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ABSTRACT:

In this paper, we address the problem of generating building footprints using terrestrial laser scanning from a Mobile Mapping System
(MMS). The MMS constitutes a fast and adapted tool to extract precise data for 3D city modeling. Urban environments evolve over
time due to human activities and other factors. Buildings are constructed or destroyed and the urban areas are extended. Therefore, the
structures of the cities are constantly modified. Currently, building footprints can be generated using aerial data. However, aerial based
footprints lack precision due to the nature of the data and to the associated extraction methods. The use of MMS is proposed as an
alternative to perform this complex task. In this work, we propose an operational approach for automatic extraction of accurate building
footprints. We describe the challenges associated with the terrestrial laser raw data acquired in realistic and dense urban environments.
After a filtering stage on the 3D laser cloud point, we extract and reconstruct the dominant facade planes by combining the Hough
transform, the k-means clustering algorithm and the RANSAC method. The building footprint is then estimated from these dominant
planes. Preliminary experimental results are presented and discussed. The assessments show that this approach is very promising for
the automation of building footprints extraction.

1 INTRODUCTION

Nowadays, city modeling has become an important subject of
research for architectural lasergrammetry, photogrammetry and
computer vision communities. There is an increasing need for
3D building descriptions in urban areas in several fields of ap-
plication like city planning and virtual tourism. Therefore many
research activities on city modeling have focused on the auto-
matic generation of 3D building models from aerial images. Most
pipelines which have been developed recover the 3D shape of
roof surfaces, but building ground footprints come from existing
databases acquired by the digitization and vectorization of cadas-
tral maps or from surveying measurements.

Initially, the building footprints are extracted either in an auto-
matic way using the aerial data (Cheng et al., 2008), (Tarsha Kurdi
et al., 2006) or in a manual way requiring many surveyors to make
measurements in the terrain. However, these footprint databases
sometimes do not exist (e.g., in less developed countries, etc.),
can be very difficult to obtain (e.g., in areas with difficult access
or prohibited overflights), or can even be of insufficient geomet-
rical quality with respect to some applications. Moreover, the
automatic building footprints extraction using aerial images is a
hard task. Imprecise and/or incomplete focusing will affect the
modeling process in the sense that the final 3D building model
will lack accuracy and details.

Recent progress in technologies have allowed the development
and the construction of devices for rapid acquisition of 3D car-
tographic terrestrial data with very high precision in urban envi-
ronments. The Mobile Mapping System allows an easy coverage
of large scale areas such as districts and cities. The feasibility of
this kind of system has been demonstrated (Haala et al., 2008),
and the usage of this device is increasingly widespread for ap-
plications like the conservation of patrimony (Baz et al., 2008)
or visualization. Many works using terrestrial laser scanning are

particularly focused on segmenting and texturing the building fa-
cades (Boulaassal et al., 2007), (Pu, 2008).

This ground-based modeling is thus unavoidable for some ap-
plications such as facade texturing where images acquired by a
ground based system need to be registered relatively to the aerial
3D model to ensure a satisfactory mapping. Matching the street
level images with the 3D aerial model is an extremely complex
due to the generalization problems. The data acquired by ground-
based 3D data collection systems, can be used to extract and
model facades that can advantageously replace the ground foot-
prints in the aerial reconstruction process, thus leading to a co-
herent use of both aerial and terrestrial data.

This paper focuses on the first step of a global 3D facade recon-
struction framework, i.e. the extraction of the facade footprints
and planes. The MMS constitutes an alternative and reliable tool
which can be useful to obtain building footprints with very high
accuracy and details. The aim of this study is to propose an oper-
ational approach for automated building footprints extraction in
urban environments. The remainder of the paper is organized as
follows: Section 2 states the problems related to the raw laser data
and their processing. Section 3 presents the proposed approach
for extracting the building’s footprints and facade planes. Section
4 gives some promising experimental results.

2 OVERVIEW ON PROBLEMS RELATED TO THE
LASER RAW DATA AND THEIR PROCESSING

In this study, we use a mobile mapping system for acquiring geo-
referenced 3D laser point clouds. The Terrestrial Laser Scanning
system (TLS system) is a 2D profile scanner. The third dimension
is induced by the vehicle displacement. In addition to this, the
Mobile Mapping System is equipped with a Global Positioning
System (GPS), an Inertial Measurement Unit (IMU) and a Dis-
tance Measuring Instrument (DMI), namely an odometer. This
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equipment was precisely installed by topometry. It allows the
gathering of georeferenced 3D laser data with a very high density
and also much information about the acquisition (see section 4).

