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ABSTRACT: 

Monitoring the behavior of people in complex environments has gained much attention over the past years. Most of the current 

approaches rely on video cameras mounted on buildings or pylons and individuals are detected and tracked in these video streams. 

Our approach is intended to complement this work. We base the monitoring of people on aerial camera systems mounted on aircrafts, 

helicopters or airships. This imagery is characterized by a very large coverage so that the distribution of people over a large field of 

view can be analyzed. Yet, as the frame rate of such image sequences is usually much lower compared to video streams (only 3 up to 

7Hz), tracking approaches different from optical flow or KLT-tracking need to be employed. We show that reliable information for 

the density of groups of people, their activity as well as their locomotion can be derived from these kind of data. 

 

1. INTRODUCTION 

Monitoring the behavior of people in crowded scenes and in 

complex environments has gained much attention over the past 

years. Most of the current approaches rely on video cameras 

mounted on buildings or pylons and individuals are detected 

and tracked in these video streams. Pioneering work on tracking 

human individuals in terrestrial image sequences can be found, 

e.g., in (Rohr, 1994; Moeslund & Granum, 2001). While this 

work focuses on motion capture of an isolated human, first 

attempts to analyze more crowded scenes are described in 

(Rosales & Scarloff, 1999; McKenna et al. 2000). Such 

relatively early tracking systems have been extended by 

approaches integrating the interaction of 3D geometry, 3D 

trajectories or even intentional behavior between individuals 

(Zhao & Nevatia, 2004; Yu & Wu, 2004; Nillius et al., 2006; 

Zhao et al., 2008). Advanced approaches – based on so-called 

sensor networks – are able to hand-over tracked objects to 

adjacent cameras in case they leave the current field of view so 

that a quite comprehensive analysis on the monitored scene is 

possible. The work of (Kang et al., 2003) exemplifies this kind 

of approaches. Instead of networks of cameras, moving 

platforms like unmanned airborne vehicles can also be used, as 

e.g., shown in (Davis et al., 2000). 

 

Nonetheless, the main bottleneck of these approaches is the 

limited coverage in case of monitoring big events in a large 

venue such as rock concerts, public viewing events (as e.g. 

during soccer world cup), and big folk festivals, which may 

cover several square-kilometer. 

 

Our approach is intended to complement the above work. We 

base the monitoring of people on aerial camera systems 

mounted on aircrafts, helicopters or airships. This imagery is 

characterized by a very large coverage so that the distribution of 

people over a large field of view can be analyzed. Yet, as the 

frame rate of such image sequences is usually much lower 

compared to video streams (several Hz), tracking approaches 

different from typical optical flow or KLT-tracking need to be 

employed. 

 

  

 

2. SENSOR AND DATA CHARACTERISTICS 

For developing and testing our approach, we used aerial image 

sequences provided by DLR’s 3K multi-head camera system 

(Kurz et al., 2007). This system consists of three non-metric off-

the-shelf cameras (the current version of 3K is equipped with 

three digital Canon EOS 1Ds Mark II, 16 MPixel each, see Fig. 

1). The three frame cameras can be aligned in across-track or 

along-track with one camera pointing in nadir direction and two 

in oblique direction. For achieving large ground coverage, the 

cameras are usually mounted in across-track, which leads to a 

maximum field of view of approx. 110°. Hence, within two 

minutes an area of roughly 10 km x 8 km can be covered. 

Ground sampling distance and effective swath width are 

depending on the flight altitude and typically range between 

15cm – 50cm and 2.5km – 8km, respectively. Prerequisite is a 

high accuracy of the orthorectification process, which requires a 

self-calibration of multi-head camera system (Kurz et al., 2007).  

 

The system can be operated in different mapping or traffic 

monitoring modes. Depending on the set-up, the acquisition of 

high resolution images, colour and wide-area monitoring is 

feasible, even at low flight altitudes below clouds. To provide 

the basis for near-realtime mapping, the system is coupled with 

a realtime GPS/IMU navigation system, which enables accurate 

direct georeferencing. Image sequences can be taken with a 

frame rate of 3Hz in continuous mode and even higher in burst 

mode (3-4 frames with framerate up to 7Hz, followed by a one-

second gap for read-out). This allows also the monitoring of 

moving objects such as vehicles, ships or even humans (see e.g. 

