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ABSTRACT:

Estimating forest variables, such as photosyntHaght use efficiency, from satellite reflectancata requires understanding the
contribution of photosynthetic vegetation (PV) am@hphotosynthetic vegetation (NPV). The fractioh$¥ and NPV present in
vegetation reflectance data are typically contblyy the canopy structure and the respective vigvaingle. The persistent but
highly varying anisotropic behaviour of the foresinopy implies that there is canopy structural rimi@tion to be exploited from
multi-view angles measurements. In this work, a loio@tion of radiative transfer modelling (FLIGHThd linear unmixing
techniques were used to isolate angular PV and KB&tions from multi-angular CHRIS-PROBA (Compact HigksBlution
Imaging Spectrometer-Project for On-board Autononigta in order to assess their effects on a stitegetation indices. Angular
variability in the NIR wavelengths contributed mésthe angular change in PV and NPV fractionsuhn tfor those pixels where
the NPV fractions from near-nadir to backscatterenacreasing, moderate correlations were found tie angular variability of
the calculated vegetation indices. From theseifmast a Normalized Difference NPV Index (NDNPVI) svdeveloped as a proxy
for volumetric canopy composition.

vegetation) or litter cover. Then, a further sirfipéition can be
made, namely,

1. INTRODUCTION

This study begins with the assumption that pixgklecanopy
reflectance of a terrestrial ecosystem typicallyhgists of a
proportion of Photosynthetic vegetation (PV) angraportion
of Non-Photosynthetic Vegetation (NPV: parts/ canop

R(A) et =FpvRApy + A =Ty )RA) ey and & fov <l (2)

Further, although often ignored in nadir remote sg&m

components that lack chlorophyll, such as dry teatter, bark,
wood, and stems) and eventually rock and bare Jdik

fractional extent of vegetation into PV and NPVirgortant

from biophysical and biogeochemical perspectivesfiibs et
al. 1999), as well as to understanding climate kmdi-use
controls (Asner and Heidebrecht 2002). Many apgitea have
been developed to analyze PV, NPV and bare sogroblem

hereby is that the typical spectral regions usedetect PV —
the visible and the NIR wavelengths (0.4-1.3 pm)o- ribt

easily separate the individual contribution of N&w bare soll
to the measurement (van Leeuwen and Huete 1996 rRadte
al. 1998). Alternatively, spectral mixture analysizas

developed to decompose image pixels into its porestituent
(Settle and Drake 1993, Adams et al. 1995). As spigikel level

reflectance can be described by a spectral mixtuodel in

which a mixed spectrum is represented as a lineabmation

of pure spectra, called endmembers (EMs):

R(A) pixet =FevRA)pv + FupyR(A) ey + FsoilR(A soil
and by + fypy +fsoi =1, Q)

sun/view geometry has a great influence on the rebde
reflectance of a surface, which is described byidérectional
reflectance distribution function (BRDF). The magd#uand
shape of the BRDF is governed by the compositionsitien
optical properties and geometric structure of tlegetation
canopy. It are these BRDF effects that triggeredcilveent
advances in multi-angular remote sensing. Receanilyerous
studies have demonstrated that measurements froftipleu
view-angles (e.g. CHRIS-PROBA, MISR) can provide
additional surface properties at subpixel scalg. (Biner et al.
1999, 2005 Widlowski et al. 2004).

Being aware of multiple viewing angles, consider,dgample,
the following situation where the sensor remainsnigaol
towards a forested ecosystem but gradually oveegaf®m
nadir to more oblique views while taking conseocaitiv
snapshots. Then not only the observed PV and NBpoptions
might change per image but also, depending on fohseatter
or backscatter observations, the PV and NPV speatea
equally subject to change (e.g. predominantly sti@daditions
vs. predominantly sunlit conditions).