Figure 1: Visualization of the 3D point cloud of very high den-
sity. This raw data represents the building facade acquisition. The
black line represents the trajectory of the laser sensor.

The laser data are acquired under realistic conditions in dense
urban environments. Moreover, the datasets are collected in a
particular container related to the laser scanner, particularly in a
range of 3D points. In this context, the data must be manipulated
with much precaution. Here we will describe the main difficulties
associated with 3D data.

• The acquisition: The laser sensor data can be represented
in two ways; either as a container with data organized lin-
early in temporal sequences of 201 points (data frames) or
like a cloud of 3D points (georeferenced data). The condi-
tions of acquisition are very variable in realistic and dense
urban environments. Mobile objects cause a thickening of
the acquired cloud when the vehicle stops. Certain acquired
points model an ephemeral surface and could be considered
as erroneous points. Moreover, the density of the facades
vary according to the speed of the vehicle.

• The occlusions: pose a problem for the complete acquisi-
tion of building facades in urban environments. The occlu-
sions could be caused by two categories of obstacles, static
or dynamic created by man-made and natural objects. The
raw cloud may suffer from missing data due to the pres-
ence of pedestrians, trees, mobile and parked vehicles and
many others objects (see figure 2). Alas, this inevitable phe-
nomenon affects the modeling process.

• The laser reflectance: could cause confusions in the 3D
data interpretation. Certain points don’t model a physical
surface. This effect appears on a retroreflector surface. Ob-
servations sometimes show an aureole of points around road
signs. These dispatched points represent erroneous data.
Moreover, certain points model a different surface other than
the surface of interest. Sometimes, the beam of the laser ei-
ther rebounds off of the outside of the window or it passes
through the window and models the inside of the dwelling.
These scattered points represent erroneous information for
the facades modeling. In addition to this, other less frequent
effects could arise due to poorly reflective surfaces.

• The redundancy of data: is due to many factors. The ac-
quisition is continuous even when the vehicle is stopped.
We have adopted this strategy to facilitate the acquisition of
a large area and to use data as common bases for our dif-
ferent projects. Therefore, raw laser data may contain many

redundant frames. Moreover, due to sensor characteristics
(orientation and linear scanning), we could sometimes have
up to three acquisitions of the same facade part caused by
the graining of the laser beam in the turns. The redundancy
of data (points, frames, parts of the facade) presents an in-
convenience for the feature extraction techniques based on
vote schemes or random trials.

Figure 2: A street in the city of Paris. The building facade is
partially occluded by trees and parked vehicles.

Figure 3: Returned intensities of the 2D scans. The redundancy
effect appears when the vehicle temporarily stops. The vehicle
and the branches seem stretched.

This brief description allows us to acknowledge several problems
associated with the raw laser data. The 3D data should undergo
several preprocessing steps before becoming exploitable. Thus
we need a process robust to some outliers and noisy data.

3 PROPOSED APPROACH

In this section, we describe our approach which consists of two
stages. The first stage focuses on the 3D cloud points preprocess-
ing. The second stage aims at the building footprint extraction.
In this work, we assume that buildings have simple polygonal
shapes.

3.1 3D data preprocessing

3.1.1 Partial filtering of redundant points As we have men-
tioned earlier, the laser sensor constantly sweeps the building fa-
cade even when the vehicle is stopped. Consequently, the ac-
quired raw data may contain many redundant frames due to this
continuous acquisition. For this reason, we have defined a mea-
sure between two consecutive frames based on point-to-point dis-
tances. The redundant frames are thus detected and removed from
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Figure 4: Data flow diagram of the building footprint extraction
approach.

the dataset by thresholding these distances. Moreover, this tem-
poral effect distinctly appear on the image of intensity of the laser
beam and looks like a succession of rows having the same inten-
sity (see figure 3). Therefore detecting redundant frames can also
be based on differences between the intensity of return of two
consecutive rows. This step solves only the problem of data re-
dundancy related to the sensor immobility.

3.1.2 Volume of interest The sensor characteristics are used
to select the 3D points belonging to the facade plane. The 3D
available points are principally positioned above the vehicle to
reduce the problem of occlusions. A horizontal band is defined
between two horizontal planes. The lower plane passes through
the sensor center. The upper plane is shifted by a certain dis-
tance that is related to the height of the buildings under study. We
precise that the ground altitude could be simply deduced by mea-
suring manually the laser sensor height. Finally, the volume of
interest is defined by the georeferenced trajectory of the vehicle
and the above horizontal band. The 3D points not included in this
volume will be removed from the dataset.

