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ABSTRACT:

A key ingredient of systems aiming to cope with multiple representations of geographic features is some method for assessing the
correspondence and similarity of such representations. In other words, given two objects from two different data sources, one must be
able to tell whether they model the same real world object and, in this case, measure their degree of similarity. This paper proposes an
adaptation of the Equivalents Rectangles Method (ERM) to quantify the average distance between ambiguous cartographic representa-
tions and uses the Cartographic Similarity Index (CSI) – an index based on areal distances – to evaluate how much a given geometric
representation resembles another. To validate the proposal, a prototype system was implemented and experiments were conducted on
two geographic databases from two different institutions responsible for mapping the city of Rio de Janeiro. These were first matched
using feature names in order to independently establish object correspondence. Then, the ERM and CSI of 159 districts that make up
the city were computed. Results show that 157 districts have an Adapted ERM lower than 100.00 m and a CSI of 70% or greater. The
method was thus able to detect 2 districts with significant dissimilarity, and these conflicts were later confirmed visually, indicating
survey errors. In summary, while the proposed method is being used in a larger framework for ad hoc querying geographic data with
multiple sources, it is also useful in other circumstances, such as in a preprocessing stage for data source integration or for assessment
of data source quality.

1 INTRODUCTION

In many countries, geographic surveys of the same area are fre-
quently developed by different agencies or companies. As a re-
sult, the results may differ significantly, even when the employed
methodology is similar. It is also common for the post-processed
geospatial data to be made available via web, meaning that, in
principle, any interested party may access it. If two or more
surveys of the same feature are available, one must, as a rule,
either choose one of them or spend significant effort in integrat-
ing these data sources into one unambiguous data set. In other
words, geographic databases assume that data about a given fea-
ture is unique, correct, and representative of physical reality (see
Fig. 1.a).
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Figure 1: Single and multiple representation

A related problem arises when a given producer employs a given
cartographic methodology for surveying a certain theme, but this
must later be matched against data pertaining to another theme
which was created using some other methodology. This can gen-
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erate sliver polygons and can easily lead features over other in-
compatible features, like roads lying inside lakes.

In a nutshell, the current paradigm for modeling and querying
geographic databases requires error-free and unique representa-
tions. This is a well established concept and was well summa-
rized by Spinoza:

“There can not exist in nature two or more substances
with the same property or attribute”(de Spinoza, 2005).

Of course, this fact is, rationally, readily understood and accepted
by human intuition.

To achieve this paradigm, one has to avoid the conflict between
data from different producers. Several approaches are common
for obtaining a database with no conflicts by data integration.
Some of these are the use of Digital Libraries (Pazinato et al.,
2002), the Clearinghouse (Goodchild et al., 2007) and the Data
Curation approaches (Beargrie, 2006), (Charlesworth, 2006) and
(Lord et al., 2008). But, there are some other like a manual
schema integration (Kokla, 2006), an extensial determination of
schema transformation rules (Volz, 2005), a data matching ap-
proaches for different data sets (Mustière, 2006) and a semantic
integration (Sester et al., 2007).

Unfortunately, any approach for integrating data sources may lead
to information loss. Whereas a given producer tends to favor one
aspect of the real world, another producer will, perhaps, lend
more detail to some other aspect. When both sources are inte-
grated into a unique data set, some detail may be lost in the pro-
cess.

In our research, we propose delaying the solution of these con-
flicts by integrating query answers rather than data sources. Let



us assume that a certain aspect of the real world has been modeled
by different surveyors resulting in several distinct data sources
DBi (see Fig. 1.b). In practice, if a user queries Q(DBi) each
data sources separately, he or she will obtain answers Ai which
may or may not be identical (see Fig. 2). In other words, it is
possible to have

Q(DBi) 6= Q(DBj), i 6= j ∨ Q(DBi) = Q(DBj), i 6= j.

