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ABSTRACT:

In this paper, we propose a robust metric structure from motion (SfM) algorithm for an extended sequence with outliers and missing
data. There are three main contributions in the proposed SfM algorithm. The first is a novel jury-based preemptive LMedS procedure
to achieve efficient outlier detection. The second contribution is a new iterative two-step scheme that consists of robust estimation
techniques for projective structure from motion. The third contribution is a novel algorithm for robust metric upgrade by applying the
M-estimator to the traditional linear constraints for metric upgrade. In addition, comparisons of the proposed algorithm with some
previous methods through experiments on simulated data are shown to demonstrate the efficiency and robustness of the proposed
algorithm
.

1. INTRODUCTION

Structure from motion (SfM) has been one of the central
problems in computer vision. Recent advances on multi-view
geometry have been summarized in some representative books
[1,2]. Since the outlier and missing data problems are inevitable
during the process of automatic extraction and correspondence
of feature points in practice, recent researches on SfM has
focused on improving the robustness of SfM. In this paper, we
proposed a novel algorithm to achieve the metric SfM for a long
sequence with large missing data and outliers. We compare the
proposed algorithm with previous methods through experiments
on simulated data.

Some previous works on dealing with the missing data problem
in SfM are briefly reviewed in the following. For the projective
SfM, Fitzgibbon and Zisserman [4] proposed a solution based
on trifocal tensor. Later, Martinec and Pajdla [3] proposed an
algorithm that combines Sturm and Triggs' projective
factorization method [5] and Jacob's fitting method [6] based on
the subspace constraint. Note that this algorithm is used for
comparison with the proposed method in the experimental
results. On the other hand, several related works were
developed under affine camera assumption, i.e. [6, 7], which
simplifies the SfM to a linear system. This affine approximation
of the SfM problem makes it equivalent to principle component
analysis (PCA) with missing data [8], which is easier than the
projective SfM in principle.

In addition, let us consider the other closely related issue -
outlier problem. Up to now, there still exists no solution to
handle outliers under projective SfM for a long sequence,
though there were some previous methods developed based on
pairwise or triplet views. For example, Torr [9] proposed the
MAPSAC technique to estimate the fundamental matrix. Aanaes
et al. [10] proposed to apply the robust M-estimators under the
assumption of affine camera, thus leading to a linear system
equivalent to the problem of robust PCA with outliers [11]. In
this paper, we proposed a robust projective SfM algorithm to
handle outliers in a long sequence.

Figure 1. Flow diagram of the proposed metric SfM algorithm.

The main challenges in SfM come from the input data
contaminated by missing features, mismatches, and false
positions. It is obvious that the subspace / rank constraint on
SfM can alleviate the influence due to Gaussian image noises.
However, the subspace constraint from the measurement matrix
cannot effectively handle outliers. In addition, the high degree
of freedom in the projective matrices as well as the unknown
projective depth makes the detection of outliers difficult.

The main goal in this work is to develop a robust algorithm for
metric SfM from contaminated data without pre-setting any
case-by-case parameters. The flow diagram of the proposed
algorithm is shown in Figure 1, and the details are given in the
next section. There are three main innovative ideas in the
proposed SfM algorithm. First of all, we propose a preemptive
jury-based consensus process, which dramatically improves the
computational efficiency of LMedS estimation for outlier
elimination. Secondly, an iterative projective reconstruction
algorithm is developed to achieve the desired robustness. In this
algorithm, each iteration involves first using the preemptive
LMedS procedure to determine the projective matrices and then
applying the robust M-estimator to optimize the projective
structure as well as the projective depth with the projection
matrices fixed. Thirdly, a robust metric upgrade process by



using the iterative reweighted least squared approach is
proposed. For self-calibration, in order to reduce the sensitivity
of decomposing the projection matrix into camera calibration
matrix and metric camera motion, we further take advantage of
hard constraints on the calibration matrix to achieve a more
robust solution.

The rest of this paper is organized as follows. An overview of
the proposed algorithm is given in the next section. In section 3,
we describe the proposed preemptive jury-based LMedS
technique. Then the proposed iterative two-step projective SfM
algorithm is described in section 4. Section 5 presents the robust
metric upgrade process as well as a self-calibration process.
Subsequently, we demonstrate the performance of the proposed
algorithm on both simulated and real data. Finally, we conclude
this paper in the last section.

2. SYSTEM OVERVIEW

The structure from motion problem is to recover camera
motions as well as object structure from a given image sequence.
To focus on the 3D reconstruction problem, we assume the
feature point correspondences across different views in the
video are given. Note that the given correspondences may
include imperfect data, i.e. missing data and outliers. The
camera information includes intrinsic and extrinsic parameters:
the intrinsic parameters are represented by the camera
calibration matrix, K ; the extrinsic parameters determine the
3 3 rotation matrix, R , and a camera translation vector t .

