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ABSTRACT: 

 

Generally, a road image sequence acquired by a mobile mapping system (MMS) is oriented by integrating the Global Positioning 

System (GPS) and an inertial navigation system (INS) data. Alternatively, this article presents a methodology completely based 

only on data derived from a road image sequence acquired by a low cost land based MMS as an alternative to orient the images 

without any auxiliary data so that the derived information comes from the internal image motion through the optical flow. The 

vehicle velocity computation is based on the monocular optical flow of an image sequence captured by a video camera mounted 

on the top of a vehicle that travels in a flat urban road without any auxiliary data. With the estimated velocity and the constant 

image sequence time interval the mobile’s relative position can be computed. No matter the technique, the optical flow 

computation is very sensible to the noise caused by the image acquisition process under real conditions. The noise sources such 

as high variation of illumination and camera vibration, among others, can affect the velocity estimation if the dense optical flow 

is used. In order to avoid such drawbacks the translational velocity is computed from a reduced amount of optical flow vectors, 

exactly those that represent the effective displacement. These vectors are taken in certain portions of the images – the region of 

interest (ROI) – and they are supposed to be detected by the Canny edge detector algorithm, which means they come from edges 

and consequently they have intensity variation in the images. The optical flow computation is based on Horn and Schunck 

method because it is simple and easy to implement. The technique based on the detected vectors reveals a potential to be 

developed. The best result shows that the estimated velocity is as good as 1% less than the one determined in the control 

surveying mission. Additionally, the amount of vectors is only 560 instead of 720 x 480 of the dense flow (original image size) 

or about 230,000 vectors of  a reduced quadrilateral image. These results indicate that the implemented technique contributes to 

reach a better translational velocity estimation and therefore to the vehicle displacement which lets one know the relative 

position of the MMS from a road image sequence without any auxiliary data. 

 

 

 

1. INTRODUCTION 

 

Generally, a mobile mapping system (MMS) has a few sensors 

to provide full orientation (position and attitude) for the stereo 

image pair sequence. Integrating GPS (Global Positioning 

System) and INS (Inertial Navigation System) data a solution to 

the image orientation problem is guaranteed. With the outer 

orientation given by the sensors, the object points, along and 

aside the roads, selected in the image pairs, can be mapped by 

photogrammetric intersection (Silva et al., 2003). 

Although there is a few research institutions that have been 

developing this methodology in order to provide both an 

alternative and a complement to the GPS/INS integration 

system (Ayman, 1998; Tao et al., 2001; Roncella et al., 2005), 

distinctly, there is another way to work out the image 

orientation problem completely based only on data extracted 

from the road image sequence. Simply, the problem can be put 

in two parts: image translational displacement and image 

angular orientation. Considering that a pair of cameras is 

mounted on the roof of the vehicle pointing forward with the 

optical axes approximately horizontal and parallel to each other, 

it is necessary to compute the translational displacement of both 

image perspective centers, which can be done by considering 

the constant time interval of the frames in the road image 

sequence and the vehicle velocity estimated from the optical 

flow. The image angular orientation can be computed by 

phototriangulation (Silva; Oliveira, 1998; Silva et al., 2000). 

This article presents the first part of the problem solution, the 

velocity estimation fully based on the optical flow extracted 

from an image sequence acquired on a flat urban road. The 

optical flow vectors are filtered by means of points detected by 

the Canny algorithm (Canny, 1986) and their centrifugal radial 

behavior considering the image perspective resulting from the 

translational displacement. The vectors are taken in a reduced 

quadrilateral image; most of them in the lower half of the 

images as the upper half represents a lot of the sky, as shown in 

figure 2, section 4. 

Either external or internal data, the improvement of the mobile 

mapping technology for road surveying and mapping is highly 

interesting for the public and private organizations that are 

responsible for the maintenance or need information about the 

equipment installed along the road network.  

 

 

2. OPTICAL FLOW 

Optical flow is a 2D distribution of the apparent velocity of the 

intensity value movement on the image plane. The optical flow 

field consists of a dense velocity field where each pixel on the 

image plane is associated with only one velocity vector. If the 

time interval between two consecutive images is known, the 



 

 

velocity vectors may be converted into displacement vectors 

and vice versa (Shi; Shun, 2000). 

Computing both the optical flow and the image velocity is a 

fundamental issue on the image sequence processing and it may 

help in various tasks, such as the scene interpretation, 

exploratory navigation, video coding, robot vision, etc. (Tekalp, 

1995). 

The methods for computing the optical flow may be classified 

into three main groups: differential techniques, correlation 

techniques and techniques based on frequency/energy (Barron 

et al., 1994; Beauchemin; Barron, 1995). For differential 

techniques, the initial hypothesis for the optical flow 

computation is that the inter-frame intensities of an image 

sequence are approximately constant on a short time interval, 

which is equivalent to understand that the displacement is 

minimum. 

