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ABSTRACT: 
 
Brownfields, idle or under-utilized urban areas, were identified in three parts of the Phoenix metropolitan area using a supervised 
classification technique using ERDAS Imagine.  The brownfields were first evaluated in an area of south Phoenix used as a control 
site to establish sample training sites.  These sites provided the basis for the supervised classification of an ASTER satellite image, 
which covered 60 x 60 km of the Phoenix metro area.  Thirteen other common urban features were also identified to isolate these 
spectral signatures from that of brownfields.  Using a set of 14 training sites, discrete brownfields were identified throughout the 
image.  The technique was tested using a Kappa coefficient (κ) accuracy assessment and ground-truth observations within the 
control and two “blind” areas in south Glendale and north Phoenix.  The Glendale site, an older urban area, yielded an overall κ 
accuracy of 64% with a ground-check accuracy of 60%, whereas the north Phoenix site, an urban fringe area, yielded an overall κ 
accuracy of 77% with a ground-check accuracy of 44%.  Small sample sizes and urban reclamation of brownfields between imaging 
time and site assessment can explain some degree of disparity of the results for the north Phoenix area.  A refinement of urban 
training sites and limiting brownfield search areas to non-fringe areas would improve this technique in future studies. 
 
 

1.   INTRODUCTION 
 

The use of remotely acquired images from satellite and 
airborne imaging systems can expedite the classification of 
features in large metropolitan areas.  However, a wide range of 
materials, including asphalt, concrete, vegetation, wood 
products, metal, and plastic are often concentrated into small 
spatial distributions in urban areas, thus complicating 
classification  (Harold, 2003; Shackelford, 2003).  One such 
concentration of materials can be found in urban “brownfields”.  
Brownfields are urban properties that are idle, under-utilized, 
often contaminated, and have often been abandoned by owners 
in favor of cheaper development on the urban fringes (Thomas, 
2002).  These areas vary in size from less than 100 m2 to 
several square kilometers and can be found in residential areas, 
urban centers, and adjacent to public parklands.  The objective 
of this research is the development and testing of a remote 
sensing technique to identify brownfields in the Phoenix, AZ, 
metropolitan area.  A single image acquired from ASTER (an 
imager on the TERRA satellite) and digital, ortho-rectified 
aerial images were analyzed using ERDAS Imagine 8.7 (Leica 
Geosystems).  ASTER image (#SC:AST_L1B.3:2017042475) 
was acquired on Sept. 29, 2001 at 6:27 pm local time and 
covers approximately an area of 60km x 60 km (40mi x 40mi), 
including the entire Phoenix metropolitan area.  The digital 
ortho-rectified aerial photographs (acquired Jan. 2000) have a 
ground resolution of 1 ft2.  Additionally, ArcGIS 9 (ESRI) was 
utilized to compile and geographically reference all data to aid 
in the development of the classification. 
 

2.   APPROACH 
 
2.1 Scope 
 

Current image classification techniques of urban 
environments indicate that high -resolution images (<5m/pixel) 
and sophisticated statistical analyses are required to distinguish 
between the wide variety of urban materials, shapes, and 
patterns (Haack, 1983; Ventura and Harris, 1994; Foody, 2000; 
Harold, 2003).  This is especially true where the features are 
small, concentrated and produce a complex texture of spectral 
reflectance and signatures.  However, larger, more homogenous 

features, such as open lots within an urban landscape, should be 
more readily isolated even at lower resolution.  These surfaces, 
which include agricultural lands, parking lots, and brownfields, 
provide distinctive spectral characteristics that can be used to 
distinguish them for classification.  The visible and near infra-
red bands of ASTER images have a surface resolution of 15m x 
15m, which would cover half of a medium -sized residence.  
Without a clear signal observed from at least three contiguous 
pixels, surrounding features are considered too influential.  
Thus, the scope of this research defines identifiable brownfields 
as large open lots that span more than three ASTER pixels 
within or adjacent to either residential or industrial urban 
developments.  These features can be identified through the 
supervised classification of multiple training areas in 
conjunction with field observations, and qualitative image 
analysis of very-high resolution digital aerial photographs. 
 