The flow diagram of the proposed algorithm is shown in figure
1. Started from the preemptive scoring process, we score each
observation from the two-view geometry, i.e. fundamental
matrix. The second stage is the robust projective factorization
via an iterative two-step reconstruction algorithm. Then a
robust estimation approach is applied to the upgrade the
projective reconstruction into a metric one. The error
evaluation, obtained from the residues between the data matrix
and the reconstructed projection and structure matrices,
provides information for further refinement. Followed by
combining additional views, we return to the first stage until all
views are integrated.

3. JURY-BASED PREEMPTIVE LMEDS

RANSAC [12] and LMedS [2] are two traditional robust
techniques to eliminate outliers. However, these techniques are
computationally expensive. Therefore, we proposed a more
efficient procedure to speed up the computational process.
Motivated by Nister’s preemptive RANSAC [14], we
developed the so-called preemptive jury-based LMedS.

Referred to Nister’s literature [14], the preemptive scheme can
be categorized into the depth first and breath first manners. The
depth first manner, noted as an order rule in the preemption
scheme, dominates the hypothesis generation. This rule selects
the inliers with higher likelihood for hypothesis generation
according to previous experiences. On the other hand, the
breath first fashion, noted as the preference rule, efficiently
evaluates the hypotheses on equal footing. Not all observations
are used to score all the selected hypotheses, but this rule
eliminates bad hypotheses in the scoring procedure.

In principal, Nister’s breath first preemptive scheme has a
potential problem that the final result strongly depends on the

scoring series. In his algorithm, the measurement is not on
equal footing because earlier selected observations possess
greater power in the hypotheses elimination than the later
selected observations. We can declare that the breath first
preemptive scheme works well only when the outlier rate is
relatively small. Some experimental results will be shown later
to support this argument.

To overcome the above problem with the breath first scheme
and to further improve the efficiency in the LMedS technique,
we develop a jury-based preemptive scheme in conjunction
with the LMedS process. Instead of a single observation as
used in the breath first scheme of the preemptive RANSAC
method, we select a set of observations into a jury. Under the
assumption of random sampling, the outlier rate in jury is
approximately the same as that in whole. Thus, we can
approximate the median value efficiently. The proposed
jury-based preemptive LMedS process is given as follows,

Algorithm 1. Jury-based preemptive LMedS algorithm

Note that, in Algorithm 1, ( ) 2
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, where M is the

total number of hypotheses and B is the block size, denotes a
decreasing preemption function that indicates how many
hypotheses are to be kept at each stage. The scoring function,
 ,j h , gives a scalar value representing the log likelihood of

the observation, j , given that the hypothesis, h , is the
correct motion model. Note that observations are random
selection of the input matches which are not used for building
hypothesis. For more details of the theoretical derivation of
the preemptive scheme, the readers can refer to Nister’s original
paper [14]. The notations in this section follow those used in
[14]. We modify the scoring process in the proposed preemptive
LMedS scheme and improve the computational efficiency.
Some experiments on simulated data are demonstrated to show
its performance in section 6.

We applied this procedure to the two stages of our algorithm.
One is the computation of fundamental matrix in the preemptive
scoring process; the other is the projective factorization in the
stage of robust projection matrix estimation.

4. ROBUST PROJECTIVE STRUCTURE FROM
MOTION

For projective SfM, the factorization approach can be
formulated as follows,

1. Generate the hypotheses indexed with h = 1,…,
f(1).

2. Randomly permute the observations and classify
them into m juries.

3. Compute the scores L1(h) = median{ρ(j, h) | j
belongs to jury 1} for h = 1, . . . , f(1). Set i = 2.

4. Reorder the hypotheses so that the range h = 1, . . . ,
f(i) contains the best f(i) remaining hypotheses
according to Li-1(h)

5. If i > m or f (i) = 1, quit with the best remaining
hypothesis as the preferred one. Otherwise,
compute the scores Li(h) = median{ρ(j, h) | j
belongs to jury 1 .. i,} for h = 1, . . . , f(i), set i = i +
1 and go to Step 4.
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where W is the measurement matrix formed by input data
matrix, U , and their corresponding projective depths, D . The
operator  denotes the scale (projective depth) multiplying its
corresponding vectors (homogeneous image coordinates). The
matrix form is as follows,
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where i
ju denotes the image position of the j-th point at the

i-th view represented in a homogeneous 3-vector  , ,1
Ti i

j ju v ,

jX is the corresponding three-dimensional position of the j-th

point represented in a homogeneous coordinate, iP is a 3 4
camera projection matrix of the i-th view, and i

j is the

corresponding projective depth in the projective geometry. The
projective 3D-to-2D transformation is written as i i i

j j j u P X .

