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ABSTRACT:

A detailed elevation model of the Netherlands has been acquired with the use of Airborne Laser Altimetry and is managed by AHN
(Actueel Hoogtebestand Nederland). This elevation model can be used for a large amount of applications. Using a suited illumination
technique it turned out to be possible to find and visualize so-called Celtic fields, agricultural fields systems of about 2500 years old in
the AHN data. Here we will show that the visualization of Celtic fields out of AHN data can be enhanced by applying a geostatistical
filter technique that removes the raw topography from the data set such that only the micro-topography, including the Celtic fields,
remains. Visualization of this micro-topography not only enhances the images of the already known Celtic fields but also shows that
the spatial extend of the field system is larger than expected.

1. INTRODUCTION

Celtic fields are prehistoric agricultural field systems that are rec-
ognizable as rectangular patches of land of about 40 × 40 me-
ter surrounded by low earth walls, see Fig. 1. The highlight of
the use of Celtic fields was between 800 B.C. and 0 B.C. and
they can be found in several countries in North-West Europe,
(Spek, Groenman-van Waateringe, Kooistra, and Bakker, 2003).
In open land Celtic field systems are often still recognizable, even
from the ground, although it is easier to distinguish them by color
changes in areal photo’s. Unfortunately it is very difficult to find
Celtic field systems in forest areas, as small elevation differences
or small color changes are completely masked by the forest cover.

Figure 1. Impression of a Celtic field system. (Rob Beentjes)

It turns out however that, even in forest areas, Celtic field systems
can be found by analyzing airborne laser altimetry data, (Zij-
verden and Laan, 2005). Several approaches exist to obtain the
bare earth surface out of raw airborne laser scanning point clouds,
(Sithole and Vosselman, 2004). After removing points that were
reflected by trees or shrubs, the remaining points are assumed to
represent the ground surface. In this way it is possible to look for
archeological features under the trees, (Da Devereux, Amabable,
Crow, and Cliff, 2005).

In The Netherlands, the Dutch Ministry of Public Works initi-
ated the setup of the so-called Actueel Hoogtebestand Nederland
(AHN), that can be translated as ‘Up to date height data base of
The Netherlands’. This database consists of interpolated airborne
laser altimetry data covering the whole of The Netherlands, con-
taining at least one point per 4 m2 outside and one point per 16

m2 inside forest areas, (Anonymous, 2000). The accuracy of
the laser altimetry technique depends strongly on the amount of
vegetation and topography in the area. AHN states that for the
accuracy of solid topography (such as roads and parking lots) as
well as flat or soft topography (such as beaches and grass-fields)
a standard deviation of 15 cm maximum applies, with a system-
atical error of 5 cm maximum.

Figure 2. Celtic fields, inside the circle, revealed by illumination.

This elevation model can be used for a large amount of applica-
tions, including many archeological, see also (De Boer, Laan,
Waldus, and Van Zijverden, ToAp). The third author of this pa-
per applied a technique based on illumination to visualize ancient
Celtic fields, near Doorwerth, situated in the East of the Nether-
lands, out of AHN data. Figure 2 shows the fields as exposed by
the third author. By illuminating the ground surface points in a
suited way in a software visualization program, some unknown
field systems could be traced by the shadows of the micro-relief
of the low earth walls.

In our contribution we show that this approach can be still im-
proved. In the original approach, the micro-relief is visualized
with respect to the natural relief of the ground surface as it is rep-
resented in the laser data. By filtering the large scale topography
the micro-relief becomes more prominent: only small-scale fea-
tures like road beds, foot-paths and the earth walls surrounding



the Celtic fields remain. The height difference of about 70 meter
in the original data is reduced to about 50 centimeter in the micro-
relief data that remains from the original data after filtering away
the coarse topography.