EMs are usually obtained from spectral librariesfrom the

where fpy, fypy, fsoi are the fractions of PV, NPV and soil images themselves (e.g. Ichoku and Karnieli 19B&garding
respectively, R(1) is the reflectance of each land-cover the BRDF effects, extracting EMs from each angulanec
endmember at wavelength Regarding forested surfaces, it is would be the most adequate but it is impossiblertocounter

commonly the case that bare soil or rocks are absem pixel
but are replaced by understory (e.g. grass or heches
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pure pixels in a forested scene (e.g. NPV). To bgpthis
limitation in this study, a radiative transfer mbdas used that



realistically describes the physics of canopy méace based
on abstraction of the canopy. With such a modet¢fiectance

of a purely vegetated canopy (PV) and a purely wamahopy
(NPV) can be reasonably simulated. Modelled PV &Y
reflectance trends both in the spectral and angdéanain,
expressed by the bidirectional reflectance facBRK), were
proposed to act as EMs. The hybrid 3-D radiative
transfer/geometric Forest Light (FLIGHT) canopy rabdased
on Monte Carlo simulation of photon transport (Noit®96)
was used for this purpose.

The objective of this study is: (1) to assess hoactfonal

coverage of PV or NPV responds to changing vievangles
by using linear unmixing, and: (2) how such effeats related
to single reflectance bands and vegetation inditesforest
canopies, woody material plays a small but sigaificrole in
determining reflectance, especially those with laefa index
(LAl) <5.0 (Asner 1998). However, the author advwedathat
this is also dependent on the location of woodyemiait within

the canopy.

This study is focused on coniferous forests whaee woody
material (stem) is well separated from the vegdtatewn. We
hypothesize therefore that at greater viewing anglegreater
proportion of NPV in the reflectance signal will doene

apparent due to a greater contribution of woodynsteThis is
especially probable in sparse coniferous stands &hdn

observed in backscatter direction where the infteerof

shadowing is reduced.

2. METHODOLOGY

We address two approaches to test the above hygisittig) a
modelling exercise that mixes the pure BRFs into ousi
canopy reflectances and (2), a linear unmixing @ger that
uses five consecutive Compact Higher Resolution Intagi
Spectrometry (CHRIS) images from five different viewi
angles during a single overpass of an alpine fedestosystem
(hereafter, referred to amgular unmixing). In an earlier study
using CHRIS (Verrelst et al. 2007) it appeared thegetation
indices shows a pronounced anisotropic behaviapeaally
the light use efficiency indices. It was suggestbdt an
eventual increased proportion of woody material ldou
significantly affect those photosynthetic-sensitiVés. The
modelling exercise will validate this assumption hymicking
each VI with increasing NPV proportions at greateswing
angles, while the angular unmixing exercise willifyewhether
this assumption holds true when using the orig@tdRIS data.

2.1 Dataand study site

CHRIS mounted onto Project for On-board Autonomy
(PROBA) offers ideal opportunities to assess the ceffeof
changing composite proportions over varying anglés.
specifications are shown in table 1. The used CHRI&ye set,
acquired on June 27 2004 10:41h AM local time urpghatly
cloudy conditions (1/8 cloud cover) was geometrically and
radiometrically corrected following an approach idated for
rugged terrains (Kneubuhler et al. 2005). The &#&t has a
geometric accuracy for the five scenes of 1-2 gixd@lhe
generated ‘surface reflectance’ represents hemisathe
directional reflectance factor (HDRF) (SchaepmantSiet al.
2006). Due to the cloud contamination the +55° scemas
discarded in further analysis. The +21° scenedqlear-) nadir
scene while the -55° scene happened to be viewin
predominantly back scattering (figure 1).

Sampling Image area Spectral bands Spectral
range
~17m @556 13x13km (744 x 18 bands with 447-1035
km altitude 748 pixels) 6-33nm width nm

Table 1. CHRIS configurations for Land Mode 3

nadic O

PP
Figure 1. Polar plot of CHRIS acquisition and illuaiion
geometry as of June 27, 2004. PP: principal plane

The study site is located in the eastern Ofenpalieyy which

is part of the Swiss National Park (SNP) in SoutastE
Switzerland (10°138"E/46°3945"N). The Ofenpass represents
a dry inner-alpine valley with rather limited prgitation (900-
1100 mm/a) on an average altitude of about 1900smh.aTrhe
south-facing slope of the Ofenpass valley is carsid as the
core test site. The relatively flat part down-iglope < 10°),
which consists of old-growth coniferous forest aamd alpine
meadow, were chosen as study site to assess ariMland
NPV proportions.