Applying the singular value decomposition (SVD) to the
measurement matrix enforces the subspace constraint, i.e.
rank-4 constraint. Referred to [1], the algorithm iteratively tunes
the projective depths with the subspace constraint to achieve the
projective reconstruction. The convergence property is further
discussed in [1].

4.1 Robust Determination of the Projection Matrices

Projective factorization is very sensitive to outliers. To
overcome such challenges, robust techniques, such as
RANSAC, can strategically be applied to the original
algorithm to improve the results under outlier disturbance. The
basic requirement for such robust techniques to eliminate
outliers is that there exist more than necessary constraints, so
that the reliability of each constraint can be consensually
evaluated. For the projective factorization, the minimal
reconstruction set requires 3 views with 6 corresponding points.
The robust version for projective factorization is to apply the
preemptive jury-based LMedS to the projective factorization
[1]. Note that the feature selection is based on the Monte-Carlo
process according to the preemptive scores.

4.2 M-estimator to Compute the Projective Structure

Given a set of 2D image points with the associated projection
matrices, the corresponding three-dimensional feature points
can be computed with a closed-from solution once the
projective depths are known. However, the projective depths are
generally unknown. Therefore, we carry out an iteratively
approach to estimate the optimal three-dimensional structure by
adjusting the projective depths appropriately. For the k-th

iteration, we denote the current depth matrix as
kD , and the

closed-from solution can be formulated as follows,

  UDPX   kk
(3)

where †P denotes the pseudo-inverse of the matrix P . Each

projective depth entry in
 1kD at the next iteration is then

updated as   1k kj i i
i j j  P X u . However, to further

improve the robustness, we apply a robust measure at the outer
loop. Thus, the RLS (re-weighted least square) solution replaces
the LS (least square) solution in equation (3). We make use of
the robust  function, such as the Lorentzion (or Cauchy)
function [14] commonly used in robust statistics, to develop the
M-estimation for the projective factorization. The robust 
function is defined [14] as follows
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The minimization of the robust energy function can be achieved
by the iteratively RLS minimization. In this case, the weights
are associated with the given projective matrices, and the
residue is the norm of the error between the 2D image points
and the obtained projective reconstruction which is determined
at the inner-loop by adjusting the depths as described above.
Thus the energy function to be minimized can be written as the
following dynamic energy function, which is changing from
iteration to iteration.

  k k W PX W D U (5)

where the weights associated with the residue is given as
follows
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Note that   ˆ 1.4826 1 5 medn p E   is the median

absolute deviation (MAD) estimation [14].

Algorithm 2. Robust M-estimation of the projective structure
with projective matrices given.

With this modification, the pseudo-inverse of P , turns from the

1. Initialize all the weights to 1, i.e. W = I.

2a. Initialize all 0 1j
i  for 0D and set 0k  .

2b. Normalize the depths by multiplying each column
of D with a constant factor.

2c. Solve   k k WX P D M

2d. Update  1kj
i

 . Set 1k k 
2e. Exit the inner-loop if converged, else go to step

2b.
3. Update the weights by the M-estimator from eq(5)
4. Exit if converged, else go to the inner loop in step 2.



LS solution,  1† T T
P P P P , to the RLS solution,

 1† 2 2T T
WP P W P P W . Given the projective matrix, the

algorithm2 shows the robust estimation of the homogeneous
three-dimensional structure. Note that step 2 in Algorithm 2 is
the inner-loop in order to iteratively determine the projective
depths; step 1, 3, and 4 is for evaluating the reliability of the
input projective matrices for robust estimation of the projective
structure.

5. ROBUST METRIC UPGRADE

To upgrade the projective reconstruction to a metric one, we
have to determine the ambiguity matrix, Η in equation (1).
This has to employ additional constraints, which may come
from the prior knowledge of the camera calibration matrix.
According to the absolute quadric constraint [17], the projection
of the absolute quadric in the image yields the dual image
absolute conic. This formulation of the absolute quadric
constraint is shown as follows,

T
ii

T
iii PPKK **  (7)

The following assumptions provide linear constraints for the
entries in a symmetric 4 4 rank-3 matrix * , i.e

yx ff     1 1 2 2T T
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Note that  ,x yf f are the focal lengths along x- and y-axis,

respectively, s denotes the skew factor,  ,o ou v is the

principle point or image center, and j
iP denotes the j-th row

of iP . The linear (closed-form) solution is referred to [15].