The filtering is done by means of the geostatistical Kriging me-
thod, (Goovaerts, 1997; Wackernagel, 2003), a special case of
BLUP, Best Linear Unbiased Prediction, (Teunissen, 2000). In
this method information on correlation between observations and
relative quality of individual observations is used to attach weights
to observations for a prediction at a certain location, e.g. near a
Celtic field. If a long correlation distance is used, more weight is
attached to more far observations, which will result in a smooth
representation of the ground surface. Subtracting the smoothed
data from the original data results in the micro-relief data that are
used as input for the Celtic fields visualization.

This paper is organized as follows. In Section 2. it is explained
how the method of factorial Kriging can be used to separate data
components of different scale. In Section 3. the used parameter
values and the final results of the separation algorithm are pre-
sented, followed by discussion of the results in Section 3.

2. FILTERING METHODOLOGY

In this section we describe a geostatistical 2D filter method for
separating the coarse topography from the micro-scale relief. Geo-
statistics, see (Goovaerts, 1997), is a class of probabilistic inter-
polation methods, generally known as Kriging, that considers ob-
servations as outcomes of a random process. The Kriging method
is a subset of a much larger family of linear estimation and pre-
diction methods that incorporates the variations in observations
and correlation between observations in variance-covariance ma-
trices, (Teunissen, 2000; Koch, 1999). Kriging is just one way
to separate spatial components of different scale. The method
described here is sometimes referred to as Factorial Kriging, see
(Goovaerts, 1997; Chilès and Delfiner, 1999). Elsewhere, (Lin-
denbergh, van Dijk, and Egberts, ToAp), the results of Kriging
based filtering and separation of spatial components by means
of Fourier theory are compared in separating morphological sea-
floor bed-forms as sampled by Multi-beam Echo sounding data.

In the following it is first described how to encode the spatial
continuity of the large scale topography in a covariance function.
This covariance function is used to fill the redundancy matrix and
the proximity vector that contain the inter-observation correla-
tions and the correlations between the observation locations and
the location of prediction. This first exploratory step is gener-
ally referred to as the structural analysis of the observations. The
redundancy matrix and the proximity vector are the main con-
stituents of the Kriging system that is solved for every observa-
tion location to obtain a prediction for the large scale topography
component. Subtracting these large scale predictions from the
original observations will give us finally the micro-relief that is
aimed for.

2.1 Structural Analysis

Throughout this section Z1, . . . , Zn denote n AHN height ob-
servations at horizontal observation locations p1, . . . , pn. The
spatial variability of a stationary signal Z(.) can be determined
by constructing an experimental covariance function. The sta-
tionarity condition assumes that the covariance

cov(h) = E{(Z(p) − µ)(Z(p + h) − µ)} (1)

is independent of the location, p, and therefore only depends on
the difference in location h. Here, µ denotes the mean µ =
E{Z(p)}. By computing all pair-wise experimental covariances

cij = (Zi − Z̄)(Zj − Z̄) (2)

and grouping them, in the case of an isotropic covariance func-
tion, in distance intervals

h1 = [0, w], h2 = (w, 2w], . . .

the experimental covariance function

cov(hk) =
1

NK

X

{pi,pj}∈hk

(Zi − µ)(Zj − µ) (3)

is constructed, where NK denotes the number of pairs of obser-
vations in distance interval hk. In a next step a positive definite
theoretical covariance model is fitted on the experimental covari-
ance function in order to obtain a continuous covariance function
C(.). Fulfillment of the positive definiteness condition will guar-
antee in a later step that the Kriging system always has an unique
solution. Typical covariance models that are often used are the
spherical, exponential and Gaussian models. In case of predict-
ing the large scale component the Gaussian model

CG(h) = σ2e
−

(3h)2

R2 , (4)

is likely to give the best result, because the first derivative van-
ishes in the origin, which implies that the covariance initially is
not dropping too quickly. In the other two models the covari-
ance drops initially much faster, therefore more weight is given
to close by observations. In Equation (4), σ2 stands for the vari-
ance of the observations and R for the correlation range, that is,
the shortest distance at which two observations can be considered
to be independent. Using a Gaussian model can cause instabili-
ties in the Kriging system and should therefore always be used in
combination with at least a small nugget effect in a way that will
be explained later.

