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ABSTRACT: 
 
Image fusion is the combination of two or more different images to form a new image by using a certain algorithm. The aim of 
image fusion is to integrate complementary data in order to obtain more and better information about an object or a study area than 
can be derived from single sensor data alone. Image fusion can be performed at three different processing levels which are pixel 
level, feature-level and decision-level according to the stage at which the fusion takes place. This paper explores the major remote 
sensing data fusion techniques at feature and decision levels implemented as found in the literature. It compares and analyses the 
process model and characteristics including advantages, limitations and applicability of each technique, and also introduces some 
practical applications. It concludes with a summary and recommendations for selection of suitable methods. 
 
 

1. INTRODUCTION 

Data fusion is a process dealing with data and information from 
multiple sources to achieve refined/improved information for 
decision making (Hall 1992). A general definition of image 
fusion is given by Genderen and Pohl (1994) as “Image fusion 
is the combination of two or more different images to form a 
new image by using a certain algorithm”. The aim of image 
fusion is to integrate complementary data in order to obtain 
more and better information about an object or a study area than 
can be derived from single sensor data alone. Image fusion can 
be performed at three different processing levels which are 
pixel level, feature-level and decision-level according to the 
stage at which the fusion takes place. An in-depth research on 
pixel-level image fusion has been carried out, and new 
techniques are constantly developed. Pohl and Genderen (1998) 
gave a rather detailed summarization and review at pixel-level 
image fusion techniques. At the same time, image fusion 
techniques based on feature-level and decision-level have been 
studied and applied in some fields to a certain extent also; they 
are especially applicable for images from different sensors and 
with different characteristics, for example, optical image data 
and SAR data. However, there is no review on this topic 
available in remote sensing related fields.  
 
This paper explores the major remote sensing data fusion 
techniques at feature and decision levels implemented as found 
in the literature. It compares and analyses the process model 
and characteristics including advantages, limitations and 
applicability of each technique, and also introduces some 
practical applications. It concludes with a summary and 
recommendations for selection of suitable methods. 
 
 

2. IMAGE FUSION TECHNIQUES 

Other than pixel-level fusion, feature/decision-level fusion is 
performed at a higher processing level. In the feature-level 

fusion, each sensor observes an object, and a feature extraction 
is performed to yield a feature vector from each sensor. After 
using an association process to sort feature vectors into 
meaningful groups, these feature vectors are then fused and an 
identity declaration is made based on the joint feature vector. In 
the decision-level approach, each sensor performs independent 
processing to produce a declaration of identity, and then the 
declarations of identity from each sensor are subsequently 
combined via a fusion process. Techniques involved in 
feature/decision-level data fusion are drawn from a wide range 
of areas including artificial intelligence, pattern recognition, 
statistical estimation, information theory, and other areas. These 
techniques are listed as follows in Table 1. 
 

Feature-level fusion Decision-level fusion 
Cluster Analysis 
Neural Networks  

Bayesian Inference 
Dempster-Shafer’s Method 

Expert Systems 
Logical Templates 

Classical Inference 
Bayesian Inference 

Dempster-Shafer’s Method 
Voting Strategies 
Expert Systems 

Logical Templates 
Neural Networks 

Fuzzy Logic 
Blackboard 

Contextual Fusion 
Syntactic Fusion 

 
Table 1. Fusion techniques based on fusion levels 

 
These techniques can be classified into two groups, which are 
knowledge-based methods and methods with the identity fusion 
concepts (ITC, 1998). Expert Systems, Logical Templates, 
Neural Networks, Fuzzy Logic, Blackboard, Contextual Fusion 
and Syntactic Fusion belong to the former; Classical Inference, 
Bayesian Inference, Dempster-Shafer approach and Voting 
Strategies belong to the latter. In the field of remote sensing, the 
widely used techniques are Bayesian inference, Dempster-



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Summary of Bayesian fusion (Hall, 1996) 

 
Shafer evidence theory, Fuzzy logic, Neural networks and 
Expert Systems. Because of the limited space, here we just 
summarize the basic principles of the major three techniques 
and their practical applications. 
 
2.1 Bayesian Inference 

Bayesian inference takes its name from the English clergyman 
Thomas Bayes. A paper published by Bayes contains the 
inequality that is known today as Bayes’s theorem in 1763. The 
Bayesian inference technique resolves some of the difficulties 
with classical inference methodology. Bayesian inference 
allows multisensor information to be combined according to the 
rules of probability theory. Bayes’formula provides a 
relationship between the a priori probability of a hypothesis, 
the conditional probability of an observation given a hypothesis, 
and the a posteriori probability of the hypothesis. It updates the 
probabilities of alternative hypotheses, based on observational 
evidence. New information is used to update the a priori 
probability of the hypothesis. 
 
