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ABSTRACT: 
 
Individual points produced by airborne laser scanning (ALS) may have large variation in their accuracy, a fact that is often omitted 
in the subsequent derivation of digital terrain models. The accuracy of a single point is governed by three main factors: First, the 
errors due to the direct georeferencing of the laser beam; second, the measurement errors of the laser itself; third, the variation of the 
range-finder error due to the changing scanning geometry. The influence of the first two sources can be estimated by means of error 
propagation via known functional relations of georeferencing. Nevertheless, the influence of the third component is much harder to 
assess as it requires a-priori knowledge of the local terrain normal to compute the incident angle and the laser footprint. We propose 
a novel approach that analyzes the scanning geometry quantitatively by estimating the local terrain normal directly from the laser 
point cloud. Adding this information to the error propagation yields a final quality indicator that reflects not only the georeferencing 
quality but also the scanning geometry. The paper presents first results of the developed algorithm and assesses the possibilities to 
use such q-indicators within DTM/DSM-production. Their benefits are especially investigated for automated data classification and 
generation of DTM quality metadata.  
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1. INTRODUCTION 

Motivation 

Airborne laser scanning (ALS) is affected by many error 
sources, contaminating the laser point cloud with random and 
systematic errors. The analysis and the adequate modeling of 
these errors in the data processing is one of the major issues of 
research since ALS has become a widely used method for high 
quality DTM production. 
 

 
Figure 1:  Adjacent strips with changing scanning geometry. 

The angle of incidence α of the laser beam is 
defined as the angle between the estimated surface 
normal vector n and the line of sight of the laser 
beam. 

 
Conventional ALS error analysis considers the errors coming 
from the direct georeferencing of the laser beam (mainly due to 
navigation errors and system calibration) and the measurement 
errors of the laser itself (related to the range finder and the 

encoder angle measurements). These errors can be estimated by 
means of error propagation via the known functional relation 
between all observations and the calculated coordinates 
(Glennie, 2006; Landtwing, 2005). In such analyses, the 
accuracy of the range measurement is considered more or less 
constant.  
 
Nevertheless, let us consider the situation presented in Figure 1. 
Intuitionally, the individual points of this dataset, even if 
gathered with constant navigation and range measurement 
accuracy, must have a large variation in their accuracy. The 
points inside the strip overlap area are likely to have better 
quality when gathered within strip B (measurements that are 
almost perpendicular to the terrain) than within strip A, where 
the range measurements are affected by high incidence angles. 
This example highlights the problem related to poor intersection 
geometry and indicates that steep slopes can cause considerable 
difficulties to remote sensing, especially when measuring in a 
nadir-pointing configuration.  
The impact of the incidence angle and the beam width on the 
total ALS error budget is not considered in standard error 
analysis. The presence of such errors is acknowledged 
(Airborne1, 2001; Alharthy et al., 2004; Huising and Pereira 
Gomes, 1998) but has not been modeled. The main reason for 
that are the difficulties in assessing the scanning geometry 
which in turn requires a-priori knowledge of the terrain slope 
and aspect. In this paper we propose a novel approach that 
analyzes the scanning geometry quantitatively by estimating the 
incident angle directly from the laser point cloud. This is 
achieved approximating the local terrain normal by means of 
eigenvalue decomposition of the covariance matrix obtained 
from neighboring points. This information provides the missing 
link to the subsequent computation of the 3D footprint as a 
function of the beam divergence and estimated incident angle. 



 

The influence of the footprint shape and size on the range 
accuracy is determined empirically and adds to the previously 
performed error propagation. Thus, every laser point receives a 
final quality indicator that reflects not only the quality of 
georeferencing but also the scanning geometry.  
 
1.2 Paper outline 

The organization of the paper is as follows: After giving 
definitions of ALS system errors, the functional model for their 
recovery is developed. The main part of the paper is devoted to 
the analysis of the scanning geometry. We present an efficient 
method to compute the incident angle, the resulting footprint 
and the influence on the point accuracy. We discuss the results 
of the algorithm on a sample dataset. The last part of the paper 
assesses the possibilities to use these accuracy estimates for 
DTM/DSM production. We especially investigate their benefits 
for automated data classification and generation of DTM 
quality metadata.  
 