2.2 The Ordinary Kriging system.

The Ordinary Kriging method determines the Best Linear Unbi-
ased Predictor (BLUP) for a height Ẑ0 =

Pn

i=1
wiZi from AHN

observations Z1, . . . , Zn, given a covariance function

cov(h) : R
2 → R (5)

and an unknown mean. This height prediction Ẑ0 =
Pn

i=1
wiZi

is optimal in the sense that it minimizes the expected error vari-
ance, given the unbiasedness condition, which states that the ex-
pected error E{Ẑ0 − Z0} between the height prediction Ẑ0 and
the real, unknown height Z0 equals zero. It can be shown that the
weights that correspond to this optimal solution are obtained by
solving the ordinary Kriging system Cn · wn = dn, with

Cn =

0

B
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(6)

the so-called redundancy or variance-covariance matrix that con-
tains the pair-wise covariances, in our case obtained from the fit-
ted Gaussian covariance function:

Cij(pi,pj) = CG(‖pi − pj‖) (7)



Figure 3. Large figure: topography of the Doorwerth area, with exaggerated heights in meters. The river Rhine is in the front, the
village of Doorwerth is clearly visible on the plateau. The Celtic fields are situated on the plateau, on the right hand side of Doorwerth.
The bottom-left figure shows an extract of a local topographic map. The first part of the Celtic field system was found in the forest on
the North-East of the curved road. The new method shows that the field system continues on the South-East part of the road as well.
On the bottom-right figure the location of Doorwerth in The Netherlands is indicated by the dot.
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the proximity vector and the weight vector, resp. The proximity
vector, dn, contains the covariances

Ci0 = CG(‖pi − p0‖) (9)

between the prediction location p0 and the observations. Solving
the system is always possible, because of the positive definite-
ness of the covariance function, and the unique solution gives the
weights w1, . . . , wn corresponding to the BLUP. To ensure that
the solution found is indeed unbiased, the final row of the sys-
tem contains the additional condition that the weights sum up to
one. Therefore an extra variable is added to the weight vector, the
Lagrange multiplier λ.

2.3 Filtering.

The Ordinary Kriging system as formulated as above is exact,
which means that all the observations are respected: the BLUP
at an observation location is the observation itself. This is not
what we want, as we want to decompose our observations Z into
a large scale component ZM and a micro scale component Zm,

that is

Zi(pi) = Z
M
i (pi) + Z

m
i (pi) (10)

In order to obtain ZM
i (pi) as a prediction, we have to filter the

micro scale component Zm
i (pi) out of the prediction Ẑi(pi).

This can be achieved by modeling the micro-scale variations by
a so-called nugget effect. The nugget is a general term for vari-
ations in the signal on such a short scale that it cannot be dis-
tinguished if these variations are due to measurement errors or
really occur in the observed attribute. A nugget value, N , can ei-
ther be determined out of the structural analysis, or by taking the
specified measurement error, but can also be given an artificial
value, just to obtain a required result. To filter the nugget out of
the prediction, it has to be added only to the left site of the Ordi-
nary Kriging system Cn · wn = dn, that is, the Kriging system
is rewritten as:
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In this way, the micro scale variations (the nugget) have no influ-
ence in the right-hand proximity vector. This implies that, when
predicting at an observation location, the Kriging system is in
fact told that there is no observation available at zero distance.
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Figure 4. Two different scatterplots of the laser altimetry data residuals after filtering. The Celtic fields pop up as yellow lines on the
left and as light green on the right.

Therefore the Kriging system behaves as if it is away from an
observation location and gives a prediction based on the different
observations, that is, it is not exact anymore. Moreover, the influ-
ence or weight attached to close-by observations is relatively low
because of the extra nugget in the variance-covariance matrix that
is not occurring in the proximity vector.