If all answers Ai agree with each other, then we must concur
that no data integration was needed. Otherwise, we may have
different kinds and amounts of discrepancy, which, however, may
be resolved in a simpler way. For instance, we may find that
most data sources produce identical results whereas a single data
source may be regarded as an outlier. It seems reasonable that
presenting this duly categorized information to the user will lead
to safer decisions being made than simply discarding the outlier,
even when it really contains erroneous information. One may
easily imagine a scenario where the outlier is correct and all other
sources are wrong.

Query: Q(DBi)

DB1 DB2 DBn

A1 A2

...

... An

Figure 2: Different answers for different queries

It stands to reason, however, that any process whereby answers
must be categorized will require previous knowledge about dis-
crepancies among the sources. In this research we focus on a
methodology for analyzing data sources which represent the same
set of features in order to establish similarity measures. In par-
ticular, we describe an adaptation of the Equivalent Rectangles
Method (ERM) (Ferreira da Silva, 1998), a linear discrepancy
measure originally proposed for polygonal lines, extended to closed
polygons. Furthermore, we use the Cartographic Similarity Index
(CSI), an approach for measuring similarity among geographic
data sources.

To validate the proposed methods, district boundary databases for
the city of Rio de Janeiro, as prepared by two Brazilian institu-
tions, are compared. In this case, databases are represented as a
set of closed polygons (not necessarily convex).

The rest of this paper is organized as follows. Section 2 presents
the original ERM and shows how it can be adapted to polygons.
Section 3 describes the CI, CoI and CSI indexes, and discusses
its applicability. Section 4 describes the data sets, methodology
used in the experiments, and presents a comparison results. In
Section 5, we present our final remarks and suggestions for future
work.

2 EQUIVALENT RECTANGLES METHOD (ERM) AND
VARIANTS

2.1 Classical ERM

The ERM methodology was developed to assess the discrepancy
between linear representations – polylines, in practice – of the
same feature (Ferreira da Silva, 1998). In other words, it tries to
measure an average distance between two representations of the

same geographic feature. It should be stressed that the method-
ology can only be used if it is known that both geometric repre-
sentations are related to same real world feature. So, the ERM is
very useful in evaluating the quality of data sources.

The approach is based on the well-known formula (Eq. 1)

x2 + S · x + P = 0, (1)

taking into account a “discrepancy polygon” obtained by con-
necting the initial and final points of the polylines and generating
an equivalent rectangle (see Fig. 3). The coefficients assume the
values of half the perimeter P and area S of this discrepancy poly-
gon. Using the formula of Baskara (Eq. 2) two roots for Equa-
tion 1 can be determined .

{
x1 =

−S+
√

S2−4·P
2

x2 =
−S−
√

S2−4·P
2

(2)

The absolute value of the first root |x1| measures an average
distance between the representations while the second absolute
value |x2| measures the mean semi-perimeter of the representa-
tions (Ferreira da Silva, 1998).
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x2
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Figure 3: Two line representations and the rectangle used for
computing the ERM

Incidentally, although the ERM has been developed for linear fea-
tures only, it has been extended to cope with Digital Elevation
Models (DEM), having received the name of Equivalent Paral-
lelepiped Method (EPM) (da Rocha Gomes, 2006). In this case,
the measure considers the volume, lateral area and perimeter of
the generated parallelepiped.

2.2 Polygon ERM adaptation

In this work, we propose another extension of the ERM so that
it can be used for polygonal representations. To obtain this ex-
tension, we first observe that a polygon corresponds to a closed
polygonal line (see Fig. 4). By analogy with the original ERM, a
discrepancy polygon can be obtained by computing the difference
between the union and the intersection of both polygons. This is
then processed in the same way as in the original ERM. Notice
that there is no need for joining endpoints.

Figure 4: ERM adaptation for a pair of polygonal representations



So, is Pi the polygon representing the feature area A in the data
sources DBi (Eq. 3). In this case, the coefficient P, for the semi-
perimeter, and the coefficient S, for the area, have value as those
obtained by Equations 4 and 5.