(Hinz et al. 2007; Zeller et al., 2009; Kurz et al., 2009)).  

 

Figure 2 depicts a single shot taken by the nadir head of the 3K 

system at a flight altitude of 2000m, as it has been used in the 

following experiments. The image covers almost the complete 

Oktoberfest area at “Theresienwiese” in Munich, Germany. Two 

bursts of the entrance area are shown in Figure 3. Each burst 

consists of 3 images taken with a framerate of 3Hz, the left one 

captured in the morning and the right one captured at noon. The 

different densities of humans are clearly visible. In addition, 

Figure 4 visualizes a detailed view on two consecutive frames. 

As can be seen, the spatial resolution of these data is obviously 

rather limited. Motions of people can nonetheless be identified, 

especially in the left part of this cut-out.  

 



 

 

 
 

 
 

Fig. 1: Top: Image acquisition geometry; tilt of the sideward 

looking cameras is approx. 35°. Bottom: camera system 

consisting of three Canon EOS 1Ds Mark II, integrated in a 

ZEISS aerial camera mount including an IGI gyro System 

(orange) for attitude measurements. 

 

 

 

 
 

 

Fig. 2: Color image of the Oktoberfest area “Theresienwiese” 

in Munich, Germany, taken by the nadir head. 

 

 

 

 

 

 

 

 
  

 
  

     

 
   

  

Fig. 3: Two image sequences taken with 3K’s burst mode and 

framerate of 3Hz. Left column: scene at morning; right 

column: same scene at noon. 
  

 

 
 

 
  

  

 
  
 

Fig. 4: Two consecutive frames of a sub-scene indicating the 

relatively coarse resolution, but also the capability of 

identifying motions of people (see esp. left part of cut-out). 
  



 

3. METHOD 

3.1 Overview 

The estimation of image parameters that shall indicate the local 

density of groups of people as well as their locomotion is based 

on analysing spatial and temporal patterns in an image sequence 

or a burst sequence. In the following, the term “image 

sequence” relates to the complete sequence comprising various 

bursts and also various passes of the aircraft, whereas “burst 

sequence” means 3-4 consecutive frames taken during 

approximately 1sec.  

 

Pre-processing comprises the determination of camera 

parameters and image orientations as well as co-registration of 

the whole image sequence and overlaying Regions-of-Interest, 

e.g., taken from a geo-database. These steps are assumed to be 

done beforehand. Then, the background of each image is 

estimated by analysing the gray value histogram of the burst 

sequence a particular image belongs to (Sect. 3.2). For the 

complementing region, image texture parameters are 

determined, which indicate the local people density (Sect. 3.3). 

This analysis is extended into space-time domain in Sect. 3.4, to 

determine the temporal agitation (i.e. people activity) present in 

the foreground. Finally, their motion is determined by matching 

image patches over images pairs of a burst sequence (Sect. 3.5).  

 

It is important to note, that all parameters estimated with the 

algorithms described in Sect. 3 relate purely to image objects. 

Their transition into real-world object parameters shall be 

established by samples taken from terrestrial cameras, which 

calibrate the functional relationship between image parameters 

and object parameters. The concept of this kind of model 

calibration is described in the outlook in Sect. 4. 

 

3.2 Spatio-temporal Background Estimation 

Once the image sequence has been co-registered, a common 

approach to estimate background pixels for each image of an 

images sequence is the pixelwise analysis of gray value features 

in time domain. A simple and often used approach is to 

calculate the temporal median for each pixel. Time intervals, in 

which a certain pixel was covered by a moving object, can thus 

be detected by simple differencing and thresholding, as such 

gray values are regarded as outlier in time domain. This 

approach however assumes that the background is visible in the 

majority of frames and the illumination conditions remain 

approximately constant. The condition that background should 

be visible in the majority of frames is hardly fulfilled in case of 

crowded environments. To overcome this, we conduct a 

coupled analysis of space and time domain and estimate 

background pixels by introducing an a-priori likelihood 

function of the expected background gray value distribution.  