By determining the solution of this Kriging system at every obser-
vation location pi, the observation wise large scale components
ZM

i (pi) are obtained, and therefore also the micro scale compo-
nents. If the number of observations is not too big, say smaller
than 1000, the variance-covariance matrix Cn only needs to be
built once and can be used for every observation-wise predic-
tion. Alternatively, local neighborhoods, consisting of the, say,
100 closest points can be used to fill observation-wise variance-
covariance matrices.

3. DATA DESCRIPTION AND FILTER RESULTS

In this section first the data is introduced and some preprocessing
steps are described. Then the parameters used in the filtering are
discussed. Finally the results of the filtering method on the data
are presented.

3.1 Data description

The full data set consisting of 1 883 056 height observations is
visualized in Figure 3 in such a way that the height differences are
exaggerated. In the bottom of the figure the river Rhine is clearly
visible as the area where no height observations are available.
Around the river, the river dikes are recognizable as well. North
of the river a plateau of about 40 meter high steeply rises out of
the river valley. This plateau is an ice pushed ridge resulting from
the second-last ice age.

On top of the plateau, the village of Doorwerth is situated. On
the East of Doorwerth the Celtic field system was revealed by il-
lumination of the unfiltered data (after removal by the Ministry of
Public Works of the tree points), compare Figure 2. Around this
area a crop of the full data set was made, resulting in a reduced
data set of 103 699 points. This data set was further reduced by
removing all points below 45 m as these points clearly are not on

the plateau. Finally, about 50 000 observations remain to be pro-
cessed. A full specification of the AHN laser altimetry product
can be found in the product description, (Anonymous, 2000).

3.2 Kriging parameters

First a structural analysis was performed for the reduced data set.
Still, for 50 000 points it is not feasible to determine pair-wise ex-
perimental covariances for all pairs of points, therefore a random
subset of 4000 points was considered. In general this practice
may result in an under-sampling of point pairs on short distance.
Here this is not a problem, because we are more interested in the
long scale variability anyway. By determining an experimental
variogram (equivalent to a covariance function in case of station-
arity) a nugget value of 7.17 cm was found. In comparison, AHN
specifies a Root Mean Square error of 20 cm for forest areas,
(Anonymous, 2000). Fitting of a Gaussian model resulted in a
value for the correlation range of 625 m. Then the smoothed Or-
dinary Kriging predictions were obtained for all observations in
the reduced data set, using a local neighborhood of 600 points.

3.3 Filtering results

By filtering away the large scale component out of the AHN ob-
servations, the residuals as visualized in Figure 4 were obtained.
The boundary on the south corresponds to the 45 m contour line
of the original observations. A histogram of the residuals is given
in Figure 5. The mean residual is 1.16 cm, which shows that
the residuals are almost not biased. The standard deviation of
the residuals is 16.7 cm. In Figure 4, the main road from left to
right is the most prominent, followed by some linear features that
represent smaller roads and footpaths as can be seen in the topo-
graphic map of Figure 3. In between the road and the footpaths
a network of of rectangular patches is visible that is surrounded
by small embankments of maybe 10 cm high. From this figures
it can an also be concluded that the field system continues on the
South of the road.

4. CONCLUSIONS

In this article one method is given to filter the large scale topogra-
phy component out of laser altimetry observations. This method
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Figure 5. Histogram of the residuals after filtering.

helps to visualize micro-relief features, in this case Celtic field
systems. Even in a forested area with many roads and footpaths
it is in this way possible to reveal such low-elevation features.

Disadvantage of this method is that it is computationally not so
fast. Either a large variance-covariance matrix needs to be con-
verted or many local neighborhoods should be determined. There
exist however other approaches, like Fourier approximation like
methods that may be more time efficient.

A next step could be to enhance the visualization by removing
non-relevant features, like the above-mentioned roads and foot-
paths. Moreover it is possible to extract line elements, like the
small embankments around the fields, automatically by means of
e.g. a Hough transform, (Boyle and Thomas, 1988).
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