Pi = DBi|Polygon(A), i = 1, 2 (3)

P = perimeter((P1) + perimeter(P2) (4)

S = area(P1 ∪ P2)− area(P1 ∩ P2) (5)

Time complexity of the algorithm for intersection (Žalik, 2000)
and union polygonal procedure (Agarwal et al., 2002) is too high.
But, it is essential to measure the CSI and the CI (Sester et al.,
2007). Obviously, the quantity of polygon vertices and the num-
ber of intersection points are directly related to time complexity
of the algorithm. As it was exposed by (Žalik, 2000), an opti-
mal intersection algorithm has a complexity given by O((k + I) ·
log2(k + I)), where I is the number of intersection points and
k is the sum between the number of the input polygon vertices
(k = n + m). The union operation has a higher complexity.
In this case, there are many algorithms, such as, (Agarwal et al.,
2002) and (Varadhan and Manocha, 2006). But all of them re-
quire non-convex polygons to be decomposed into convex pieces.
In this work, we used the algorithm proposed by (Varadhan and
Manocha, 2006) to process the union operation and the algorithm
proposed by (Žalik, 2000) to produce an intersection polygon.

3 SIMILARITY, COMPLETENESS AND COVERAGE
INDICES

When a user considers data from different sources, ambiguities
are likely to occur. Measuring the severity of an ambiguity oc-
currence is not straightforward. Also, it is not clear how to deter-
mine the degree of similarity. As a rule, ambiguities may arise in
two different scenarios. The first possibility occurs when a single
data source has an ambiguous representation. In this case, it is an
error of the producer, and a supervised and rigorous inspection on
the data source is sufficient to pinpoint this situation and allow it
to be corrected. The second case appears when the user has pro-
cessed data from different producers. This type of ambiguities
is a common occurrence because “errors in geographic databases
cannot be avoided” (Ali, 2001).

An easy way to identify potentially ambiguous representations is
by using metadata. Unfortunately, metadata cannot identify am-
biguities in many cases, since it may also be incorrect or ambigu-
ous. A saner approach, then, is to analyze the relevant geometric
representations in order to extract information about their simi-
larity. In this work, we use the term Cartographic Similarity
Index (CSI) to refer to the complement of the areal distance
(Ali, 2001), a measure originally used to evaluate the “distance”
d between two sets of polygons. In other words, let PA and PB

be two polygons, then the relation between CSI and distance d
is expressed by Equation 6.

CSI(PA, PB) = 100 · (1− d(PA, PB))

= 100− 100 · (1− area(PA∩PB)
area(PA∪PB)

)

= 100 · area(PA∩PB)
area(PA∪PB)

.

(6)

Notice that the CSI is expressed as a percentage. Thus, two
representations are considered identical (CSI = 100%) if they
occupy exactly the same locus. Conversely, two disjoint repre-
sentations have CSI = 0%.

Another useful measure is the so-called Completeness Index
(CI) – (Ali, 2001) and (Kieler et al., 2007) – which tries to estab-
lish how much of a given representation PA agrees with another
representation PB , and is given by Equation 7.

CI(PA, PB) = 100 · area(PA ∩ PB)

area(PA)
. (7)

We may also define the Coverage Index (CoI), expressed by

CoI(PA, PB) = 100 · area(PA)

area(PA ∪ PB)
, (8)

which can be interpreted as a measure of how much a given rep-
resentation PA covers points which may actually belong to a fea-
ture, given that this feature is estimated by polygons PA and PB .

We notice that measures CI and CoI are not symmetric, i.e., in
general,

CI(PA, PB) 6= CI(PB , PA)∧CoI(PA, PB) 6= CoI(PB , PA).

Notice also, that the CSI , a symmetric measure is related to CI
and CoI by

CSI(PA, PB) =
CI(PA, PB) · CoI(PA, PB)

100
.