 

Let g be the gray values of an image i, bM  the number of 

images per burst b, )(gpi the histogram of a particular image 

and )(gpbg the assumed prior background distribution, then 

the dominating gray value bbgg , of the background of a 

particular burst is determined by  
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whereby normalization constants are neglected and )(gpbg  is 

a handcrafted windowing function describing the expected 

brightness distribution of asphalt and concrete. The final 

background region ibgR ,  for each image is then determined by 

a regiongrowing algorithm initialized at all pixels 
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and continuing the growing as long as the mean gray value 

jRg of the Region at interation step j does not exceed a 

predefined tolerance tolg , i.e. 
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The described scheme relaxes the aforementioned conditions 

since background pixels are assumed to dominate only the gray 

value distribution of the burst sequence but not the distribution 

of a single image. Figure 5 depicts the same cut-out as Figure 3 

and shows two results of background determination – one for a 

simpler case and another one for a more crowded environment, 

in which background pixels do not dominate a single image. 

 
 

 
  

 

 
  

Fig. 5: Red boundary indicates background regions; less 

crowded situation (top), crowded environment (bottom). 



 

3.3 People Density Estimation 

The spatial density of a group of people is estimated in each 

image separately. A first guess about the local density can be 

calculated by the ratio of foreground and background pixels 

collected in a certain neighbourhood. However, foreground 

pixels usually do not entirely cover groups of people but also 

other features like small buildings or shadow areas. Hence, we 

weigh the ratio of foreground and background with the response 

of Laws texture filter. The result is finally smoothed to account 

for noise. Mathematically, this scheme can be expressed by a 

number of convolution operations: 

 

( ) ( )( ) σhhfhff sslawsfgwboxbindens ∗∗⋅∗= ,,
 

 

where 
densf  is the resulting density image, 

binf  is a binary 

image indicating foreground and background, 
wboxh ,

is a box 

filter of size w for calculating locally the ratio of foreground and 

background from the binary image, 
fgf  is the original image 

whose domain is reduced to the foreground only,
sslawsh ,

 is the 

Laws-‘ss’ filter applied to foreground pixels, and σh  is a 

Gaussian smoothing kernel with standard deviation σ. 

 

Figure 6 illustrates the result of density estimation for the 

examples shown above. It nicely shows the increase of people 

from morning (left) to noon (right), especially in the left part of 

the cut-out. It can be also seen, however, that neighbouring 

objects may still influence density estimation despite of taking 

the texture response into account. For instance, the narrow 

elongated shadow area in the center of the image also produces 

a high texture response so that the density is overestimated in 

this area. 

 
  

  

 

  

 

 

 

 

 

Fig. 6: Result of density estimation for morning (left) and 

noon (right). Light gray values indicate higher density. 

Especially, the higher density at noon along the left road is 

apparent. 

 

 

 

3.4 People Activity Estimation 

The above parameters indicate the density of groups of people 

but this is not necessarily linked to their activity. In fact, once 

the density gets higher, the ability to move freely is more and 

more reduced. In order to get cues about the activity of people, 

we analyze the temporal gray value variation within a burst 

sequence and make again use of texture information. As 

mentioned above, a simple way to detect pixels of moving 

objects is the calculation of the temporal gray value variance, 

thereby high variance indicating active regions. Though, this 

procedure needs a perfect co-registration of the burst sequence. 

Especially elevated 3D objects cause artefacts in the temporal 

variance response, since the underlying surface model is rarely 

accurate enough to completely compensate for the perspective 

distortion due to slightly varying viewing directions.  

 

To reduce these effects, we weigh the temporal gray value 

variance with the variance of the spatial gradient directions. 

Regions of moving humans are typically characterized by a very 

inhomogeneous appearance resulting in a large variance of the 

spatial gradient directions. Vice-versa, man-made objects 

consist typically of regular structures, whose edges lead to a 

mono-modal or bi-modal distribution of the gradient directions. 

The potential influence of rectangular structures onto the 

gradient direction variance is thus reduced by folding all 

gradients into the interval [ [2/;0 π . Finally, the 2D mean 

gradient and the orientation variance are determined and 

spatially smoothed using a Gaussian smoothing kernel. 

Mathematically, this scheme can be expressed by   
 

[ [{ }( ) σπ hfWf tcract ∗∇= var,,2/;0var  

 

where
actf  is the resulting activity map,

tcr f var,,∇  the spatial 

gradient of the temporal variance map 
tf var,

, [ [{}⋅2/;0 πW  the 

wrapping operator, and var the variance operator. 

 

The benefit of calculating the activity can be seen from Figure 

7, in which another part of the Oktoberfest area is shown. While 

there is almost no activity in the upper right corner in the left 

example, a large group of people is walking through the narrow 

street in the other image. Such information could indicate a 

critical situation in case more people would also try to take this 

route – which is obviously not the case in this example. 
 