The evergreen coniferous forest is dominated bynten pine
(Pinus Montana ssp. arborea). The forest is characterized by
varying density and a relatively high woody fraati@wa. 30%)
due to the advanced age of the pine forest andrenatu
management practice that stopped 70 years agoageerAl is
2.2 (1.0 SD). The forest ecosystem can be cladsifis
woodland associations &fico-Pinetum mugo. The understorey
is characterized by low and dense vegetation coaethboginly
of Vaccinium, Ericaceae, andSeslaraia species

2.2 FLIGHT modelling

With FLIGHT, evaluation of BRF is achieved by rayciry the
photon trajectory within the discontinuous envir@mn of a
simulated forest canopy. The model allows the r=gmtation of
complex vegetation structures and a correct treattnef
spectral mixing resulting from multiple scatterimgthin the
scene. FLIGHT simulates a 3D forest canopy by gédene
primitives with defined shapes and positions ofivilal
stands with associated shadow effects. Within eawn
envelope foliage is approximated by volume-averaged
parameters with optical properties of both leaf amdody
scattering elements (North 1996).

We simulated canopy reflectance of an exclusive &d an
exclusive NPV forest scene as a function of canegyables
and CHRIS acquisition geometries. The main difference
between the PV and NPV simulations are that inRkecase
each crown envelope (cone) represents 100% foliabie in

the NPV case each cone represents 100% bark. Ag fop
FLIGHT averaged field measurements were used based
surveys in 4 core test sites within the forest (sdxe 2). The
foliage optical properties were modelled by PROSPEQd
coupled with FLIGHT (Ko6tz et al. 2004) while theespral
groperties of the woody parts and background were
characterized by spectrometric field measureme@sice



background is equally a mixture of PV and NPV sigre.g.
shrubs, litter) alternatively we also modelled amtfeme’ PV
scene with background consisting of purely foliagiectance
and an ‘extreme’ NPV scene with background comgistf
purely bark reflectance (see figure 2). The restulBRF's will
act as synthetic endmembers.

‘Extreme’ PV ‘Extreme’ NPV

Figure 2: Visualization of a rendered purely PVaanand a
purely NPV canopy

The generated BRF's will also be used to realizertherse of
linear unmixing. By mixing both modelled spectraviarious
mixtures at varying viewing angles, more naturaé§b canopy
reflectances can be simulated. Having then PV alRV N
proportions controlled, finally the angular responof
vegetation indices can be assessed.

Prior to such mixing, we tested whether this shaward
approach does not conflict with the basic physasdumption
of linear unmixing. This assumption states thar¢his not a
significant amount of photon multiple scattering tvibgen
macroscopic materials, in such a way that the faceived by
the sensor represents a summation of the fluxes fhe cover
types and the fraction of each one is proportiteats covered

3. RESULTSAND DISCUSSION
3.1 Comparison VIs: FLIGHT vsCHRIS

Figures 3a and 3c show the angular shapes of thetGte
Invariant Pigment Index [SIPIRggo- Ruse) /( Rego+ Rros) ] and
the Anthocyanin Reflectance Index [ARRss)™ - ( Rroo)?] that
were calculated from CHRIS forest HDRFs. Figure 3b add
show the same indices calculated from the modeB&fs
according to the sun/view geometry of CHRIS. Thessplgs
encompass various mixtures of PV and NPV propastion
(%NPV= 100-%PV) with increasing NPV values at geeat
angles. The outer lines are the extremes: the 8fiaese for the
exclusively simulated PV forest (blue line), and ¥ response
for the exclusively simulated NPV forest (pink [neTo
facilitate comparison each index was normalizediregaits
nadir value, or in case of the simulations, theimadlue of
100% PV.

The modelling examples confirmed earlier observetichat
while some indices are extremely sensitive to vigwangles,
other indices respond rather invariant (Verrelsale2007). In
turn, it also confirmed the hypothesis that the nitagle of
NPV proportion in the signal governs the VI resmonBy
varying the proportions of NPV at greater viewinggkes, a
shape was attained which is likewise to that foe tils
calculated by CHRIS. Regarding other VIs the sameadtiesis
noted (not shown here), although some VIs matclegdbthan
others (for a list of the VIs and formulas see @aB). In
conclusion, these examples provided a firm basisiticreased

area (Camacho-De Coca 2004). However, when photonNPV at greater viewing angles exert influence ome Wil

interact with vegetation components
reflectance has the potential of becoming nonlirfbgmeni et
al. 1989, Borel and Gerstl 1994). The complex FLIGH®del
is specifically designed to trace these scattetiajectories
depending on how each macroscopic or foliage niarosire
is defined. But with the PV-NPV approach, a secorablem
arose due to the different nature of both constitieA crown
of 100% PV foliage propagates photons and causebkefu
within-crown multiple scattering whereas a crowniltbwf
100% opaque NPV foliage inhibits any further traitsaance.
We compared therefore for two wavelengtRs;(andRs) how
(post-modelling) mixed BRF signals differed with tfesulted
BRFs of simulated likewise mixed (pre-modelling) P\
crown envelopes, while keeping the other parametenstant.
As outcome of this small exercise it appeared that BRF
mixtures were conform with the BRFs of the simulateided

