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ABSTRACT: 

 

Texture measures are commonly used to increase the number of input bands in order to improve classification accuracy, especially 

for panchromatic or true colour imagery. While the use of texture measures in pixel-based analysis has been well documented, this is 

not the case for texture measures calculated in an object-based environment. Because texture calculations are computer intensive, 

fewer variables are preferred and knowledge of correlation and how it changes across segmentation scales is required. The objectives 

of this study were to assess correlations between texture measures as a function of segmentation scale while mapping rangeland 

vegetation structure groups using 5-cm resolution true-color aerial photography. Entropy, mean and correlation were least correlated 

with other texture measures at all scales. The highest correlation that remained stable across all segmentation scales was found for 

contrast and dissimilarity. We observed both increasing and decreasing correlation coefficients for texture pairs as segmentation 

scale increased, and there was larger variability from one scale to the next at finer segmentations and more consistency in correlation 

at medium to coarse scales. This was attributed to the fact that at finer segmentation scales, smaller objects were more numerous, and 

the ratio of edge to interior pixels for an image object was higher than at coarser scales. This approach allowed for determining the 

most suitable and uncorrelated texture measures at the optimal image analysis scale, was less computer intensive than a series of test 

classifications, and shows promise for incorporation into rangeland monitoring protocols with very high resolution imagery.  

 

 
1. INTRODUCTION 

Texture measures are commonly used in remote sensing in an 

attempt to increase classification accuracy and/or compensate 

for a low number of input bands, such as in panchromatic or 

true colour imagery. The additional information that can be 

exploited by using texture can be especially useful with high 

resolution satellite imagery and/or aerial photography (Ryherd 

and Woodcock, 1996; Wulder et al., 1998; Franklin et al., 2000; 

Coburn and Roberts, 2004). While the use of texture measures 

in pixel-based analysis for vegetation classification has been 

well documented (Gong et al., 2003; Tuominen and Pekkarinen, 

2004; Pouliot et al., 2006), this is not the case for texture 

measures calculated in an object-based environment, with few 

exceptions ((Herold et al., 2003; Carleer and Wolff, 2006). 

Even when object-based image analysis (OBIA) is used, texture 

may be calculated in a pixel-based environment, and then 

imported as an additional band for further OBIA (Moskal and 

Franklin, 2002; Ivits et al., 2005). One of the reasons is that 

texture calculations can be very time consuming in OBIA, 

especially if multiple segmentation scales are analyzed and the 

imagery has high to very high resolution.   

 

In OBIA, the analyst is usually faced with two main challenges: 

determination of the optimal segmentation scale, and selection 

of the most suitable features for classification. Due to the 

sensitivity of texture to scale (Ferro and Warner, 2002), an 

optimal segmentation scale is especially important when texture 

features are included. With multiple texture features, it is 

prohibitive to use trial and error, visual analysis, or test 

classifications to assess appropriate texture features or analysis 

scales due to computation times. Knowledge of correlation 

between texture features, and how correlation changes with 

segmentation scale is useful for selection of the least correlated 

texture features.   

 

In this study, we used sub-decimeter resolution aerial 

photography acquired with an unmanned aerial vehicle (UAV), 

using an off-the shelf digital camera due to its light weight. 

Texture added an additional band to the highly correlated red, 

green, and blue (RGB) bands. The imagery was acquired for the 

purpose of mapping rangeland vegetation as part of on ongoing 

research project at the USDA Agricultural Research Service 

(ARS) Jornada Experimental Range in southern New Mexico. 

This research is aimed at determining the utility of UAVs for 

rangeland mapping and monitoring and developing a workflow 

for processing and analyzing UAV imagery in a production 

environment (Rango et al, 2006; Laliberte et al., 2007b).  

 

Texture had proven to be a useful parameter for mapping 

rangeland vegetation, and had improved classification accuracy 

over only using RGB bands in a related study (Laliberte and 

Rango, in review). However, because a decision tree was used 

for feature selection, correlated features can be included and 

may be selected by the decision tree. Other feature selection 

tools, such as Feature Space Optimization in the OBIA software 

Definiens (Definiens, 2006) may also select correlated features. 

In the case of texture, use of unnecessary and correlated features 

can slow down classification times dramatically.  

 

The objectives of this study were to assess correlations between 

texture measures as a function of segmentation scale, using as 

an example the mapping of rangeland vegetation structure 

groups (Bare Ground, Grasses, Shrubs) with 5-cm resolution 

true-colour aerial photography, acquired with an unmanned 

aerial vehicle (UAV).       



 

2. METHODS 

2.1 Study area and Imagery 

The imagery was acquired in October 2006 at the Jornada 

Experimental Range in southern New Mexico over arid 

rangeland with a mixture of shrubs, grasses, and bare soils 

common to the northern part of the Chihuahuan desert. We used 

a small UAV (MLB BAT 3) with a weight of 10 kg and a 

wingspan of 1.8 m, equipped with a Canon SD 550 seven-

megapixel digital camera. Imagery was acquired with 60% 

forward and 30% side lap for photogrammetric processing. 