2. ERROR PROPAGATION 

The calculation of ground coordinates for points from ALS 
observations is well documented in the literature (Baltsavias, 
1999). Coordinates on the ground can be calculated by 
combining the information from the scanner, the integrated 
GPS/INS navigation system measurements and calibration 
parameters. The target coordinate equation for an arbitrary 
Cartesian mapping frame is given as: 
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Where   
Rb

m(r,p,y)  is the attitude matrix from the IMU body frame 
to the mapping frame parameterized by roll, 
pitch and yaw 

Rs
b(ex,ey,ez) is the boresight matrix describing the angular 

offsets between the body frame and ALS frame 
ρ,θ    are the LiDAR range and the encoder angle 
[ax ay az]T  is the lever-arm offset between the IMU and 

ALS frame origins expressed in the body frame 
 
There are numerous factors unique to every ALS system that 
affect the accuracy of the target coordinates. A detailed 
discussion of these different error sources can be found in 
(Morin, 2002) for example. For the purpose of our error 
analysis we will restrict the internal ALS error sources to 
random errors in distance and encoder angles only. We apply 
this reduction because most ALS manufacturers specify their 
expected accuracy in terms of these two main error components 
and do not specify the individual factors that contribute to the 
overall error. As a consequence, our error model involves 14 
error states: 
• 6 navigation errors: Namely we have the errors of the 

absolute positioning (σX, σY, σZ) and the orientation 
(σr, σp, σy) of the sensor measured by GPS/INS. These 
errors can rapidly change in time due to changing GPS 
constellation and/or variable flight dynamics.  

• 6 system calibration errors: Here we consider errors in the 
boresight angles (σex, σey, σez) and in the lever arm 

(σax, σay, σaz). These components should change only with 
a change in system installation. 

• 2 internal ALS errors: As mentioned above we only 
consider a range-finder error (σρ+ ppm), having a constant 
and a scale-dependent part, and the error of the encoder 
angle (σθ). These errors are supposed to be intrinsic to 
every ALS system and are assumed to have a constant 
magnitude. The individual error sources and the involved 
frame systems for direct georeferencing of ALS 
measurements are displayed in Figure 2. 

 

 
Figure 2: Used coordinate frames and error components for 

ALS point clouds 
 

Propagating the random errors through the functional model of 
the laser georeferencing equation given by Eq. 1 yields a 3x3 
point covariance matrix: 
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We decompose the covariance matrix into horizontal and 
vertical components: 
 

(1,1) (2,2) ,  (3,3)nav nav
xy xyz xyz z xyzσ σ= + =C C C   (3) 

 
Normally, the linear functional model (matrix F) is obtained by 
linearising Eq. 1 by truncating a Taylor series expansion after 
the first term. In order to speed up the computations, we have 
constructed the functional model by algebraic derivation. 
Thereby, F takes the form of: 
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The stochastic model is given by 
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where the simplifying assumption was made that all individual 
error sources are uncorrelated. 



 

3. ANALYZING THE SCANNING GEOMETRY 

3.1 Modeling the relative power distribution 

One of the intrinsic properties of a LiDAR scanner that strongly 
influences both the point cloud resolution and the positional 
uncertainty is the laser beam width. The apparent location of 
the range observation is along the centerline of the emitted 
beam. However, the actual point location cannot be predicted 
since it could lie anywhere within the projected beam footprint. 
A good demonstration of this uncertainty is presented in (Lichti 
and Gordon, 2004). Their estimate of uncertainty assumes a 
uniform level of laser power across the entire beam width 
diameter, which is typically not the case. Depending on the 
laser system, the waveform of a pulse may appear in different 
shapes.  
 

 
Figure 3: Relative power distribution of an optech ALTM 

LiDAR System (Glennie, 2006) 
 
Figure 3 shows a typical power distribution of an outgoing laser 
pulse for the Optech ALTM LiDAR system. As can be seen, the 
power across the pulse is not uniform and can be approximately 
modeled as a symmetrical Gaussian distribution, where 100% 
of the energy is within the footprint. Approximating the 
footprint diameter to be ±3σ (~99.7%), we can state that the 1-
sigma level corresponds to one sixth of the footprint diameter. 
Based on this model we can now simulate the influence of the 
changing incidence angle on the spatial energy distribution 
(Fig. 4). The backscattered signal from the target surface will be 
a function of the integrated energy distribution across the whole 
footprint. 