3.1.3 Exploiting the linearity of 3D data After the preced-
ing filtering steps, the frames have undergone a horizontal crop-
ping. The data structure represented by frames is now repre-
sented by a sequence of 3D points. We exploit the fact that in
this representation facade points are locally aligned. We seek fa-
cade points which are principally organized vertically. Thus, the
dataset in this sequence is parsed by triplets. The central point
of each triplet is kept in the dataset if the triplet is aligned, other-
wise it will be removed from the dataset. Therefore, the coplanar
points of the building facade are kept. Besides, we observe that
the 3D points belonging to other linear structures are also kept.

3.1.4 Mapping the 3D point cloud onto a 2D accumulator
The goal of this step is twofold. Firstly, it aims at removing noisy
and outlier points. Secondly, it gives a very compact representa-
tion of the filtered 3D points. Since we are interested in the verti-
cal structures that generally represent the facades, we project the
3D cloud on a horizontal plane. More precisely, the 3D points are
projected into a 2D grid to create an accumulation space. Each
point of the cloud votes in one cell, giving a score. Only cells

having a high score are kept. The process uses a global threshold
which is compared to the maximum score. By this technique, the
erratic points of the cloud are removed from the data. The cells
with high scores are principally facade points with high density.

Several techniques for the detection of outliers in laser point clouds
can be found in (Sotoodeh, 2006) and (Sotoodeh, 2007).

3.2 Building footprints extraction

Figure 5: The main steps of our proposed approach for building
footprint extraction.

The goal is to automatically extract the building footprint using
the 3D filtered points cloud contained in the compact 2D accumu-
lator. The building footprint is a set of 2D segments that can be
detected in this 2D space. Recall that the vertical structure of the
facades is captured by the scores of the cells. Each cell contains,
if any, a set of 3D points P (x,y,z). Furthermore, an efficient
extraction can be obtained by working with the barycenters (2D
coordinates) of the cells together with their scores. Our approach
combines the use of the counting space of Hough Transform, the
k-means clustering technique and the RANSAC method. We
briefly describe these three techniques and their properties ap-
plied in our context. Figure 5 illustrates the main extraction steps.

The Standard Hough Transform (SHT) allows the extraction of
the 2D lines among 2D dataset points (Hough, 1962). In the
field of our application, this method is currently used to detect
the building boundaries in aerial images using the edge points.
This method is also used to extract buildings in LIDAR data (e.g.,
(Tarsha Kurdi et al., 2007) and (Karsli and Kahya, 2008)).
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In our approach, we only use the voting steps associated with the
Hough transform. We describe briefly here the principle. We
made a Hough accumulation space in the discretized parameter
space ρ and θ. Each 3D point P (x,y,z) of the dataset (facade
points) votes in all cells of the Hough space accumulation verify-
ing the following constraint:

ρ = x · cos θ + y · sin θ (1)

where ρ is a length of the normal of the line to the origin and θ is
the orientation associated to the normal vector. Each couple (ρ,θ)
is unique if θ ∈[0,2π] and ρ ≥ 0.

The cells containing a high score correspond more or less to a
facade. However, we aim at determining precisely and automati-
cally the best fit lines of points characterizing the building facades
(see figure 6). In our case, we do not carry out the lines extrac-
tion step that is based on the local maxima values of the Hough
accumulation space since this requires a very difficult tuning of
some parameters.

Figure 6: The usage of the Hough transform for extracting build-
ing facade lines when the different facades have similar densities.

The local maxima often provide approximate or erroneous so-
lutions. Any partially occluded facade has a low density of 3D
points and has thus a low vote in the Hough counting space com-
pared to the non-occluded facade. For this reason, if the vote
threshold is too low, many lines will be extracted. Inversely, if
the threshold is too high, many lines could be missed. In addition
to this, the line estimation depends also on the discretization steps
of ρ and θ values. Close lines characterizing the approximation
of the same potential line are sometimes extracted. The usage of
a large neighborhood to determine the local maxima in the Hough
space could reduce this effect. Nevertheless, tuning the threshold
is a very difficult task in many cases.