2.2 Study Areas 
 

Three sites in the Phoenix metropolitan area were 
investigated (Figure 1), including south Phoenix, an area of 
industrial buildings and low income housing; southeast 
Glendale, which includes empty residences, warehouses, and 
resurfaced lots; and north Phoenix, a developing area that had 
been sparsely developed until the last 10 years.   The downtown 
Phoenix site is 12 mi2 and was selected as the control site from 
which brownfield typologies were derived.  The southeast 
Glendale (9 mi2) and north Phoenix (8 mi2) study areas were 
used as “blind” sites in this investigation. 

The aerial photos were used to identify potential 
brownfields in the control area.  Large lots greater than 100m in 
length were preferentially chosen to ensure a strong signal 
return.  Selecting lots that were next to industrial areas was 
considered a greater priority than those in residential areas.  
Surfaces that were too smooth, too dark, or too bright were 
rejected because these features suggested that the surfaces had 
been recently disturbed or graded.  Forty targets were selected 
and located on a commercial street map, each of which was 
then evaluated from the ground by direct observation.  Of the 
forty observed, 18 were selected as training areas for image 
classification.  Targets that were accepted as training sites all 
had similar surface morphologies, compositions, and textures.  



The areas were relatively flat, with indications that they had 
been smoothed or plowed in previous years, where the scrub 
and cobbles had been removed, although some currently had 
hummocks of dirt or gravel.  The surfaces were composed 
primarily of dirt, gravel (0.5”-1.5” diameter), and cobbles (2”-
5” diameter), which were to some degree overgrown by desert 
scrub.  Most lots were devoid of trees, but many had Mesquite 
or Palo Verde trees growing along the perimeter of both 
residential and industrial properties. 

 
Figure 1.  Study areas in the Phoenix metropolitan area. 

 
3.   CLASSIFICATION 

 
3.1 Unsupervised Classification 
 

The first step in identifying brownfields in the ASTER 
image was by performing an unsupervised classification to 
determine potential classes through a non-interactive, 
automated process.  This was performed using the ERDAS 
Imagine algorithm ISODATA, which uses a minimum spectral 
distance statistical formula to cluster pixels of like spectral 
values (Leica Geosystems, 2003).  This is an iterative process, 
where an initial arbitrary cluster mean (average class pixel 
value) is established and the pixels are grouped into a user-
define d number of classes (10 in this case).  The process is re-
evaluated, based on the previous run, and re-evaluated again 
until the process has reached a threshold where 95% of the 
analyzed pixels remain in the same class through a successive 
iteration.  The portion of the classified image that corresponded 
to the control area (south Phoenix site) was compared to the 
aerial photographs and the brownfield training sites established 
by ground observations.  The unsupervised classification 
isolated different agricultural classes, open lots, asphalt roads, 
freeways and parking lots, as well as residential and industrial 
structures.  Unfortunately, lakes and shadows (from buildings 
and mountains) were also grouped with asphalt, and the open 
lots category initially included the Salt River, brownfields, 
graded fields, and all other relatively barren surfaces. 
 
3.2 Supervised Classification 
 

In the supervised classification of the ASTER image, the 
brownfield training sites were delineated on the ASTER image.  
In most cases, the training area consisted of well over 50 pixels.  
Two or three training samples were selected for other 
classification targets, which were based on unsupervised 
classification results. The targets, identified from the aerial 
photographs, consisted of large obvious features, including four 
Agriculture types, Lakes, Residential, industrial Buildings, 