PV-NPV crown envelopes (RMSE: 0.022, no significant

difference found with a student'stest). This justifies the
approach of post-modelling PV-NPV mixtures withdwatving
to rerun the radiative transfer code. Neverthelgssas to be
tested whether this apparent linearity is alsodvédir other
wavelengths.

Name Value/ Range PV NPV
Fractional cover (%) 0.64
Leaf Area Index 2.4
Fraction of green foliage (%) 100% 0%
Fraction of bark (%) 0% 100%
Soil Vegetation  bark
Incident zenith (°)3 24.0
Reflected zenith (°} -54.6, -37.8,

+21.2 (nadir),

+33.3, +51.1

Table 2. Averaged input variables for FLIGHT based
surveys at 4 test sites. (Remaining input variabtesdescribed
in Kotz et al. 2004)

in vertical cgpa FesSPonse.
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Figure 3. Averaged angular Vis (SIPI, ARI) fromdst
acquired by CHRIS (a, c). VIs derived from combined
FLIGHT-BRFs with varying proportions of PV and NP\bag
the CHRIS viewing geometry (b, d). (%NPV=100-%PV)

3.2 Constrained angular unmixing of CHRIS data

The second part of the study enclosed the angylectsl
unmixing. Thereby, the unmixing was forced to bdlyfu
constrained (Eg. 2). This guaranteed a physicatpnetation of
the results since the fractions sum up to 100% alhdhe
fractions are positive. Linear spectral unmixing\pded two
main outputs: the sub-pixel fractional land covemgosition
itself and the spectral root mean square error (RM®2E pixel.
The RMSE was used to analyze the performance cfbetral
unmixing when removing bands (Zurita-Milla et aloQZ).
CHRIS bands 1 and 2 (centered around 442 and 49Gvene)



omitted, as they are very susceptible to aerosattesing.
Bands 17 and the last band (centered around 903 Giinm)
were also excluded because these coincide witlaerption
features of oxygen and water vapour; thus not afditevant
information to forest cover interpretation. The mml of these
bands resulted in a RMSE of less than 5%.

-36° nadir

BRF—HDRF
BRF—HDRF

'05 0600 700 FD 900 '05 0 600700 [;u] 900 2 or 500 700 #0d 800 'g 0 600 700 8O0 900
wavelength [nm. wavelength [nm wavelength [nm wavelength [nm.
Figure 4. Angular endmembers (BRFs), plus a sigaaifian
average forest canopy at CHRIS acquisition geometries

Figure 4 shows a typical forest canopy reflectantehe 4
angular scenes plus the retrieved EMs. In gendCalRIS

reflectance appeared to be considerably lower thanEMs.
This is especially notable for the ‘original’ (bagkund from
spectrometric field measurements) NPV-EM that appéabe
similar to an average CHRIS forest signature. Hdre,rather
vegetated background spectra dominated the camdiggtance
of the simulated NPV scene. Consequently the NP¥titnas

were overestimated. To correct for this, alterreatiextreme’
scenes were simulated to ensure that the backgneasdpure
in both cases. In spite of these adjustments, hewedPV
overestimation remained.

Apart from nonlinearity, the impression arose ttatimember
uncertainty is playing a crucial role when applyimpdelled
EMs in satellite data unmixing. Reasons of EM uraiety are:
(1) variability in spectrometric field measurementg2)

variability in model parameters, (3) model simjgkfiions, and
(4) mismatch between BRF (FLIGHT) and HDRF (CHRIS).