 
Figure 4: Influence of incident angle on relative power 

distribution: left:  α = 0° - right: α=60° 
 
3.2 Estimation of local terrain normal 

To compute the incident angle and the footprint we need a-
priori knowledge of the terrain normal. As shown in (Pauly et 
al., 2002) and (Bae and Lichti, 2004b) eigenvalue analysis of 
the covariance matrix of a local neighborhood can be used to 
estimate local surface properties. The covariance matrix C[3x3] 
for a sample point is given by 
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Where   
p    is the centroid of the neighborhood Np including 

k-points (as shown in Fig. 5) 
 
Let us consider the eigenvector problem: 
 

{ }, 0,1,2l l l lλ⋅ = ⋅ ∈C v v     (7) 
 
Where C is symmetric and semi-definite. Therefore, its 
eigenvalues λl are real and the corresponding eigenvectors vl 
form the orthogonal frame (Fig. 5) corresponding to the 
principal components (directions/orientations) of the point set 
defined by Np. The eigenvalues present the variance in each 
direction. Accordingly, the eigenvector corresponding to the 
smallest variance (thus smallest eigenvalue) approximates the 
local terrain normal. This method is the first order 
approximation of the surface and a simple method to estimate 
surface normal vectors out of laser data. 

 

 
Figure 5:  Neighborhood Np of k-points and the computed 

principal directions 
 
Knowing the terrain normal n and the laser direction l (Fig. 2), 
the incident angle α can be computed by 
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Computation of the 3D footprint 

The footprint of a laser beam can be modeled as the ellipse 
formed by the intersection between a cone formed by origin O, 
laser direction l and beam divergence ε and the local tangent 
plane with normal n  (see Fig. 2 and Fig. 6). Once the main axes 
(major axis a and minor axis b) of the footprint are computed in 
3D using cone canonicals, we can decompose the footprint into 
its maximal horizontal and vertical extension. Taking into 
account the assumption of symmetrical Gaussian power 
distribution within the footprint (see section 3.1), we can 
express the approximate positioning error (1σ) due to the 
scanning geometry by 
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Figure 6:  Decomposition of 3D footprint into its vertical and 

horizontal error components 
 

4. GLOBAL Q-INDICATOR 

Now that we have assessed all components contributing to the 
ALS error budget, we can regroup this information and 
construct one unique quality attribute for each laser 
measurement. This “q-indicator” q for a laser point i is 
constructed as accumulation of random errors coming from the 
error propagation of laser georeferencing equation (Eq. 2) and 
the scanning geometry analysis (Eqns.  9 and 10): 
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Obviously the correct scanning geometry depends entirely on 
the accurate estimation of the local terrain normal. Using the 
covariance method (Section 3.2), this estimation is only reliable 
when a point neighborhood approximately forms a plane 
surface. Laser points lying e.g. on vegetation have no clear 
geometric structure, hence the derived normal is geometrically 
not interpretable. As a consequence we need to filter out such 
points prior to the computation of the local terrain normal. In 
order to keep such evaluation completely autonomous, we 
apply a pre-classification of the data based on the local 
curvature criterion. As shown in (Bae and Lichti, 2004a), the 
geometric curvature Mcurv of a point pi can be estimated using 
the normal vectors of all points in the neighborhood Np(k): 
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Where 
k the size of the neighborhood 
npi the normal of point pi 
nneighbour{j,pi} the normal of the j-th neighborhood-point of pi 

 
In general, points on the ground or on buildings can be 
characterized by low curvature values (surface can often be 
approximated by a plane), whilst scanning points within 
vegetation and on roof edges generate high curvature values. 
These properties allow setting up a Boolean test to pre-classify 
laser points by applying a threshold tol: 
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The selection of the appropriate threshold depends mainly on 
the used neighborhood size k and the characteristics of the data 
set (point density, topography). Further information about the 
appropriate selection of such parameter can be found in (Bae et 
al., 2005). 
 

 
Figure 7:  Steps for q-indicator computation: (a) pre-

classification by threshold on local curvature; (b) 
computation of local normal; (c) computation 
incident angle and 3D footprint; (d) computation of 
final q-indicator 

 
Now we dispose of all necessary elements to present the 
complete data workflow (summarized in Fig. 8). The error 
propagation is first carried out using the navigation data and 
their accuracy estimates (most standard GPS/INS software 
packages have options to output these estimates). After the 
point cloud generation in an arbitrary Cartesian mapping 
system, we build up a k-d tree for spatial indexing. This step 
considerably accelerates the querying (search of neighboring 
points to construct covariance matrix) of the data (Matton and 
Cools, 2004). After the computation of the local normal vector 
and curvature we proceed with the pre-filtering, removing all 
points above a certain curvature threshold. In the next step we 
analyze the scanning geometry, using the estimated local terrain 
normal, the laser direction and the beam divergence to compute 
the 3D footprint for the remaining laser points. In the last step 
we combine these data streams to one unique quality indicator 
(Eq. 11). 
 

