
IMPROVING THE ATTITUDE ACCURACY OF A LOW COST MEMS/GPS INTEGRATED 
SYSTEM USING GPS HEADING SENSORS 

 
 

Y. W. Huang a, *, C. Y. Li a, H. W. Wu a, H. W. Chang a, H. W. Hu a, and K. W. Chiang a 
aDepartment of Geomatics, National Cheng Kung University, Taiwan 

 
 
KEY WORDS:  Inertial Navigation Systems, Kalman filtering, GPS Heading sensor  
 
 
ABSTRACT  
 
Integrated GPS/INS systems provide an enhanced navigation system that has superior performance in comparison with either system 
operating in stand-alone mode as it can overcome each of their limitations. The high cost and government regulations prevent the 
wider inclusion of high quality IMUs to augment GPS as a commercialized navigation system in many navigation applications. The 
progress in MEMS technology enables complete inertial units on a chip, composed of multiple integrated MEMS accelerometers and 
gyroscopes. In addition to their compact and portable size, the price of MEMS based is far less than those high quality IMUs as well, 
however, due to the lightweight and fabrication process, MEMS sensors have large bias instability and noise, which consequently 
affect the obtained accuracy from MEMS-based IMUs. Many research works have been conducted to improve the performance of 
low cost MEMS-based INS/GPS integrated systems. Accommodating heading measurements update using physical heading sensors 
(e.g. GPS heading sensors and magnetic compass) or pseudo heading sensor (e.g. derived from GPS velocities or positions) is an 
appropriate option to solve the problem. In this study, three approaches are implemented to obtain the headings of a moving vehicle 
using carrier phase DGPS measurement. Then a 21 states loosely-coupled extended Kalman filter is applied to integrate a low cost 
GPS/MEMS system along with the heading updates provided by the heading sensor to examine the attitude accuracy of proposed 
system. 
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1. INTRODUCTION 

The GPS has become the primary source of providing 
navigation information for most of the present vehicular 
navigation applications. However, GPS technology needs line 
of sight signals to the GPS satellites to provide solutions with 
long-term stability, therefore, it is capable of providing 
navigation solutions continually in all situations only with 
uninterrupted signal reception, which is not the case for land 
vehicular navigation applications which suffer the impact from 
intermittent signal reception (i.e., forest area or urban canyon) 
or no signal reception (i.e., underground or tunnel). Therefore, 
GPS has to be integrated with other sensor to bridge periods of 
no signal reception to provide continuous navigation solutions. 
On the contrary, an INS is a self-contained positioning and 
attitude device that continuously measures three orthogonal 
linear accelerations and three angular rates to calculate the 
required position. The primary advantage of using an INS on 
outdoor land vehicles is that acceleration, angular rotation and 
attitude data are provided at high update rates. Thus the velocity 
and position of the vehicle can also be provided with abundant 
dynamic information and excellent short term performance. 
However, the error of accelerometers will be double integrated 
and cause position error that accumulate with time; the error of 
gyro will generate attitude errors (i.e. the horizontal platform 
misalignments), which causes gravity to project into the 
horizontal axes and disturb the acceleration measurement to the 
vehicles. Both errors grow as a function of time; therefore, an 
INS is only accurate for a limited time if without external 
aiding. Integrated systems provide an enhanced navigation 
system that has superior performance in comparison with either 
a stand-alone GPS or INS as it can overcome each of their 
limitations. However, those improvements come with the price.  
The high cost and government regulations prevent the wider 
inclusion of those high quality IMUs to augment GPS as a 

commercialized navigation system in land vehicular 
applications until now with the introduction of MEMS-based 
inertial system. The progress in MEMS technology enables 
complete inertial units on a chip, composed of multiple 
integrated MEMS accelerometers and gyroscopes. In addition 
to their compact and portable size, the price of MEMS-based 
IMUs is far less than those high quality IMUs as well, however, 
the performance of current MEMS-based IMUs does not meet 
the requirement of tactical grade IMU due to their noisy 
measurements and poor stability. Therefore, such devices are 
not usable as sole navigation system. In a decentralized Kalman 
filter configuration, there are two filters working independently: 
an INS filter and a GPS filter. The INS filter is the main one in 
the configuration and uses the output of the INS mechanization 
to estimate the states (i.e., positions, velocities and attitudes) 
along the trajectory. The output of the GPS filter (i.e., positions 
and velocities) is then used to update the main filter. In other 
words, position and velocity update modes are the standard 
procedures to provide measurement updates for a decentralized 
Kalman filter. With the aiding information provided by GPS, 
those inertial error states can be estimated through the coupling 
relationships between them. For example, accurate estimation 
of the velocity error states (provided by GPS) will not only 
improve the accuracy of velocity computation directly but also 
the accuracy of the computed pitch and roll.  