Eight images were orthorectified and mosaicked into an image 

with a 5 cm ground resolution and covering an area of 490 m x 

188 m.  

 
2.2 Image Processing 

Image analysis was performed using the object-based image 

analysis software Definiens Professional 5 (Definiens, 2006). 

The segmentation approach is a bottom-up region merging 

process based on heterogeneity of image objects, and controlled 

by three segmentation parameters: color/shape, 

compactness/smoothness, and a scale parameter (Benz et al., 

2004). Color/shape and compactness/smoothness were set to 

0.9/0.1 and 0.5/0.5 respectively, using as a guideline previous 

research with UAV imagery in this area (Laliberte et al., 

2007b). We chose 15 segmentation scales (scale parameters) 

from 10 to 80 in increments of 5. At scales coarser than 80, 

individual shrubs were being merged together, therefore 80 

became the cut-off for the coarsest scale.  

 

The classes of interest were Bare Ground, Grass, and Shrub, and 

ground truth data consisted of 300 samples (100 per class) of 

polygons mapped in the field with differentially corrected GPS. 

Half of those samples were set aside for accuracy assessment. 

Classification was performed using a nearest neighbour 

classification, and accuracy was assessed by evaluating overall, 

producers, and users accuracies as well as the Kappa Index of 

Agreement (Congalton, 1991).  

 

The texture measures used in this study were second order 

statistics derived from the grey-level co-occurrence matrix 

(GLCM), and describe changes in grey level values of pixels 

and relationships between pixel pairs in a given pair (Haralick et 

al., 1973). The 10 texture measures were derived after 

segmentation and represent texture features calculated on image 

objects (Table 1). In this software, pixels that border the image 

object directly are taken into account in order to reduce border 

effects (Definiens, 2006). Texture was calculated on RGB bands 

and on the average of all directions, because the vegetation 

classes of interest were not directionally biased.  

 

We used a decision tree (CART®, Salford Systems) to 

determine the optimal texture measures for each segmentation 

scale based on the 150 input samples for the three classes. A 

decision tree is a non-parametric tool, and as such is not 

sensitive to outliers and correlated variables (Breiman et al., 

1984). Decision trees are an excellent data reduction tool, 

especially when many features are available (Chubey et al., 

2006; Laliberte et al., 2007a). However, a decision tree may 

select correlated variables; therefore an additional correlation 

analysis can further reduce data dimensionality. Spearman’s 

rank correlation analysis was used to determine correlations, 

because this approach does not require assumptions of 

normality and linearity (Sokal and Rohlf, 1995). 
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Pi,j is the normalized co-occurrence matrix, N is the number of 

rows or columns, i and j are the standard deviation of row i 

and column j, μi and μj are the mean of row i and column j, Vk is 

the normalized grey level difference vector, and k = |i-j| 

 

Table 1. Texture measures used in the analysis.  

 

 
3. RESULTS AND DISCUSSION 

3.1 Texture Features and Scale 

The texture measures chosen by the decision tree at each 

segmentation scale are shown in Table 2. For each scale 

parameter, the order of texture features is displayed based on 

variable importance scores from the decision tree. For example, 

at scale 60, the order of texture features was MENT first, and 

MDIS second. The first variable represents the first splitter in 

the decision tree. As the scale increased, fewer variables were 

chosen by the tree, and MENT, MCON, and MSTD were  

 
SP MENT MEA

N 

MCO

R 

MCO

N 

MHOM MDIS MST

D 

VENT 

10 3 4 5 6 7  1 2 

15 2  4  5 1  3 

20 2   1     

25 2 3 5 1   4 6 

30 2 5 6   1 4 3 

35 2 4  5  3 1  

40 2   3   1  

45 1 4 5 2 6 7 3  

50 2     1   

55 1     2   

60 1     2   

65 1 4  2   3  

70 1   2  4 3  

75 1   2   3  

80 1   2   3  

 

Table 2. Order of texture features chosen by a decision tree for 

each scale parameter (SP). 



 

selected in the same order from scale 65 to 80. The cross-

validated relative cost (CVRC) of the decision tree, a measure 

of misclassification, representing the error rate of the tree, 

showed that the error rate decreased from 60% at scale 10 to 

20%, the lowest value, at scale 60 (Figure 1). Those results were 

mirrored by the overall accuracies and the KIA values, which 

increased with increasing segmentation scales, reaching the 

highest values of 98% and 0.97 KIA at scale 65.  

 

 
 

Figure 1. Cross-validated relative cost (CVRC) or error rate of 

decision trees for 15 segmentation scales. 

 

 
3.2 Correlation of Texture Features 

The highest correlation coefficients that remained stable across 

all scale parameters were found for MCON-MDIS and VASM-

VENT (Figure 2), which was expected based on the equation 

structure (Hall-Beyer 2007) (see Table 1). For that reason, a 

graph of correlation coefficients for MDIS was omitted from 

Figure 2, because it was very similar to MCON. The values 

exported from Definiens for MASM for segmentation scales 

greater than 35 were all 0, therefore only coefficients up to that 

scale are shown in the graph.  