  

 
  

  

 
  

 
  

  

 

Fig. 7: Result of activity estimation based on a burst sequence. 

Please note in particular the junction in the upper right corner. 

Light gray values indicate higher activity.  



 

3.5 Motion Estimation 

In the last stage of processing, the locomotion of people is 

determined. As can be seen in Figure 4, tracking of individuals 

is hardly possible, especially in case of a crowded scene. The 

motion of a group, i.e. an image pattern, can be identified 

though. 

 

A critical parameter for matching an image patch of a group of 

humans over a burst sequence is the size of the window to 

match. In principle, we have to expect that at least some persons 

move individually so that a small window containing 

approximately only one human would be preferable. Yet due to 

the relatively coarse spatial resolution, such a small window 

causes many multiple matches, since distinctive features 

describing a particular person uniquely are no more available. 

On the other hand, a large window may contain some persons 

moving in diverging directions, which would also lead to wrong 

or biased motion vectors. Empirical tests have shown that a 

window size covering approx. of 4m² on ground is a reasonable 

compromise, since typically only 1 – 4 humans are present in 

such an area. Because consecutive images are taken with time 

intervals of only 0.3sec, we compensate diverging motion 

directions of humans by a slightly coarser scale for matching, 

thereby accepting inaccuracies of motion determination. Future 

research will be directed towards developing a specific 

deformable model in order to match groups of humans over 

images.  

 

We utilize the shape-based approach of (Steger, 2001) as 

matching metric. It is invariant against translations and 

monotonic illumination changes. Furthermore, the pyramid-

based search strategy can compensate for rotation and scale 

changes. The similarity measure γ(r,c) is defined as the average 

vector product of the gradient directions of the template and the 

search image 
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where n is the number of pixels for which the gradients have 

been calculated, d is the gradient direction vector in the model 

image m and search image s, respectively, < · > is the dot 

product and || · || is the Euclidean norm. 

 

Figure 8 visualizes the whole area under investigation as well as 

two cut-outs showing details of motion determination. The 

windows to match are selected at regularly distributed position 

in the RoI. Each line represents a motion vector between two 

consecutive images determined at these positions. The 

“homogeneous” motion of people around the corner can be 

nicely seen in the left cut-out. The right cut-out illustrates the 

motion behavior in a crowded environment. Compared to the 

less crowded scene on the left the motion is slower, as people 

stand much closer to each other.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

   
 

Fig. 8: People locomotion determined from consecutive image 

pairs. Each line represents a motion vector. 

 



 

 

4. DISCUSSION AND OUTLOOK 

We have shown that the estimation of people density and their 

locomotion is possible by using aerial image sequences. A 

careful visual analysis indicates that motion direction and 

velocity are determined reasonably. Similar qualitative 

conclusions can be drawn for people density and activity. Still 

missing is a quantitative evaluation. Besides this, there is much 

room for future research: 

 

- Up to now, the results are image parameters that need to be 

transformed into object-related parameters. As single 

persons can hardly be determined, we believe that 

establishing an empirical model between image and object 

parameters, e.g. by numerical approximation methods like 

neural networks, is a more promising way than an explicit 

model. 

 

- To acquire the necessary (offline) training parameters and 

potential (online) calibration parameters for such models, 

training and test data need to be collected. We plan to 

mount terrestrial cameras – in particular Range-Imaging 

(RIM) cameras – on selected position. Such cameras 

acquire depth and IR-reflectance images with a single shot 

and carry thus many advantages for 3D tracking, because 

the 3D information is immediately available and no stereo 

reconstruction needs to be done in complex environments. 

A limitation of these RIM cameras is their limited range of 

unambiguous distance measurement, since the generation of 

the depth image is based on the well-known continuous-

wave principle. First investigations of (Jutzi, 2009) show, 

however, that the range ambiguity can be resolved by phase-

unwrapping principles adapted from the processing of 

interferometric data of synthetic aperture radar. 

 

- With the same technique, also quantitative reference data 

can be collected at selected sample positions. 

 

- Further research will concentrate on the improvement of 

motion determination. To this end, deformable models for 

people tracking need to be developed and embedded into an 

iterative coarse-to-fine search strategy. 
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