The Bayesian inference process proceeds as follows: Suppose 
H1, H2,…, Hi, represent mutually exclusive and exhaustive 
hypotheses that can explain an event E (an observation) that has 
just occurred. Then,  
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where,  
=)/E( iHP the a posteriori probability of hypothesis Hi being 

true given the evidence E. 
)( iHP = a priori probability of hypothesis Hi being true. 

)E/( iHP = the probability of observing evidence E, given that  
Hi is true. 
 
Figure 1 illustrates the process of using a Bayesian formulation 
for data fusion. Bayesian methods are probably the most widely 
used in probabilistic image fusion. Mascarenhas et al. (1996) 
proposed a new data fusion method using Bayesian statistical 
estimation theory, that uses the multispectral and panchromatic 
bands of the SPOT satellite to generate the fused multispectral 
image with 10m spatial resolution. Zaniboni et al. (1998) 
adapted the Bayesian method to work with locally adaptive 
correlation coefficients to generate fused multispectral images 
from the SPOT satellite. 
 
2.2 Dempster-Shafer (DS) Evidence Theory 

The Dempster-Shafer (DS) evidence theory was proposed by 
Dempster (A.Dempster, 1967) and extended by Shafer (Shafer 
G., 1976). It is a generalization of Bayesian theory that allows 
for a general level of uncertainty (Lowrance and Garvey, 1982). 
Hence, unlike the Bayesian approach, the DS method provides 
a means to account explicitly for unknown possible cause of 
observational data (Hall, 1996). This method utilizes 
probability intervals and uncertainty intervals to determine the 
likelihood of hypotheses based on multiple evidence. In 
addition, it computes a likelihood that any hypothesis is true. 
These two methods produce identical results when all of the 
hypotheses considered are mutually exclusive and the set of 
hypotheses is exhaustive.  
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Figure 2. Summary of Dempster-Shafer fusion (Hall, 1996) 
 
 
The basic principles of Dempster-Shafer evidence theory are: 
Assume the frame of discernment θrepresents the set of image 
classes. An elementary mass function is defined by 
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The belief function Bel(B) gives the amount of evidence which 
implies the observation of B. This function is defined on the 
frame of discernment by the relation 
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And the plausibility function Pl(B) can be seen as the amount 
of evidence which does not refute B: 
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This function can be represented according to the belief 
function Bel(B) 
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The interest of DS theory is to combine pieces of 
evidence/information from various sources. The combination, 
which is also called the orthogonal sum, is defined as follows: 
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The concept of using a Dempster-Shafer approach to fuse 
multisensor data is illustrated in Figure 2. Dempster-Shafer 
evidence theory allows the representation of both imprecision 
and uncertainty, has already shown its suitability for remote 
sensing data fusion problems. Based on this theory, Le Hégarat-

Mascle S. et al. improved the land cover classification accuracy 
using multisource remote sensing data (2000, 2003); Mickaël 
Germain et al. (2002) classified the forest area using Landsat 
TM data while introducing the spatial contextual information; 
Fang Yong (2000) demonstrated that evidential reasoning has 
extensive applications in the classification of remote sensing 
images through the fusion analysis of ERS SAR and TM image; 
Foucher. S. et al. (2002) presented the result in the fusion of an 
optical (Spot) and the SAR image (Radarsat).  
 
2.3 Neural Networks 

Neural networks are the systems that seek to emulate the 
process used in biological nervous systems. A neural network 
consists in layers of processing elements, or nodes, which may 
be interconnected in a variety of ways. The neural network 
performs a non-linear transformation of an input vector. This 
theory is used when the relation between output and input data 
is unknown. A neural network can be trained using a sample or 
training data set (supervised or unsupervised depending on the 
training mode) to perform correct classifications by 
systematically adjusting the weights in the activation function. 
This activation function defines the processing in a single node. 
The ultimate goal of neural network training is to minimize the 
cost or error function for all possible examples through the 
input-output relation (X. Dai and S. Khorram, 1998). The 
neural networks can be used to transform multisensor data into 
a joint declaration of identity for an entity. Figure 3 illustrates a 
four-layer network with each layer having multiple processing 
elements. The applications of neural networks to image data 
fusion included A. Chiuderi et al. (1994) used a neural network 
approach for data fusion of land cover classification of remote 
sensed images on an agricultural area. By using supervised and 
unsupervised neural network, the optical-infrared data and 
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microwave data were fused for land cover classification. L. 
Yiyao et al. (2001) adopted a knowledge-based neural network 
for fusing edge maps of multi-sensor remote sensing images. He 
Mingyi and Xia Jiantao (2003) proposed DPFNN (Double 
Parallel Feedforward Neural Networks) used to classify the 
high dimensional multispectral images. Other applications can 
be found in crop classification, forest type classification, 
recognition of typhoon clouds etc. 
 