Although endmember uncertainty inhibits reliableasres, yet
with BRDF-adapted EMs it is assumed that the degfesror
will be the same for all angular scenes. Subsefuetite
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Figure 5. Scatter plots of %NPV compared to %AHDRF for
waveband 570 nm and 748 nm
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Figure 6. The?s of the linear regression when correlating
ANPV with AHDRF

Linear regression relationships were in table &rinanalogous
way calculated for scatter plots ANPV against a suite of ViIs
(AVI). Correlations were weak when considering the plete
data setrfna=0.21). When splitting the data set into (i) pixels
where a PV increase occurred (more vegetation vbdeat -
55°), and (ii) pixels where a NPV increase occurfatbre
woody parts observed at -55°), then better coialatrevealed
(table 3). Poor correlations were found in casthefincreasing
PV proportions 1®m.,=0.10). Yet, in case of increasing NPV
proportions remarkably higher correlations werddgd. In the
latter, apart from PRI and RGRI, NPV differences cegatu
about one third of the VI variance?§ between 0.24 and 0.47).

quantity of change from one unmixed angular scene towardsNPV effects significantly affected the reflectarsignal, though
another unmixed scene is considered as a morebleelia since validation data is absent, results oughtetanterpreted
measure. More appealing therefore is to compareeffeet of  with care. Nonlinearity and EM uncertainty are umai@ing
NPV change ANPV) to change in a single waveband the applied angular unmixing approach. Generatiids By
(AHDRF,) or a derived VI AVI). Change is defined as the means of forward radiative transfer modeling is aadageous

normalized % difference of -55° value comparedhe bhadir
value. E.g. foANPV:

NPV _gs. — NPV
NPVnadir

ANPV = nadic_100% . @)

Figure 5 shows two examples of scatter plots whibe
normalizedANPV is plotted against the normalizA#HDRF (of
the wavebands 570 nm and 748 nm). Pixels plottedgathe
positive x-axis represent an increase in observB¥,Nvhile
negative values along the x-axis represent a deeres
observed NPV and thus an increase in PV. The sdReaeson

with respect to controlling BRDF variables, but is@lhas its
limitations. For instance FLIGHT does not accouott Within-

shoot scattering, which causes the low NIR reflemain

coniferous areas (Rautiainen & Stenberg 2005).
understory vegetation, which can be very abundadtvariable
and can considerably influence the reflected sighahe stand
(Rautiainen 2005), was simply generalized in thislgt

To reduce EM uncertainty, rather than relying one on
generalized set of EMs, further research wouldhoeugh the
generation of EM sets that cover a range of specargability

according to the satellite data (Asner & Lobell @O
Embedding a set of PV and NPV endmembers in theximgn

Also,

correlation coefficients? are shown in the graphs. Following, procedure will lead to a set of PV and NPV fracsievhich can
for each waveband a linear regression and comelati afterwards be aggregated again to single PV and fRtons.
coefficient with ANPV was calculated and then plotted (figure Another approach worthwhile to explore is to apalgo-called

6). The unmixing with the ‘extreme’ EMs resulted hiigher
correlations. Particularly in the NIR wavelengthgthi®’s were
reached. In the NIR domain, scattering is very hiyd
constitutes the main source of radiation flow wittaximal
interactions, such that an angular change in cacopyposition
will lead to a pronounced change in angular outflow

‘spatial unmixing’. In spatial unmixing the EMs aselected on
a high resolution image while, by means of fuside, spectral
resolution is obtained from the original low res@n image
(Zurita-Millla et al., 2006). This technique cowdlve the EM
uncertainty for the image with the same geometmdi®ns
(e.g. nadir), but does not apply to other viewimglas due to
the aforementioned BRDF effects. Combining spatialiyimm



Index Formula + %PV + %PV + %NPV + %NPV
‘original' ‘extreme’ ‘original' ‘extreme’
NDVI (Ruir - Rreo)/( Ruir + Reep) 0.00 0.00 0.42 0.45
SRI Ruir/Rrep 0.03 0.03 0.39 0.39
ARVI (Ruir -(2Rrep- ReLue)) / (Ruir + (2Rrep - ReLue)) 0.02 0.02 0.39 0.45
NDVIl7os (R7s0-Ry05)/( RysgtR70s) 0.00 0.00 0.27 0.24
MSRos (Rso- Rass) /( Rros+ Russ) 0.03 0.04 0.19 0.24
mNDVI705 (R750' R705) /( R750+ R70§R445) 0.03 0.04 0.20 0.25
PRI (Rea1- Rs70) /( Rsa1+ Rs70) 0.01 0.00 0.00 0.01
SIPI (Rsoo- Russ) /( Rsoo+ Rros) 0.05 0.06 0.25 0.32
RGRI Mean c_Jf all bands in the red range divided by tleamof all 0.01 0.00 0.03 0.03
bands in the green range
ARI (Res) - (Rrog)™* 0.10 0.08 0.43 0.47