We remind that our approach deals with buildings having sim-
ple polygonal footprints. The discretization steps depend also of
the building characteristics. The ρ step is related to the minimal
distance defined between two facades planes with a similar orien-
tation, the θ step is related to the minimal angle defined between
two adjacent facades.

In the urban context, certain characteristics of the building fa-
cades are a priori known. The number of facades of the buildings
is known in advance (between 3 and 10). Our idea is to use a k-
means clustering algorithm to replace the detection of local max-
ima in the accumulation space—the parameter space of θ and ρ

values, in order to automatically determine the exact number of
facades and their support 2D lines.

The k-means algorithm is a well-known unsupervised clustering
method commonly used to cluster n objects of the input dataset
into k homogeneous partitions, k<n, for example (Forgy, 1965)
and (Macqueen, 1967). We use this technique in a classic way.
Nevertheless, several other various clustering techniques exist and
a survey is found in (Xu and Wunsch, 2005). Mathematically, the
k clusters are determined by minimizing an objective function
such as the sum of the squared distances between the points and
the corresponding centroids such as:

intra distance =

k∑
i=1

∑
Pm∈Si

((ρ, θ)(Pm) − (ρ̄i, θ̄i))
2 (2)

where (ρ, θ)(Pm) is the value of (ρ, θ) associated with all 3D
points Pm(xm, ym, zm) included in the corresponding cell, k is
the number of clusters Si, i = 1, 2, . . . , k, and (ρ̄i, θ̄i) is the cen-
troid of the cluster Si. The above score is simply the intra-cluster
distance measure. More specifically, the score is calculated only
for the cells containing a strictly positive vote in the Hough space.
Besides, the sum in the above equation is carried out for all 3D
point candidates even if they vote all in the same cell.

We can also measure the inter-cluster distance, or the distance
between clusters, which we want to be as big as possible. This
measure is given by

inter distance = min((ρ̄j , θ̄j)− (ρ̄i, θ̄i))
2, i 6= j (3)

Since we want both of these measures to help us determine if we
have a good clustering, i.e., a clustering which results in compact
clusters which are well separated, we must combine them in some
way. The obvious way is to minimize the following objective
function:

validity =
intra distance

inter distance
(4)

In our case, the k-means algorithm is run for each k value belong-
ing to the predefined interval. Each run provides a score based on
(4). The potential number of facades is the k value corresponding
to the minimum of these scores. This validity measure for the de-
termination of the number of clusters in k-means clustering was
proposed in (Ray and Turi, 1999). Thus the number of facades
could be known even when the facades have heterogeneous den-
sities of 3D points.

More precisely, when one run is carried out for a given k, the al-
gorithm is not guaranteed to return the global optimum because
the convergence depends on the initial seeds selected. The k-
means algorithm is extremely fast. For this reason, a method
which is commonly employed is to run the algorithm several
times and select the best clustering available for each k-value.
In our case, the first run is carried out by setting the initial seeds
to the local maxima in the Hough counting space. The other runs
are randomly initialized inside the Hough counting space.

Now that the number of clusters k is known, one can compute
a 2D line solution (facade support) for each detected cluster of
points. Several solutions can be used to model the facade such
as the use of the centroid of each cluster, or the solution with the
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highest vote for each cluster. We propose to employ a more accu-
rate method such as the RANSAC method to model the building
footprint. One advantage of our approach is the following. A
curved facade will be approximated by a single line. In addition
to this, much information deduced by the clustering step allow to
automatically adjust the parameters of the RANSAC algorithm
and to thus improve the precision of the detected lines.

The RANSAC method is commonly used to detect lines among
edge points (Bretar and Roux, 2005) and (Sester and Neidhart,
2008). We use a classic method (Fischler and Bolles, 1981). For
each detected cluster, we use the following process. We use the
original space of parameter (x,y). Two different points belong-
ing to the cluster are randomly selected, characterizing a line. A
neighborhood is defined along this line by a minimal distance be-
tween a point and the line. This process is iteratively repeated
until the number of inlier points in the neighborhood is maxi-
mized. In our approach, the number of facade points is roughly
equal to the number of points for each cluster. Furthermore, the
minimal distance associated with the RANSAC technique can be
determined from the dispersion of the cluster. When this step
is carried out, the best fit lines of 2D points are extracted us-
ing the Least Squares Adjustment (LSA technique). A set of 2D
segments giving the building footprint is then obtained from the
detected 2D lines.