Although the CI, the CoI and the CSI were presented as pairwise
operators, they can easily be generalized as n-way operators:

CI(PA, . . . , Pn) = 100 · area(PA ∩ . . . ∩ Pn)

area(PA)

CoI(PA, . . . , Pn) = 100 · area(PA)

area(PA ∪ . . . ∪ Pn)

CSI(PA, . . . , Pn) = 100 · area(PA ∩ . . . ∩ Pn)

area(PA ∪ . . . ∪ Pn)

4 EXPERIMENTS

In order to investigate the usefulness of the Adapted ERM and the
CSI, a prototype system was used to compare two data sources
for the district partitioning of the city of Rio de Janeiro. The
prototype exhibits both data sources graphically, thus allowing
a visual inspection of ambiguities. It also computes the Adapted
ERM and CSI values for the different polygons. In this case, each
polygon represents one of the 159 districts of the city of Rio de
Janeiro. The data was obtained from two sources in the same
scale (1 : 10.000): Pereira Passos Institute (IPP in Portuguese),
a municipal institution responsible for mapping the city, and the
Brazilian Institute of Geography and Statistics (IBGE in Por-
tuguese), an entity responsible for the systematic mapping of the
country. In fact, the two data sources are, visually, quite similar,
but not identical (see Fig. 5).

The data was, initially, acquired in shapefile format (ESRI, 1998),
but was converted to Geography Markup Language (GML) for-
mat (OGC, 2001) using GDAL tools (GDAL, 2008). All subse-
quent processing was made in GML format.
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Figure 5: Districts ambiguities

In general, we are interested in performing a procedure to estab-
lish matching representations of the same features according to
two data sources, say, DB1 and DB2. For simplicity, we assume
that a data source is comprised solely of two columns, one for
the geometric data, and another for the non-geometric informa-
tion which identifies the table row , which we call “feature name”
(see Table 1).

feature name geometric data
district D1 list of coordinates
district D2 list of coordinates

. . . . . .
district Dn list of coordinates

Table 1: Data source example

The detection of matches consisted of checking all possible pair-
ings between polygons (features) of both data sources. For each
pair (Pi, Rj), where Pi is a polygon from the IPP data source
and Rj is a polygon from the IBGE data source, both the Adapted
ERM and the CSI were computed. It should be noted that both
sets have the same cardinality, but this needs not be the case in
general.

The intention was to evaluate the occurence of matches between
two specific representations by analyzing index values. So, let
ERMmin(Pi) denote the minimum value for the Adapted ERM
among all pairs (Pi, Rj). Then, Rk is considered the candidate
match for Pi if ERM(Pi, Rk) = ERMmin(Pi). Similarly,
let CSImax denote the maximum value for the CSI among all
possible pairs (Pi, Rj). Then, Rk is considered the candidate
match for Pi if CSI(Pi, Rk) = CSImax(Pi). Notice that the
matching functions are not symmetric, i.e., Rj being considered
the candidate match for Pi does not imply that Pi is considered a
candidate match for Rj .

Within this framework, it is reasonable to suppose that any given
feature is represented in both data sources, i.e., there is a multi-
ple representation. One may even call these representations “am-
biguous”, in the sense that a feature has, thus, two representa-
tions. This benign occurrence corresponds to the case where the
candidate match (using either index) for Pi is Rj and vice-versa.

Another important consideration is the match between feature
names. What happens if a match detected geometrically does
not concur with their respective feature names? Conversely, what
does it mean to have identical feature names associated with non-
matching geometric representations? Clearly, a true match must
only be considered if geometric representations match each other
(according to both index metrics), and their feature names also
agree. This is expressed in Equation 9, where FN(x) stands for
the feature name for polygon x:

Pi matches Rj ⇔ ERM(Pi, Rj) = ERMmin(Pi)∧
CSI(Pi, Rj) = CSImax(Pi)∧

FN(Pi) = FN(Rj).
(9)