The image velocity is computed from the temporal spatial 

derivatives on the image. The intensity on the image (domain) is 

taken as continuous (or differentiable) on space and time (Horn;  

Schunck, 1981). 

The differential technique accuracy depends mainly on the 

estimation of the partial derivatives of the intensity function. 

Despite being simple, the finite difference method does not 

make any distinction between the original data and the noise. In 

order to eliminate or reduce such a problem, a pre-smoothing of 

the image by the use of a Gaussian filter must be carried out 

(Barron et al., 1994; Brandt, 1997). 

The process which determines the 2D movement is complex 

because, besides involving the movement of the sensor, there is 

also the movement of the objects on the scene which may cause 

occlusions, and then the optical flow estimation more difficult. 

Another important aspect on real world projects is the camera 

vibration, caused by shocks and holes on the surface of the 

displacement. The illumination condition must also be 

considered because shadows and clouds may modify the 

intensity of images. 

 

 

3. MONOCULAR VELOCITY ESTIMATION  

Assuming the vehicle translational velocity as parallel to the 

optical axis of the camera, the optical flow ( )vu,  is given by 

(Giachetti et al., 1998): 
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where f is the camera focal length, h is the height of the camera 

from the ground, ω is the angular velocity and x and y are 

coordinates on the image plane. The equations (1) describe the 

2D movement when the vehicle runs a long flat surface with a 

static scenario, that is, only the movement of the camera, which 

is fixed on the top of the vehicle, is taken into account. This 

kind of movement is known as passive navigation and the 

estimated velocity may strongly differ from the actual one 

(Giachetti et al., 1998). 

The computation of the angular and translational velocity is 

carried out by the least square method, thus the use of the dense 

flow is not advisable, either for the computational effort (too 

much points) or for the noise which affects the precision. In 

order to reduce the amount of vectors used in the translational 

velocity estimation and to improve the velocity precision, each 

vector is filtered as in the following procedure: (i) it has to 

belong to a quadrilateral region of interest (ROI); (ii) it has to 

have a centrifugal radial behavior expected in accordance to the 

forward and planar displacement; and (iii) it has to have its 

origin coincident with a point detected by the Canny algorithm 

(edge point). 

Besides this filtering procedure, it is also recommendable to 

reduce the outliers influence on the translational velocity 

estimation. This can be done by carrying out the estimation in 

two steps: the first with all the filtered vectors as shown above; 

the second with those vectors whose residuals (computed at the 

end of the first step) fall into the following intervals: 

 

ū ± su ; v  ± sv                            (2) 

 

where ū and su are the average and the standard deviation of the 

u-component residuals of the optical flow, respectively. 

Accordingly, v  and sv refer to the average and the standard 

deviation for the v-component. Of course, the velocity 

estimation given by the second step is quite better than the first 

one, as it is presented in the next section. 

 

 

4. RESULTS  

The sequential images were acquired by a MMS stereo camera 

while traveling on a flat urban road with little illumination. The 

digital cameras (Sony DSR 200A) have 30 fps sample rate and 

720 x 480 pixel resolution. The color images were converted 

into gray tones and smoothed by a Gaussian filter. The optical 

flow was computed with the Horn and Schunck sequential 

algorithm (1981). In every image, Canny algorithm was applied 

for the edge detection. Each optical flow vector was filtered and 

classified according to the filtering procedure. Figure 1 shows 

an example of a dense optical flow using a 10 x 10 spacing 

needle map. 

 

 
 

 
Figure 1. Original image (upper) and optical flow (below) 



 

 

Although the radial pattern is dominant, a great amount of 

vectors with no centrifugal radial orientation is seen. The 

presence of these vectors can deteriorate the velocity estimation, 

which is improved with the filtered flow vectors. 

In the experiments, two pairs of the road image sequence were 

used, and each sequence had 30 frames for the left (L) and other 

30 frames for the right camera (R). The first sequence was 

named s1 and the second s2. Following the sequential method to 

compute the optical flow, each sequence had 29 calculated 

flows. Tables 1-4 show the average velocity (vel), the velocity 

standard deviation (sd), the amount of vectors (vet(n)), and the 

respective standard deviation (sd(n)). 

Step 1 means that the velocity estimation was carried out with 

all filtered optical flow vectors. In the step 2 the estimation was 

done after eliminating the outliers, as defined by the equations 

(2). 

The quality control of the experiments was based on the 

velocity computed from the two GPS sequence data, namely 

19.83 km/h for the sequence s1 (t=1s), and 19.75 km/h for the 

sequence s2 (t=2s). 

 

Table 1. Estimated velocity from vectors in the quadrilateral 

regions of interest 

vel sd vet(n) sd(n) seq. t step 

1.57 0.54 230,186 0 L 1 1 

2.15 0.37 230,186 0 R 1 1 

1.83 0.76 230,186 0 L 2 1 

2.07 0.82 230,186 0 R 2 1 

12.48 7.83 489.59 145.15 L 1 2 

9.13 5.19 411.17 129.68 R 1 2 

8.02 2.35 697.03 202.56 L 2 2 

9.65 3.84 443.72 130.18 R 2 2 

 

Table 1 shows the results of the velocity estimation by using all 

vectors that lie in the quadrilateral regions of interest, regardless 

if they were detected by Canny algorithm and presented 

centrifugal pattern. 