 
Figure 8:  Generalized workflow for the computation of the q-

indicator 



 

5. TEST ON GURTNELLEN DATASET 

The proposed approach was tested on a dataset flown in June 
2006 near Gurtnellen (Canton Uri, Switzerland) using Optech’s 
ALTM 3100 mounted in nadir configuration on a helicopter. 
The flight was carried out with the narrow beam setting (beam 
divergence = 0.3 mrad), a scan rate of 71 kHz and a mean 
flying height over ground of 1000 m. The dataset is 
characterized by very steep slopes (up to 90 deg), large 
elevation differences (up to 1000 m) within the same strip and 
unfavorable flight planning (flight direction parallel to slope 
contour). These characteristics are ideal to reveal quality 
variations due to changing scanning geometry. 
 

 
Figure 9:  Estimated navigation (sbet) accuracies after 

GPS/INS integration for Gurtnellen dataset 
 
The GPS/INS data was processed using PosProc software 
package from Applanix. Fig. 9 shows the results of the 
navigation accuracy estimates after smoothing. The system 
calibration was carried out by tachymetric measurements for the 
lever arm and using the LIBOR algorithm (Skaloud and Lichti, 
2006) for the boresight. The intrinsic ALS error parameters 
were provided by the system manufacturer (Landtwing, 2005). 
 
 

System Calibration parameters 
boresight σr = σp = 0.0002 deg 

σy = 0.003 deg 
leverarm σax = σay =σaz = 0.01 m 
Intrinsic ALS parameters 
Range-finder σρ = 0.09 + 0 ppm 
Encoder angle σθ = 0.0018 deg 

Table 1: A priori ALS system accuracies 
 

 

 
Figure 10:  Estimated point accuracies by error propagation 

(without scanning geometry analysis) for extract of 
dataset: (a) ALS range length - (b) estimated 
horizontal accuracy (1σ) - (c) estimated vertical 
accuracy (1σ). The blue dots represent the projected 
helicopter positions.  

 
Figure 10 illustrates the distribution of errors modeled by error 
propagation (Section 2). The flight presents a similar set-up as 
depicted for strip A in Fig. 1. The range (a) in nadir is about 
1000 m, while in the extremities of the swath it oscillates from 
about 500 m (upper part) to 1500 m (lower part) respectively. 
We observe that the horizontal accuracy (b) is mainly governed 
by the absolute value of the range. The vertical accuracy (c) 
however, is also strongly influenced by the encoder angle. The 
best vertical accuracy is achieved in the nadir. Generally, the 
point accuracy due to the navigation error decreases with 
increasing range and encoder angle. It is also worth mentioning 
that the accuracy variations follow a very homogenous pattern 
with no sudden changes. 
 

 
Figure 11: Impact of scanning geometry on the target accuracy: 

(a) computed laser incident angles (in degrees) - (b) 
horizontal geometric accuracy (1σ) - (c) vertical 
geometric accuracy (1σ). The vegetation points have 
been previously removed. 

 
The upper figure demonstrates the results of the scanning 
geometry analysis (as described in Section 3.3). Unlike the 
navigation accuracy estimates (Fig. 10), the data in Fig. 11 has 
a very inhomogeneous character. The results of the scanning 
geometry depend directly on the terrain topography; therefore 
very abrupt changes in the scanning quality can occur.  The 
dataset presents a large variation in the incident angles (a), 
especially in the middle part (rock faces with slopes up to 70°, 
causing high incidence angles). Correspondingly we expect 
strong accuracy degradation in this region mainly in the vertical 
component. The plot of the vertical accuracy (c) affirms this 
assumption. The horizontal accuracy (b) has a slightly different 
behavior. Here, the absolute range value is the predominant 
factor, as the horizontal footprint size is proportional to the 



 

distance of the laser head to the ground point. Therefore, the 
quality degradation is higher towards the lower part of the slope 
(similarly to Fig. 10-b). 
 

 
Figure 12:  Isometric view on the Gurtnellen data, color coded 

by the q-indicator (green = best, red = worst) 
 
Fig. 12 shows the results of the final q-indicator computation in 
an isometric view. No q-value was computed for the points in 
blue (vegetation points, sorted out by pre-filtering). Although 
the navigation accuracy was almost constant, large 
discrepancies in the point cloud accuracy occur, mainly due to 
variable range length and scanning geometry. Generally 
speaking, the quality of the data is approximately three times 
worse in the lower part of the strip than in its upper part. 
Nevertheless, the worst degradations can be found in the very 
steep middle part.  
 

6. USE OF Q-INDICATORS IN DSM/DTM-
PRODUCTION 

The existence of such  quality indication for each laser point 
offers  variety of options for increasing efficiency and quality in 
the standard ALS DSM/DTM production process. We highlight 
some of them in the following paragraphs. 
 