4 PRELIMINARY RESULTS

The acquired 3D data correspond to the facades of buildings in
the 12th district of the city of Paris. In this study, we use a high
precision 2D laser sensor LMS-Q120i made by RIEGL company
1. The laser sensor is positioned on the roof of the vehicle. Its
beam plane is perpendicular to the vehicle trajectory. The system
allows us to carry out 10000 measurements per second and the
beam vertically sweeps with an opening of 80 degrees (-20 to 60
degrees with respect to the horizontal). The angular precision of
the beam is equal to 0.01 degrees. More specifically, the precision
of laser-based measurements is approximately 3 cm at 150 m. In
this study, the angular resolution was configured to 201 points by
frame (see figure 7). The ground based laser range transmits laser
pulses with simple echo.

Figure 7: Acquisition of the 3D point cloud using the 2D laser
sensor. The frame shows a selected band without occlusions.

The raw measurements provided by the laser sensor are points
that are parameterized by distance and angle. The reflected in-
tensity of the laser is between 0 and 1. The coordinates of the
3D points are expressed in the laser sensor coordinate system and
also in a common coordinate system, namely the ground refer-
ence (absolute) Northern, Eastern and Altitude in Lambert 93.
The precision of a 3D point is not easy to evaluate because it
depends on the laser precision and on the referencing system pre-
cision.

1Link to RIEGL company: http://www.riegl.com

Figure 8: Two difficult facades for the classical Hough Trans-
form: i) a curved facade, and ii) a facade with a low density of
3D points. The detected lines correspond to the local maxima of
the Hough space accumulation using the filtered cloud.

The experiments are carried out on two building facades having
different architecture and different density of acquired 3D points.
One can thus assess the robustness and the efficiency of the pro-
posed approach.

Figure 9: Extracting the building footprint lines using the pro-
posed approach.

Figures 8 and 9 show the extraction of the building footprint lines
using the classical Hough Transform and our proposed approach,
respectively. The 3D point cloud is presented in the upper part of
the figure. The projection onto the 2D accumulator is presented
in the lower part of the figure. The studied building illustrates two
difficult cases for a classical Hough Transform. Indeed, the left
facade does not suffer from occlusions but it is slightly curved.
On the other hand, the right facade which is a planar structure is
partially occluded, that is, the density of its 3D points in the 2D
accumulator space is much lower than that of the left facade.

Figure 10: Comparative schema illustrating the precision of lines
detection step on one simulated facade.
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Figure 11: The application of the k-means clustering.

As can be seen, the classical Hough Transform provided many
2D lines (facade support) corresponding to the many local max-
ima in the Hough counting space. We can observe that both the
curved facade and the partially occluded facade are modelled by
several lines. However, by using our proposed approach based
on k-means clustering, the correct and accurate 2D lines were
obtained. As explained above, the 2D lines can be given either
by the centroid of the cluster, its maximum or by the RANSAC
technique. As can be seen in figure 10, the building footprint ex-
traction will be more precise using the RANSAC method. The
maximum score method detects the line comprising the maxi-
mum of points, but it is not necessarily the correct 2D line. The
information provided by the clustering method allows us to re-
fine the estimation of the facade lines by exploiting the number
of points and the dispersion if the detected cluster (facade) within
the RANSAC framework.

Figure 11 shows the application of the k-means clustering algo-
rithm on the 3D data associated with the two facades. Figure
11.(a) depicts the validity score as a function of the number of
clusters k. As can be seen the optimal value for k is 2. Figure
11.(b) shows the convergence associated with this optimum. The
footprint lines extracted from this clustering are illustrated in fig-
ure 9.

5 CONCLUSIONS AND FUTURE WORK

We presented an approach for the automatic extraction of the
building footprint in urban environments. This approach does not
require previous knowledge of the number of facades in the input
dataset. Moreover, the approach is robust to the heterogeneous
densities of facade points. The proposed approach is based on
fast filtering and feature extraction techniques. This stage consti-
tutes an essential task for 3D building modeling. Experimental
results show the feasibility and robustness of the proposed ap-
proach on small islets of buildings.

Future work may investigate the extension of the approach to
buildings with a high complexity of shapes and the possibility
of application to large areas because each islet of the buildings
is delimited by its georeferenced trajectory. Furthermore, since
outdoor squares inside the buildings are inaccessible areas for the
vehicle, we plan to extend our approach to model full buildings by
exploiting the terrestrial data and the corresponding aerial data.
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