Although the quantity of vector is very large (230,186), the 

velocity estimation is far from the correct value because there 

are also low quality vectors (no centrifugal radial orientation) in 

the data set. In the first step, the standard deviation was zero 

because the dense flow of all quadrilateral image vectors was 

considered (figure 2). In the second step, the estimated velocity 

approaches the correct value as a reduction of vector amount 

occurs (outlier elimination), but the velocity is still lower than 

the actual one given by the GPS. 

 

 

 

 
Figure 2. The quadrilateral portions of the original image 

(upper) and optical flow (below). 

 

The results shown on table 2 are a little better than those 

referred in table 1 because the velocity estimation was based on 

the radial pattern vectors of the ROI. In the first step, the 

velocity was estimated as practically the double better than the 

first experiment, but it remains lower than the actual value. The 

estimated velocity in the second step is about the same as those 

of the first experiment. 

 

Table 2. Estimated velocity in the ROI with the radial pattern 

vectors. 

vel sd vet(n) sd(n) seq. t step 

3.34 0.59 110,367 25,972 L 1 1 

4.07 0.36 107,169 22,780 R 1 1 

3.54 0.57 113,889 27,590 L 2 1 

3.81 0.82 107,726 24,595 R 2 1 

12.39 7.46 485.66 142.82 L 1 2 

9.29 5.04 412.90 129.78 R 1 2 

8.13 2.18 705.38 210.07 L 2 2 

9.91 3.85 447.17 128.70 R 2 2 

 

The third experiment was carried out with the vectors detected 

by the Canny algorithm in the ROI, regardless the vectors had 

or not the radial pattern (table 3). 

 

Table 3. Estimated velocity in the ROI and Canny algorithm 

vel. sd vet(n) sd(n) seq t step 

17.72 4.77 1,190.55 120.12 L 1 1 

16.10 3.20 1,093.66 77.72 R 1 1 

12.87 3.64 1,694.07 195.19 L 2 1 

13.08 3.31 1,260.41 55.55 R 2 1 

18.19 4.67 511.52 154.67 L 1 2 

17.83 3.65 480.07 161.78 R 1 2 

13.67 4.42 735.52 221.31 L 2 2 

15.00 3.02 524.62 152.01 R 2 2 

 

 

The use of these vectors improved the results, both in the first 

and the second steps, although the results remained 

underestimated: 92% for the best case (s1-L) and 70% for the 

worst one (s2-L). 

Table 4 shows the results obtained with the filtering procedure 

proposed in this work, which is the velocity computation with 

the vectors that showed the centrifugal radial pattern in the 

lower half of the images and that were detected by the Canny 

algorithm. 



 

 

The amount of vectors in the first step presents a significant 

reduction regarding prior experiments and the first column 

shows better velocity estimation. In the second step an evident 

improvement is noticed. In the worst case (s2-L) the velocity is 

80% of that accepted as correct, and in the best case (s1-R) the 

velocity is slower than 1% of the true one. 

The low quality estimation of the velocity related to the 

sequence s2 (L and R) may be due to the fact that there is a great 

variation on the image intensity, which generated noise on the 

sequential optical flow calculation. 

 

Table 4. Estimated velocity with the proposed methodology. 

vel sd vet(n) sd(n) seq. t step 

19.06 3.26 949.17 290.94 L 1 1 

18.78 1.95 809.59 263.71 R 1 1 

14.53 3.27 1,243.86 376.10 L 2 1 

14.34 2.83 839.24 252.34 R 2 1 

19.67 2.96 510.83 153.35 L 1 2 

19.90 1.96 482.14 162.35 R 1 2 

15.88 3.96 735.31 222.83 L 2 2 

16.51 1.68 520.10 152.77 R 2 2 

 

 

Figure 3 shows the resulting image related to the optical flow 

whose vectors were filtered by the proposed methodology. The 

results shown on table 4 were based on these optical flow 

vectors. 

 

 
Figure 3. Filtered optical flow image. 

 

 

5. CONCLUSION  

This work aimed to estimate the velocity of a vehicle 

considering only on a pair of image sequence without using any 

external sensor data. The method was based on a monocular 

optical flow computation from road images taken on an external 

environment without any scene control. The proposed filtering 

procedure was able to select those vectors with centrifugal 

radial pattern in the quadrilateral portions of the images with 

the aid of Canny algorithm and this procedure provided a good 

estimation for the vehicle velocity. The worst result is 80% 

below the true value and the best estimate is only 1% below. 

The estimated velocity can be used to compute the vehicle 

displacement and, consequently, to provide data to orient the 

images without using any external sensors.  
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