6.1 

6.2 

6.3 

6.4 

Strip Adjustment 

The analysis of inter-strip discrepancies in the overlap areas and 
subsequent derivation of “field calibration” values can be 
considered as a standard procedure in state-of-the-art 
DSM/DTM production workflows. It estimates orientation and 
scale correction for the whole data set (e.g. to correct for 
residual boresight errors) or position shifts for individual flight 
lines (e.g. to compensate biases in the GPS solution). 
However, most algorithms used in practice (Burman, 2002) 
consider all points – at least within the same strip – as having 
the same quality. As previously shown, this assumption is not 
correct. Especially the points laying on the edges of the flight 
lines – exactly where overlap analysis usually occurs – are of 
degraded accuracy, most notably in inclined terrain. 
Ignoring this fact makes it more difficult to quickly reach a 
converging solution and can even lead to wrong results. This 
can be the case when clusters of simply less accurate points 
(due to scanning geometry) influence the solution in a way that 
degrades the adjustment parameters. Applying incorrect 
adjustment values to the whole data set can end up in corrupting 
parts of previously good data. 
The use of the q-indicator to weight points when solving for 
strip adjustment parameters can lead to improved accuracy and 

reliability of the results, thus enhancing the quality of the 
derived product. 
 

Automated Ground Classification 

Most of today’s ground classification algorithms (Sithole and 
Vosselman, 2003; Soininen, 2005) show a high affinity towards 
low points, regardless of their origin and quality. 
Using the q-indicator – and possibly the pre-classification 
according to local curvature – could increase the robustness of 
automated ground classification by considering only “good 
quality” points for the first iteration and adding points of lower 
quality subsequently. 
Such an approach obviously does not have a significant effect 
in areas with only low-quality data but can help minimize 
problems with ground classification in strip overlap areas, 
especially when adjacent strips match badly due to different 
quality. 
 

Manual Editing 

To reach a DTM/DSM of high quality, sometimes manual 
editing is still necessary, particularly for data representing 
complex topography. Here, critical areas are examined visually 
and improved by reclassifying groups of points based on 
subjective decisions.  
Introducing q-indicators as an additional basis for deciding 
which points to prefer in manual classification (e.g. 
ground/non-ground) can help the operator to make more 
objective decisions, which in term improves the quality of the 
end product. 
 

Metadata Generation 

With ALS becoming a well-established technology, the users 
start demanding good documentation about the data origin, 
quality and processing history. (Luethy, 2007) shows that 
nowadays the compilation of metadata must be considered as an 
integral part of the ALS production workflow. 
Being able to document the expected quality quickly and 
automatically by explicitly demonstrating the compliance (or 
lack of it) with the project specifications, certainly qualifies as a 
valuable asset when delivering comprehensive metadata to the 
client. 
 

 
Figure 13:  Whole Gurtnellen data set color coded by elevation 

(left) and the q-indicator (right: green = best, red = 
worst) 

 
Fig. 13 illustrates an example of generating metadata by color 
coding the point cloud by the value of the q-indicator. The right 
plot in this figure offers obtaining an impression about the 
accuracy distribution over the data set rapidly when 
highlighting areas with quality problems. In this data set the 



 

main quality problems (dark red in the middle part) are due to 
large incident angles on extremely steep terrain. 
 

7. CONCLUSIONS AND OUTLOOK 

We have presented an algorithm capable of analyzing the 
accuracy of ALS data and providing a realistic estimate of the 
magnitude of error on the ground. The analysis of the scanning 
geometry allows the detection of unfavorable scan patterns and 
assesses their effects on data quality. We have introduced the 
concept of a unique quality attribute (q-indicator) for every 
single laser measurement and shown its value in practice. 
However, at the moment we consider this q-indicator as purely 
qualitative. The obtained results are to be controlled 
independently, which will be subject to further research. 
Nevertheless, we have shown that such q-indicator can be a 
very valuable tool within ALS data production. Data 
classification, strip adjustment and generation of LIDAR 
quality metadata can all profit from considering such a 
parameter.  
 
There remain some open questions within the ALS error 
modeling that need to be addressed. At the moment the 
presented stochastic model does not consider correlation 
between the parameters, although it is known that the GPS 
coordinates and the IMU attitude angles are highly correlated 
among each other and in time. Another potential problem is the 
dependency of range accuracy on the reflectivity of the target 
and the amount of backscattered energy. Empirical tests have 
shown that the range finder accuracy is highly decreased on 
surfaces with low reflectivity (thus low intensity). As most ALS 
systems measure and store the intensity values, it would be 
theoretically possible to incorporate the target reflectivity into 
the general error model.  
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