Concrete, Asphalt and parking lots, the Salt River wash, Bare 
Soil, Coarse Materials, Shaded Areas, and Brownfields.   
Agriculture was identified by varying degrees of brightness in 
near-infrared, which is strongly reflected by vegetation.  A 
Residential class was created by sub-sampling several highly 
complex signatures that included high values in overlapping 
green (“urban”), near infra-red (vegetation), and dark values 
(pavement).  Asphalt, including roads, parking lots, and some 
freeways, were grouped into a single class.  The Salt River, a 
dry river bed that passes through the control area and consists of 
very coarse materials (cobbles 4”-10”), was defined as a 
separate class.  Bare soil consisted of smooth bright areas that 
had little to no texture and no vegetation, and Coarse Materials,  
sampled from the banks of the Salt River, are unvegetated 
surfaces with an uneven mix of large gravel and cobbles with a 
small proportion of exposed soil.  These last two classes are 
considered recently disturbed because of the lack of vegetation 
and are therefore considered distinct from Brownfields. 

A contingency matrix was created to test the viability of 
the selected classes.  This algorithm reviews all of the selected 
signatures to determine the degree of overlap found between 
each of the signatures, and is based on a Maximum Likelihood 
“decision rule”.  This decision rule evaluates the variance 
(range of DN values) and the covariance (correlation or overlap 
between signature classes) of each of the established classes in 
order to derive the probability of each pixel falling into a 
particular class.  The evaluated probabilities are equal (non-
weighted) for all classes.  When the probability of each pixel’s 
potential has been calculated, the pixel is then assigned to the 
class with the highest probability (Lillesand et al., 2004).  
Successive classifications and evaluations enabled the isolation 
of 14 distinct classes.  The matrix showed that most of the new 
classes were spectrally more distinct.  Brownfields, however, 
still appeared to overlap with Salt River and Bare Soil.  At first 
glance, the classification did not seem to be promising as a 
distinct spectral signature.  However, an ERDAS “threshold” 
tool, which performs a “goodness of fit” test, indicated a much 
better distribution of the Brownfield pixel values than for Bare 
Soil or Salt River.  The threshold test calculates the potential 
percentage of pixels misclassified at a user-defined confidence 
level.  In this study, a goodness of fit signature for the 
Brownfields was more important to ascertain than that of the 
Bare Soils or Salt River and, from this evaluation, it was 
assumed that the new classification would result in an 
underestimation of Brownfields and an overestimation of Bare 
Soils or Coarse Materials classed pixels (Leica Geosystems, 
2003). 
 
3.3 Results of the Supervised Classification  
 

The results of the second and final supervised 
classification indicated a widely distributed Residential class, 
more Agriculture sites, and more constrained Brownfield and 
Bare Soil areas.  Aerial photos were used to corroborate the 
classified image with classes in the control study area.  
Qualitatively, the classed features appeared to match well with 
the corresponding features in the photographic images.  This 
was especially the case for the agriculture classes, Asphalt, and 
Residential.  Unfortunately, while the original training sites 
contained mostly Brownfield signatures, some mixing from 
Bare Soils, Coarse Materials, and (to a small extent) Salt River 
was present in each.  One training site, which had a component 
of large cobbles and old asphalt, was classified as Salt River 
and Coarse Materials.  Such a result for the targets was not 
completely unexpected.  Surfaces at each of the sites varied 
with respect to distribution of gravel/cobble size and amount, as 
well as vegetation coverage.  In addition, the spectral overlap 



from the other classes indicated that a reduction of the 
Brownfield signature was likely. 
 
3.4 Testing the Identification Technique 
 

The accuracy testing of the technique described in this 
study was performed using two methods.  The first was a 
statistics approach used in ERDAS Imagine that evaluates the 
pixels of the image that was classified by the user (training 
sites) against a randomly classified image by the computer and 
how well the test was performed.  The second was a ground 
truth check of a random selection of sites in the two blind study 
areas, southeast Glendale and north Phoenix. 

The standardized method of measuring the classification 
of an image in ERDAS Imagine is through the calculation of 
the kappa coefficient of agreement.  Introduced by Congalton 
et al. (1983) to assess early Landsat image classifications, the 
kappa coefficient uses multivariate analysis on the discrete 
values of the classified pixels by comparing the two error 
matricies generated by the computer and the user’s inputs.  This 
value is calculated by: 

   (1) 
where n is the pixel class value, q is the number of classes, and 
k is the matrix cell location in a “k x k” matrix (where k, … , 
k+ is the actual class axis and k, … , +k is the predicted class 
axis).  The result is a value that indicates the percentage of the 
misclassification error that was avoided compared to that which 
is generated from a completely random classification 
(Congalton, 1991).   