4.1 Matching problem

After processing the district data sources, the candidate matches
obtained using both indices were exactly the same. In other words,
the Adapted ERM and the CSI, produce the same result. How-
ever, the use of feature names reveal that only 158 of the 159
matches were “true” according to Eq. 9. In particular, only one
district was not identified correctly. For both data sources, the
candidate match for the district named “Parque Columbia” was
another district named “Pavuna”. In other words, let Pc denote
a polygon in the first data source for which FN(Pc) is “Par-
que Columbia”, and Pp denote a polygon for which FN(Pp)
is “Pavuna”. Let Rc and Rp analogously denote the polygons
of “Parque Columbia” and “Pavuna” in the second data source.
Then, it was found that ERM (Pc, Rp) = ERMmin(Pc), and,
similarly, CSI(Pc, Rp) = CSImax(Pc). Notice that the dis-
trict of “Pavuna” was correctly matched, i.e., ERM(Pp, Rp) =
ERMmin(Pp) and CSI(Pp, Rp) = CSImax(Pp).

Parque Columbia

PavunaDB1 DB2

Figure 6: An indefinition example – “Parque Columbia”

In that case, there are indefinitions about the boundaries of the
districts. As it is shown in Fig. 6, IPP and IBGE do not agree
about the geographic position of “Parque Columbia”. These spe-
cific districts return the values shown in Table 2.

Correlation Adapted ERM (m) CSI (%)
Pp ×Rp 232.50 54.16
Pp × Pc 708.22 0.00
Pp ×Rc 415.08 21.32
Rp × Pc 457.20 31.60
Rp ×Rc 859.13 0.00
Pc ×Rc 680.19 0.00

Table 2: “Pavuna” and “Parque Columbia” comparison

4.2 ERM Analysis

We notice that the values obtained with the ERMmin index were
fairly high both for the district of “Pavuna” and for the district
of “Parque Columbia”, but generally low for the other districts,
rarely surpassing 40m, as shown in Table 3.

Incidentally, Brazilian law tries to establish standards to assess
the quality of the systematic mapping of the country, called the
Cartographic Accuracy Standard (Brasil, 1984). In this case, the
standard prescribes that a class A map should have 95% of field
samples lying within 5m of the corresponding map feature in
mapping scale. Thus, using the ERM index, it is possible to
affirm that at least one data source used in the experiments would
not pass said standard.



ERMmin range (m) number of districts
0 ≤ 10 2
10 ≤ 20 67
20 ≤ 30 60
30 ≤ 40 18
40 ≤ 50 4
50 ≤ 60 4
60 ≤ 80 0
80 ≤ 100 2
100 ≤ 250 1
250 ≤ 500 1

Table 3: ERM range analysis

Another curious aspect of the ERM index is that it sometimes
yields non-intuitive similarities. For instance, the match for the
district of “Oswaldo Cruz” yields

ERMmin(Po) = ERMmin(Ro) = ERM(Po, Ro) = 9.10m,

the lowest among all ERM values. Looking, however, at the next
best candidates for matching that district, i.e., the next 5 lowest
values of ERM(Po, . . .), we do not find neighboring districts as
can be seen on Figure 7 and Table 4, instead of the highest CSI
values, as can be seen in Table 5.

FN(Rj) ERM(Po, Rj) CSI(Po, Rj)

Oswaldo Cruz 9.10 97.00
Cosme Velho 421.70 0.0
Santa Teresa 431.75 0.0

Paquetá 437.49 0.0
Urca 447.29 0.0

Table 4: Lowest ERM values for matching Po, the district of
“Oswaldo Cruz”

FN(Rj) ERM(Po, Rj) CSI(Po, Rj)

Oswaldo Cruz 9.10 97.00
Bento Ribeiro 728.15 0.19

Madureira 784.79 0.02
Turiaçú 597.36 0.01

Campinho 575.03 0.01

Table 5: Highest CSI values for matching Po, the district of
“Oswaldo Cruz”

4.3 CSI Analysis

It is also useful to look at the highest value for the CSI among
all pairs, which corresponds to the district of “Bangu”. A table
with the next highest CSI values for that district are shown in
Table 6. As can be seen in Figure 8, these correspond to districts
neighboring “Bangu”, as expected.