In order to obtain a more robust solution, we weight each
constraint with the robust M-estimator, which is similar to the
computation of the robust projective structure introduced in
section 4.2. For each view, we have the following linear
equations,
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In order to clarify the notation, we denote *Ω as the initial
absolute quadric computed from the above equations, which
may not be exactly rank-3. At the beginning, we set equal
weights for each view, i.e. 1iw  , to determine *Ω . By

enforcing the rank-3 constraint on *Ω , we determine the
absolute quadric *Ω via SVD. However, this step leads to
additional errors in the linear system, thus we define the
following residue for each projection matrix,
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According to the residues, we re-adjust the weights as equation
(6), i.e. Lorentzion (or Cauchy) function [14] mentioned in 4.2.
The RWLS process, iteratively reducing the residues under the

rank-3 constraint on *Ω through tuning the weights, turns out
to be an M-estimator for robust metric upgrade.

6. EXPERIMENTAL RESULTS

In this section, we show some experimental results of the
proposed algorithm in comparison with some previous
methods on simulated data. We first show the experimental
comparison of the proposed jury-based preemptive LMedS
algorithm, followed by the experimental comparison for the
proposed SfM algorithm.

We used 200 point correspondences with additive Gaussian
noises (standard deviation = 1.5) in image as well as 5~40%
gross outliers. We compared the proposed preemptive LMedS,
which uses the block size 1B  and 10 observations in a
jury, with Nister’s preemptive RANSAC, with the block size

10B  , LMedS, and MAPSAC algorithms with this
experiment on fundamental matrix estimation with
contaminated data. For a fair comparison, we used the same
Torr’s seven-point method for computing the fundamental
matrix for all the above four algorithms. Furthermore, the four
algorithms share the same set of hypotheses which were
randomly generated from 1000 samples, so that we examined
which of these four methods makes the best use of the
hypothesis. The experimental results shown in Figure 2
indicate that the proposed scheme approximates the
performance of the full-scoring procedures, i.e. LMedS and
MAPSAC, and it reduces 90% of the full-scoring burdens.
Thus, it shows the advantage in the computational efficiency of
the proposed algorithm.



In the following, we show the experimental comparison of the
SfM methods on simulated data. The simulations are designed
to examine the performance under different data missing and
outlier rates. We compare the proposed SfM algorithm with
Martinec and Pajdla’s algorithm [1]. Their code is available
from the public domain. Note that their metric upgrade process
is removed since it crashed for some simulated cases. So we
upgraded their projective reconstruction according to the ground
truth.

The simulation environment is as follows. First of all, we
randomly generated 300 points within a 20 unit length squared
box in 3D space, and its center is randomly located around the
world center in the radius of 10 unit length. Thirty cameras are
located in a circle of radius 100 unit length, and their viewing
directions are the world center plus additional random rotation
within 5 degrees in Euler angle. Calibration matrices are
constant with focal lengths within 1500, and skew parameters
1.5, and image center (1000, 650). Each observation point is
perturbed with Gaussian noises σ= 1.5, followed by the
rounding operation. The outliers are randomly selected
according to the simulated outlier rate. The farthest points to the
current camera are selected as the missing points at that view
according to a given missing rate. One hundred trials are made
to obtain the final results.

We examine the reprojection error, 3D reconstruction error, and
reconstruction rate at different data missing rates and outlier
rates to compare the performance. The reprojection error
evaluates the error between reconstructed and measured points
in image space, and the 3D error is measured in RMS of the
Euclidean distance of the simulated unit length. The
reconstruction rate is the ratio of the reconstructed points to the
total number of points.

In the first simulation, we examine the algorithms with different
missing rates as shown in Figure 3. In the second simulation, we
examine the robustness under different outlier rates with a
constant missing rate as shown in Figure 4. Then, we test the
performance with more views integrated as shown in Figure 5.

(a)

(b)

Figure 3. (a) The reprojection errors and (b) the 3D errors at
different missing rates for the proposed algorithm and Martinec
and Pajdla’s algorithm.

7. CONCLUSION

In this paper, we proposed a novel robust metric structure from
motion algorithm for a long sequence with outliers and large
missing data. The jury-based preemptive LMedS procedure was
developed to achieve efficient outlier detection in the robust
projective SfM. In addition, we also applied robust estimation
techniques in the projective SfM as well as the metric upgrade
processes. We demonstrate the robustness, accuracy and
efficiency of the proposed SfM algorithm through experimental
comparisons with previous methods.
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Figure 2. Robust computation for increasing outlier rate with the same set of hypotheses. Left: detection rate of the outliers;
Middle: Image error that represents the correctness of fundamental matrix; Right: scoring counter.
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Figure 4. (a) The reprojection errors; (b) the 3D errors; (c) the reconstruction rates at different outlier rates for the proposed algorithm
and Martinec and Pajdla’s algorithm.

(a) (b) (c)
Figure 5. (a) The re-projection errors; (b) the 3D errors; (c) the reconstruction rates at different views for the proposed algorithm and
Martinec and Pajdla’s algorithm.