The kappa coefficient for the brownfields for the two 
Phoenix sites were relatively high (south Phoenix: 79.6%, north 
Phoenix: 76.7%), although the Glendale score was somewhat 
lower (64%).  However, the accuracies of the user’s classes 
were all less than the suggested target of 85% accuracy (Foody, 
2002), with overall accuracies below 72% (south Phoenix: 
66.3%, north Phoenix: 60.3%, Glendale: 71.1%).   

A field check of the two “blind” sites was performed as a 
second method of checking the results of the classification 
technique described in this investigation.  Thirty-two random 
brownfield classed sites were identified in the southeast 
Glendale area and 30 in the north Phoenix area for ground 
observation.  Each target was evaluated whether it satisfied the 
definition of brownfield used in this study and ranked with a 
value of “yes”, “no”, or “OK?”.  “Yes” indicated that the site 
covered the approximate surface extent on the map and met the 
brownfield definition.  “No” indicated that the feature was mis-
classified.  Some targets had brownfield characteristics, but did 
not fit the strict definition (e.g., the site was an undevelope d 
residential yard), and was given a neutral value “OK?”.  Other 
sites that had been reclaimed since the time of imaging (2001), 
typically by a new residential development, were not 
considered valid sites.  

Of the 32 point ground points in the older, urban Glendale 
site, 7 had been reclaimed since the 2001 imaging time.  
Ground truth evaluation yielded values of 60% accuracy, 24% 
ambiguous, and 16% misclassified.  The accuracy is within a 
few percentage points given by the kappa coefficient.  The 
north Phoenix urban fringe area showed marked development 
in the last 3 years and only 18 of the 30 target sites were left 
unchanged.  The results of ground observation for this area are: 
44.4% accurate, 38.9% ambiguous, and 16.6% misclassified.  
The difference betwe en the ground assessment and the kappa 

value is much greater for this area, but because of the small 
number of observations, results are probably not well 
represented. 
 

4.   Conclusions 
 

The identification of brownfields in this study met with 
mixed result s.  T he supervised classification of a single ASTER 
image produced a classified map which revealed abandoned lots 
down to the resolution of the image (15m).  However, the 
assessment of the technique indicated that the accuracy of the 
classification was only moderate: 64-80%.  Several problems 
encountered throughout the study made the identification 
process challenging; these issues would need to be addressed in 
a future study.  Results from the north Phoenix site were 
particularly unsatisfactory.  This was because the level of rapid 
development of the area was not taken into account.  An 
additional study area, perhaps another older city center, should 
have been chosen.  Larger study areas might also have been 
helpful and a greater number of field check points would have 
produced more statistically reliable results. 

Distinguishing between Brownfields, Bare Soil, and 
Coarse Materials classes was a recurring problem throughout 
the image classification and testing part of this study.  Because 
the objective of the project was only the identification of 
brownfields, less care was taken to develop specific criteria to 
identify the other two  classes.  Future work should include 
sampling an equal number of training sites for the classes 
similar to brownfields in order to more accurately delineate 
these spectral signatures.  Similarly, because vegetation 
coverage did play role, albeit a modest one, in the resolution of 
Brownfields, Bare Soil, and Coarse Materials, a detailed field 
analysis of the type and amount of vegetation coverage for each 
class type could be performed.  In non-arid climates, a greater 
consideration for vegetation coverage would need to be given. 

Improved techniques and results developed from the 
research performed in Phoenix, AZ, could eventually be applied 
to other cities, making the identification and evaluation of 
brownfields through remote senising analyses more time- and 
cost-effective.  This in turn would enable developers to more 
easily evaluate areas that could be reclaimed for public or 
commercial use. 
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