We also ranked the matches obtained with the CSI in increasing
order, as shown in Table 8. As expected, the two lowest values are
associated with the districts of “Parque Columbia” and “Pavuna”,
whereas all other districts yielded CSI values bigger than 70%.
Thus, a cut-off value of 70% would be enough to pinpoint match-
ing problems, even in the absence of feature name information.

In Figure 9, it is possible to observe the CSI distribution with
respect to geographic locations. Districts with CSI lower than
70% are painted in red, districts between 70% and 90% in yellow,
and above 90% in green. We notice that smaller values usually
correspond to districts with smaller areas. This is understandable
since errors are more likely to occur on district boundaries.

Our tests indicate that the Adapted ERM and CSI tend to detect
the same matches. However, the Adapted ERM is not as sensitive

Figure 7: Districts yielding the 5 lowest values of ERM with
respect to the “Oswaldo Cruz” district

Figure 8: Districts yielding the 5 highest values of CSI with
respect to the “Bangu” district

as the CSI. The former produces a large dispersion in the results
when compared to the latter, as shown by Table 3 and 8. Thus,
the identification of ambiguities is probably easier when the CSI
is used. The advantage of the Adapted ERM lies on its yielding
measures in distance units. On the other hand, the CSI is more
adequate for quantifying similarity.

Figure 9: Similarity distribution on Rio de Janeiro city

5 CONCLUSIONS AND FUTURE WORK

This work is part of a doctoral thesis that proposes a methodology
to enable an user to obtain any information from a query to mul-
tiple data sources. The next step of the research will be to use the
CSI as a qualifier of ambiguities and facilitate the integration of
responses. The main idea is to shy away from a priori integration
of data sources in favor of an a posteriori treatment of answers
obtained by querying these data sources separately. Thus, given
a query applied to any multiple representation, it is necessary to
process the multiple responses in order to provide support for de-
cisions. This, also, helps quantifying the certainty, coverage and
completeness of the query answers.

To reach this goal, this work proposed, initially, an extension of
ERM, and then proposed a new use for a known index, the CSI.
The idea was to seek a way to identify possible ambiguities, in
order to facilitate a further integration of responses. It can also



FN(Rj) ERM(Pb, Rj) CSI(Pb, Rj)

Bangu 20.98 98.32
Padre Miguel 2081.72 0.24

Campo Grande 2789.99 0.11
Senador Camará 2273.43 0.09

Realengo 2292.59 0.03

Table 6: Highest CSI values for matching Pb, the district of
“Bangu”

FN(Rj) ERM(Po, Rj) CSI(Po, Rj)

Bangu 20.98 98.32
Santa Teresa 1690.78 0.0

Barra de Guaratiba 1907.89 0.0
Cidade Universitária 1913.72 0.0

Centro 1934.76 0.0

Table 7: Lowest ERM values for matching Po, the district of
“Bangu”

be observed that the proposed index serves as a certifier of geo-
graphic data to be used in digital curation. Identifying ambiguous
representations and offering them a value of similarity is essen-
tial to obtain the largest possible amount of information. It is our
belief that this approach will help making ready use of web data
sources without incurring the costly effort of integrating them in
a single database.

CSImax range number of districts
0 ≤ 70 2
70 ≤ 80 6
80 ≤ 90 36
90 ≤ 95 72
95 ≤ 100 43

Table 8: CSI range analysis

The admittedly small experimental evidence shown in this paper
indicates that the CSI is more sensitive to the identification of
possible ambiguities than the Adapted ERM. Nevertheless, the
latter, being able to return distances rather than correlations, may
be of use in queries involving metric reasoning.
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