 
The heading error dA, is therefore, playing an important role in 
determining the long-term positioning accuracy [El-Sheimy, 
2002]. Since it is modulated by the velocity components Vn or 
Ve, the effect of azimuth error becomes particularly significant 
at high velocities. However, there is no strong coupling between 
the velocity errors and the heading error, which is mainly 
affected by gyro bias. As a result, the positional errors of a low 
cost MEMS IMU will deteriorate rapidly during GPS signal 
outages.  



 

 
Therefore, it would be beneficial for a low cost MEMS/GPS 
integrated system to have direct heading measurement update 
using a pseudo GPS heading sensor utilizing only one GPS 
receiver or physical heading sensors such as GPS heading 
sensor that has two GPS receivers or magnetic compass. In fact, 
magnetic compasses have been applied as a standard option for 
the early version of dead reckoning navigation system [El-
Sheimy, 2002]. However, the problems with magnetic 
compasses are the calibration of magnetic field and the 
derivation of proper model to compensate for the disturbance of 
the magnetic field [El-Sheimy, 2002].  Such problems become 
more complicated in typical land vehicular environments.  
 
On the other hand, Chiang [2004] implemented a pseudo GPS 
heading algorithm that combines the GPS headings provided by 
a GPS receiver and INS headings provided by the 
mechanization to provide the stable headings of a moving 
vehicle. In addition, Shin [2005] implemented the extended 
Kalman filter that has 21 states (e.g,3 position sates, 3 velocity 
states, 3 attitude states, 3 accelerometer bias/scale factor states, 
and 3 gyro drift/scale factor states) with the ability to 
accommodate direct heading update provided by a pseudo GPS 
heading sensor derived by GPS positions using a GPS receiver. 
The results presented in the Shin [2005] do show the 
enhancement of the attitude accuracy when the direct heading 
measurement updates are applied. 
 
Therefore, the objectives of this study are to: (1) develop a 
physical GPS heading sensor using two GPS receivers along 
with the proper algorithm to obtain GPS heading (2) compare 
the performance of the proposed GPS heading aided low cost 
INS/GPS integrated system with an unaided INS/GPS 
integrated system. 
 
 

2. KALMAN FILTERING  

To estimate an optimal navigation solution, the output of the INS 
mechanization needs to be integrated with the position and velocity 
solutions derived from GPS. The extended Kalman filter (EKF) is 
the most popular estimation technique for such integration. A simple 
form of the mechanization equations can be written as follows 
[Schwarz and Wei, 2001]: 
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where 
 

lr  is the position vector (latitude, longitude, height), 
lv  is the velocity vector (e, n, u), 
l
bR  is the transformation matrix from the IMU body to 

local frame as a function of attitude components, 
lg  is the gravity vector in the local level frame, 

&Ω Ωb b
ib il  are the skew-symmetric matrices of the angular 

velocity vectors b
ibw 、 b

ilw  respectively, 
1D−  is a 3x3 matrix whose non zero elements are 

functions of the user’s latitude and ellipsoidal 

height 
 
For further discussions concerning the solutions and numerical 
implementations of the above differential equation, see El-
Sheimy [2002]. An INS mechanization algorithm by itself is 
seldom in good performance due to the inertial sensor biases 
and the fixed-step integration errors, and those errors will cause 
the PVA solution to diverge quickly. The navigation software 
must have some approach to account for these error sources to 
correct the estimated PVA [El-Sheimy et al., 2004]. 
 
The dynamic error model used in the KF for the navigation 
parameters (position, velocity and attitude) can be determined 
through the linearization of the INS mechanization equations 
and by neglecting insignificant terms in the resultant linear 
model. A simplified form is then obtained as[Bar-Itzhack and 
Berman, 1988]: 
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where 
                                                        

lrδ  is the position error state vector in the local 
level frame 

lvδ  is the velocity error state vector in the local 
level  frame, 

lAδ  is the attitude error state vector in the local level 
frame, 

lgδ  is the error in the computed gravity vector in 
the local level frame, 

&b bfδ δω are  accelerometer  bias  and  gyro  drift vectors   
in  the  body  frame  respectively, and 

&a gS S  are  scale factor of accelerometers and gyros   
respectively, and 

E  is  a  3x3  matrix whose non-zero elements are a 
function of the vehicle’s latitude and the Earth’s 
radii of curvatures. 