Table 3. Definition of VIs evaluated antls of selected VIs when separating the data poePPV and +%NPV

with a model-generated BRF variability to correct fine
angular images will be tackled in a follow-up study

3.3 Normalized Difference NPV Index

Finally, having recognized that canopy structusiability can
be assessed when combining multiple view anglesnéxt step
is to develop a forest structure index. Severalicesl that
combine multiple viewing angles already exist, swh the
anisotropy index (ANIX), that is defined as theioadf the
maximum and minimum BRF (Sandmeier et al. 1998),her t
normalized difference angular index (NDVAI), thases a
combination of forward and backward scattered tauhia
(Nolin et al. 2002). These indices are proxies $orface
roughness; they indicate the degree of anisotragydo not
qguantify angular land cover variability. Here, weeind to go
one step further by developing a forest structyralxy that
makes use of derived directional fractions rathleant of
directional reflectance. We define the Normalizeiffddence
NPV Index (NDNPVI) as follows:

NDNPVI = NPV back = NPV nadgir , (5)
NPV back + NPV nadir

where ‘back’ corresponds to the fractions at thg® -Giewing
angle. Note that using PV fractions in the equatiould
equally hold true, but since our interest was djpedly to
assess the angular variability of NPV we felt thieowe
formulation being more appropriate. The NDNPVI gculated
for the study site (figure 7).

00 10 amees

NPV change

-10 00 1.0

Figure 7. left: the NDNPVI; right ROSIS image (RGB)tloe
study site on top of the topographic map.

The green-brownish colour indicates that at thossas no
angular fractional change took place, which accedat the
largest part of the study site. Areas with a maeegish colour
indicate a greater fraction of observed PV at -5BRhereas
areas with a more reddish colour indicate a greategular
fraction of observed NPV at -55°.

Where the boundary between forest and another taver
without NPV (e.g. meadow) occurs, however, the NDNP
loses its sensitivity. The broad yellow strip newtbst of the
meadow is the result of no NPV fractions observechair
(exclusive meadow cover) while observing NPV frags in
backscatter direction. Having then zeros for NgMn both the
numerator and denominator will always result onleatever the
NPV fractions of NPV, are. Within the forest, the NDNPVI is
well able to map angular fractional variability; this way it
distinguishes fully vegetated areas from woody srebhe
NDNPVI can function as a suitable proxy to provid®re
insight in per-pixel structural canopy compositiofthis
knowledge is crucial when attempting to interpreectral-
derived products, especially in case of photosysitheensitive
indices where NPV is a serious confounding factor.

4. CONCLUSION

The objective of this study was to assess how itmaat
coverage of PV or NPV responds to changing viewdngles
and thereby how such effects are related to sirgflectance
bands and VIs. With FLIGHT the reflectance of aclasively
PV and an exclusively NPV forest scene were siredlas a
function of coniferous forest variables and CHRIS ugsitjon

viewing geometries. We used two approaches (1) deting

exercise where VIs were calculated from control®d and
NPV canopy mixtures, and (2) a linear unmixing eiss
where PV and NPV proportions were extracted frorguéar
CHRIS images and then correlated with the derived Ve
modeling exercise showed that varying the NPV pribpaos at
greater zenith angles did indeed govern the angliape of
VIs. The unmixing approach, however, was facingitations
in extracting reliable absolute fractions from tlmages
themselves. Therefore the relative measureNRV rather than
the absolute measure was considered being moableliWhen
restricting to only those pixels where the NPV mndions
increased (from nadir to backscatter) then moderateelations
were obtained with the angular variability of Vislternative
canopy variables that were not, or not well, miraitky the
modeled EMs in combination with limitations of te&plored
approach made that only a small part of the Visgudar
variability was explained by the EMs. Finally, alwmetric

canopy composition proxy was developed that capéslon
the derived angular fractions. In the context ofnagy
photosynthesis studies, information about the cgnop
composition is crucial, though the work is still &n initial

stage. Further efforts should be devoted to thaswiess of this
proxy and to the operability of the unmixing proaesl
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