 
 
 
 
 

Figure 3. Architecture graph of a neural network with two 
hidden layers (L. Yiyao et al., 2001) 

 
 
           3. ADVATAGES AND LIMITATIONS 

In this section, we compare and analysis the benefits and 
limitations of the above mentioned theories. 
 
Bayes’s framework is exceptionally fruitful in decision theory. 
It has several advantages. First it provides a determination of 
the probability of a hypothesis being true, given the evidence. 
Second, Bayes’s formulation allows incorporation of a priori 
knowledge about the likelihood of a hypothesis being true at all. 
The final feature of Bayes’s formulation is the ability to use 
subjective probabilities for a priori probabilities for hypothesis, 
and for the probability of evidence given a hypothesis (Hall, 
1996). Isabelle Bloch and Henri Maitre (1994) pointed out that 
Bayesian inference faces two major limits. First of all, it is quite 
demanding since it requires that all the dependencies between 
measures and underlying phenomena be set in the same 
statistical framework. Specifically, it requires the knowledge of 
a priori and conditional probabilities which are very rarely 
known. Because of these requirements probabilistic methods 
have several weaknesses which are well known such as: their 
practical implementation often relies on simplified assumptions 
(for instance events independency), or on arbitrary choices 
(Gaussian or uniform distributions). Thus all the available 
information, since it can hardly be set in this framework, is 
often not completely used. Second, it can hardly manage spatial 
uncertainty or imprecision. Direct methods where spatial 
uncertainty is introduced by means of statistical distribution 
functions become very complex and time consuming to 
implement as soon as it is combined with other sources of 
uncertainty and, in practice, are never used in ordinary complex 
situations.  
 
Dempster-Shafer evidence theory is often described as an 
extension of the probability theory or a generalization of the 
Bayesian inference method. Unlike Bayesian inference theory, 
Dempster–Shafter evidential reasoning can present both 
imprecision and uncertainty through the definition of belief and 

plausibility functions; It has the capability to take into account 
compound hypotheses. In the Bayesian framework, the degree 
of belief we have on a union of classes (without being able to 
discriminate between them) should be shared by all the simple 
hypotheses, thus penalizing the good one (Florence Tupin et al, 
1999). In Dempster-Shafer evidence theory, the definition of 
mass functions is a crucial step and it is the most difficult part 
in the implementation of Dempster-Shafer evidence theory. 
Lots of research work has been done on it, however, there still 
remains unsolved problems in the definition of mass functions, 
which did not yet find a general answer. 
 
Neural network approach can exhibit properties analogous to 
adaptive biological learning; it has good pattern recognition 
capabilities, and once learned, information recall resistant to 
hardware or data failure. It has the following advantages over 
the statistical approaches: distribution-free; and degree of belief 
in each data source is represented by the weights of the network 
and determined by the training process. It is not necessary to 
estimate the reliability function during the fusion process (X. 
Dai and S. Khorram, 1998). Bowman (1988) and Priebe and 
Marchette (1988) suggest that neural networks are superior to 
traditional cluster methods for identity fusion, especially when 
the input data are noisy and when data are missing. However, 
the theoretical basis of neural networks is still evolving, during 
the implementation of a neural network, the problem of local 
extremum, convergence speed of the training, and 
misclassification when the data dimensions  increase still 
should be considered.  
 
 
                             4. CONCLUSIONS 

From the recent literature in image fusion, we can see that 
researchers have now acquired a better understanding of the 
data fusion techniques and of how they can be used in higher 
level image fusion. Each image fusion technique has its pros 
and cons. The degree of success is always case-dependent. 
Non-probabilistic methods are getting more and more popular, 
and their main features are better exploited. Inference 
performance, required computer resources, requirement of a 
priori information, and general utilities should be the tradeoffs 
when applying a higher level image fusion technique. In order 
to achieve an overall objective, a combination of techniques and 
a significant amount of ancillary measures may be employed.  
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