      
In the EKF, the INS errors are updated by the difference between 
GPS and INS solutions. The EKF applied in this study  has 21 state 
vectors [Shin and El-Sheimy, 2004] ： 
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The dynamic error model used in the KF for the navigation 
parameters (position, velocity and attitude) can be determined 
through the linearization of the INS mechanization equations and by 
neglecting insignificant terms in the resultant linear model. The 
equations of the KF are divided into two groups of equations; 
prediction and update. The time prediction equations are responsible 
for the forward time transition of the current epoch (k-1) states to the 
next epoch (k) states. The prediction equations are  

 

( ) ( )1ˆ ˆk k kx x −− = Φ +
                                     (3) 
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P  is the estimated variance-covariance matrix of inertial states, 
Q  is the system noise matrix, 
(-)   denotes the estimated value after prediction, 
(+)  denotes the estimated value after updating, 
 
The measurement update equations utilize new measurements into 
the a priori state estimate to obtain an optimized an optimized a 
posteriori state estimate. The measurement update equations are 
given as: 
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where 
K  is the Kalman gain matrix, 
Z  is the vector of updating measurements of position and velocity, 
R  is the measurements variance-covariance matrix 
 
The Kalman update engine is triggered at every GPS 
measurement using the difference between GPS and INS 
solutions as input. Hence, the KF generates an updated estimate 
for reducing the INS errors using measurement update 
equations. Whenever a GPS measurement is unavailable, the 
KF works in time prediction mode to estimate the error state 
vector. In this case, the KF equations need the statistical 
properties of the system to be stationary and well defined which 
cannot be guaranteed, specially, with a MEMS-based IMU 
implemented in kinematic or dynamic environments [El-
Sheimy, 2002].  
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Figure 1: A standard INS/GPS loosely coupled integration 

scheme 
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Figure 2: Modified INS/GPS integration scheme with GPS 

heading update 
 

 
For a standard loosely coupled INS/GPS integrated architecture, 
GPS position and velocity information are applied to provide 
measurements update, as shown in the Figure(1). In this study, 
the GPS heading information can be applied as additional 
measurements update thus the modified loosely coupled 
INS/GPS integrated architecture implemented in this  study is 
given in the Figure(2). 

 
 

3. DEVELPEMENT OF GPS HEADING SENSOR 

In this study, several methods are provided to compute 
redundant heading information utilizing GPS antennas. Carrier 
phase measurements are processed in kinematic DGPS mode to  
obtain high accuracy positions and velocities solutions. 
Therefore, these solutions could be used to compute the heading 
or azimuth of a vehicle except for GPS outages. Meanwhile, 
those computed headings can be used to provide measurement 
updates to the Kalman filter applied to improve the 
performance of the low cost INS/GPS integrated system used in 
this study. 
 
The first approach used to obtain heading information of a 
vehicle is based on the positional differences between two GPS 
antennas. As shown in the Figure (3), the positions of antenna A 
and B are obtained through the used of kinematic carrier phase 
DGPS processing with superior accuracy. The position 
difference can then be obtained and headings are derived by 
following equation: 
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where  
 

,i iN E  are the coordinates of GPS antennas under  
local level frame 

C  is a constant that depends on the quadrant in 
which point B lies 
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Figure 3: Obtaining GPS heading from the positional 
differences of two antennas  

 
 

A calculated example is shown in the Figure 5(a). As mentioned 
previously, the combination of two GPS antennas can be 
regarded as the physical GPS heading sensor. 
 
The second approach used to calculate GPS heading is through 
the use of the velocities information provided by a GPS receiver. 
A simple illustration is shown in the Figure 4(a). The 
instantaneous velocities of a GPS antenna can be regards as 



 

vectors to describe the directions of a moving vehicle. The 
equation is given as follow [Chiang, 2004]: 
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Figure 4: Computing heading form the velocities and position 

displacement 
 
Figure 5(b) shows the headings derived through the velocities 
of a GPS receiver which are obtained through the use of 
kinematic carrier phase DGPS processing with superior 
accuracy. However, the headings derived from DGPS velocities 
become unstable when the denominator approaches zero (e.g. 
during ZUPT or for low ),,( 321 φφφ , as shown in the Figure 
5(b).  
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Figure 5: Three approaches to derive headings: (a) through the 

positional differences between two GPS antennas; 
(b) derived through the velocities of a GPS receiver; 
(c) using the displacement of a GPS antenna 
between two consecutive epochs 

 
 
In other words, it suffers a numerical problem during low 
dynamics due to the nature of the inverse tangent algorithm. 
Consequently, the second approach does not meet the 
requirement to provide stable and accurate heading outputs in 
all conditions. Chiang [2004] developed a GPS heading 
constrained algorithm to overcome this issue successfully with 
the constrain condition introduced by INS headings and provide 
stable GPS velocity derived heading outputs with reasonable 
accuracy. However, the implementation of such criteria is not 
considered in this study. 
 

