 0:41�

Table 3: Differences in translation and rotation of the parameters of the first= last image of sequence circle.dx, dy, and
dz are given in relation to the approximate radius of the circle constructed by the camera positions.

geometry.

A first issue for further research is a more quantitative eval-
uation of the shape of the given object. This could be done
in our case by fitting a cylinder to the object and determin-
ing the distances from this cylinder. Though the object is
not an ideal cylinder, it should be rather close to it.

Calibration is a further issue. Here the approach of (Nistér,
2004) based on the cheirality constraint seems to be ex-
tremely promising. We also still need to deal with planar
parts of the sequence. For this we want to follow (Pollefeys
et al., 2002), though we note that we have found the is-
sue of model selection (homography versusF or T ) rather
tricky.

Finally, an issue that we see as particularly important to
achieve the goal of being able to orient also traditional pho-
togrammetric close range image setups is matching which
is more invariant with respect to strong geometric distor-
tion. For it we find especially (Georgescu and Meer, 2004)
and (Lowe, 2004) very interesting.
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