The third approach used to derive headings is using the 
displacement of a GPS antenna between two consecutive 
epochs, as illustrated in the Figure 4(b). The equation of this 
approach is given as follows: 
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As indicated in the Figure 5(c), the headings derived but the 
third approach becomes unstable when the denominator 

approaches zero (e.g. during ZUPT or small jilj Ww ,, , ). In 
other words, they suffer a numerical problem during low 
dynamics (small 1, 21 =bb ) or ZUPT due to the nature of the 
inverse tangent algorithm. Similarly, the third approach does 
not meet the requirement to provide stable and accurate heading 
outputs in all conditions. 
. 
In addition, the standard deviation of the headings should be 
estimated for providing measurement updates to Kalman filter. 
The standard deviation of antenna’s positions can be provided 
by GPS processing software. Then the error propagation 
equation is used to calculate the standard deviation of GPS 
headings utilizing the following equations: 
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4. RESULTS AND DISCUSSIONS 

 
 

Figure 6: The experimental platform 
 
 
To evaluate the performance of the proposed scheme, a field 
test was conducted in February 2007 by the Intelligent Multi-
Sensor Geomatics System Lab of the National Cheng Kung 
University. The test was conducted in land vehicular 
environments using a low cost INS/GPS integrated system 
consisting of a MEMS IMU (CrossBow NAV420) and two 
Leica GPS System500 receivers (e.g., Rover and master station). 
Figure (6) shows the set up of those systems. In addition,  two 
Garmin GPS35 series receivers to setup a GPS heading sensor 
and the baseline between them is 1.2 meters 
 



 

The GPS measurements were processed using the GrafNavTM 

7.0 software (Waypoint Consulting Inc.) in DGPS mode.  The 
GPS navigation solutions along with the GPS headings were 
then fed into a decentralized Kalman filter of the Aided Inertial 
Navigation System (AINS™) Toolbox software developed by 
the MMSS research group at the University of Calgary, to 
obtain INS/DGPS integrated solutions for further analysis. The 
reference trajectories were generated by the INS/DGPS 
integrated system. The reference solutions were generated using 
AINS 21 states EKF and backward smoothing. The field test 
reference trajectory is shown in figure (7). The length of 
experiment is about 1000 seconds and the experimental results 
are shown in the Figure (8) and Table 1, respectively. 
 

 
Figure 7: Field test trajectory 
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Figure 8: Attitude errors after utilizing heading sensor 

 
 

As indicated in Figure (8), the GPS heading sensor have 
brought benefits to improve positioning accuracy on east, north 
and up directions. The accuracy improvement with the use 
proposed GPS heading sensor is illustrated in the Table 1. 
Based on the field test data applied in this study, the 
improvements of accuracy ranges from 48.1% to 90.4% in three 
attitudes.  

 
As mentioned in the previous sections, a standard loosely 
coupled INS/GPS integration scheme combines INS 
measurements and GPS solutions. The error states of INS can 
be then estimated and corrected by the Kalman filter. The GPS 
solutions including positions and velocities provide long-term 
accurate measurement updates to the INS Kalman filter. This 
update procedure then improves the accuracy of estimated 
positions, velocities, roll and pitch based on the explicit 

coupling relationship between them. However, the coupling 
relationship between the velocity errors and the heading error is 
weak; in fact, it is mainly affected by the gyro bias. Hence, 
direct heading updates provided by a physical GPS heading 
sensor along with a modified loosely coupled INS/GPS 
integration scheme developed in this study are effective tools to 
enhance the performance of a low cost MEMS/GPS integrated 
system.   

 

RMS value (deg) 
 

INS/GPS INS/GPS  + 
heading 

Improvement 
(%) 

Roll 3.174 1.648 48.1 
Pitch 3.620 1.318 63.6 

Heading 30.901 2.950 90.4 
 

Table 1: The enhancement  in attitude accuracy 
 
 

5. CONCLUSIONS  

This article implemented a physical GPS heading sensor to 
enhance the performance of a low cost MEMS/GPS integrated 
system. A field test data collected in land vehicular 
environments was utilized to verify the effectiveness and 
enhancement of proposed modified loosely coupled INS/GPS 
integration scheme in terms of the attitude accuracy.  
 
The preliminary results presented in this article illustrate the 
improvement of attitude accuracy can reach 48.1% in roll, 
63.6% in pitch and 90.4% in heading angle, respectively. 
Consequently, direct heading updates provided by a physical 
GPS heading sensor along with a modified loosely coupled 
INS/GPS integration scheme developed in this study are 
effective tools to enhance the performance of a low cost 
MEMS/GPS integrated system.   
 
The future works of this study will collect more field test data 
sets to validate the performance of proposed scheme and try to 
improve the accuracy of heading sensor using GPS receivers 
that are suitable for collecting data in kinematic mode. In 
addition, the ultimate goal of this research is to develop a low 
cost positioning and orientation platform for general mobile 
mapping applications based on the modified scheme proposed 
in this study. 
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