 

MCOR, MMEAN, and MENT had the least correlation with 

other texture measures, although individual responses varied for 

some segmentation scales. We observed a definite change in 

correlation coefficients with scale parameter for several texture 

measure pairs. Some displayed decreasing correlation with 

increasing segmentation scale (MCON-MSTD, MHOM-

MMEAN), others showed increasing correlation with increasing 

segmentation scale (MCON-VENT, MSTD-VENT).  

 

Comparisons with other studies using texture at multiple scales 

can only be made with pixel-based studies, because to our best 

knowledge, there have been no studies of the use of various 

texture measures and their correlations in OBIA across multiple 

scales. While we saw several similarities with the choice of 

texture measures across multiple image types from other 

studies, our results with regard to correlation of texture 

measures are quite variable compared to other studies. This is 

understandable, because pixel-derived texture measures are 

compared with object-derived texture measures. In the 

following comparison, we are describing texture measures from 

our study using the abbreviation (i.E. MCON), and texture 

measures from other studies spelled out (i.E. contrast).  

 

Clausi (2002), and Barber and LeDrew (1991) both reported 

that contrast and dissimilarity were strongly correlated, similar 

to our findings. Clausi (2002) noted that correlation was not 

correlated with any other texture measure and that there were 

high correlations between entropy and angular second moment. 

In our study, MENT and MASM had a high correlation only at 

the 2 finest scales, then decreased to correlations near 0 at scale 

25. Although MCOR was one of the texture measures least 

correlated to all others, it still displayed considerable ranges in 

correlation for different scales. For example, after scale 30, 

correlation coefficients between MCOR and MCON increased 

to 0.6 and up to 0.7 for the coarsest scale. Generally speaking, 

Baraldi and Parmiggiani (1995) and Barber and LeDrew (1991) 

found higher correlation coefficients than we did. Baraldi and 

Parmiggiani (1995) determined that contrast and homogeneity 

were strongly and inversely correlated, while we observed an 

inverse, but weak correlation, with the highest correlation 

coefficient in our study at 0.5.  

 

At scales 65-80, the decision tree selected MENT, MCON, and 

MSTD. Hall-Beyer (2007) placed these three texture measures 

in separate groups, whereby MENT is in the Orderliness group, 

MCON in the Contrast group, and MSTD in the Statistics 

group. In terms of choosing uncorrelated variables, Hall-Beyer 

(2007) advised to pick texture variables from separate groups, 

which our analysis appeared to corroborate. Our correlation 

analysis showed that, although MENT and MCON were closely 

correlated at scales smaller than 40, the two variables were not 

correlated at the coarser scales, where the accuracy was highest. 

The same held true for MCON and MSTD, and for MENT and 

MSTD. At finer segmentation scales, correlated variables were 

selected by the decision tree, and this knowledge is especially 

useful at fine scales, because classification times increase 

dramatically at finer scales and with multiple texture features.  

 

At finer segmentation scales (below 20-25), correlation 

coefficients often changed at a greater rate from one scale to the 

next, while at coarser segmentation scales, the rate of change in 

correlation coefficient from one scale to the next was smaller 

(Figure 2a). Because image objects are very small at fine scales, 

the ratio of edge to interior pixels is greater at fine scales than at 

coarser scales, possibly resulting in more accurate 

representation of texture at coarser scales. In other words, if the 

image object is too small, texture may not be an appropriate 

feature to use, and correlations between texture pairs can vary 

greatly. For example, for MCONT-VENT, correlations changed 

from a strong negative correlation at fine scales to no 

correlation at scale 20, and then to correlations of 0.7.  

 

In our study, observations with regard to the stability of 

correlations from one scale to the next mirrored the error rate of 

the decision tree (Figure 1.) as well as overall accuracy. At 

smaller scales, overall accuracy using texture measures was 

around 90% at scales up to 25, then increased to accuracies in 

the high 90% range at scales greater than 45. While those 

accuracy values are relatively high for all segmentation scales, 

we observed a marked increase in accuracy after scale 40. 

 

In pixel-based texture calculations, the boundary problem 

increases with texture window size (Coburn and Roberts, 2004), 

as windows can straddle the boundary between ecotones or 

different landscape features. As the segmentation scale 

increases in OBIA, adjacent image objects differ more with 

regard to their homogeneity than adjacent image objects at very 

fine scales, and the boundary problem actually decreases with 

segmentation scale. For that reason, texture from pixel-based 

analysis calculated with different window sizes has very 

different results than texture from OBIA calculated at different 

segmentation scales.  

 



 

 
 

Figure 2. Correlation coefficients of texture measures for 15 segmentation scales. Shown are correlations of a) MHOM, b) MCON,  

c) MENT, d) MASM, e) MMEAN, f) MSTD, g) MCOR, and h) VASM. Texture measures for comparison are shown in the legend. 

 

 

 
 

Figure 3. The texture measure entropy at eight segmentation scales from 10 to 80. 

 

 

 

 

 

 

 

 

 



 

What remains the same in pixel- or object-based analysis, 

however, is the fact that texture is highly sensitive to scale, and 

an appropriate scale has to be chosen for an effective and 

meaningful analysis. Fewer variables are preferred, especially if 

calculations are computer intensive, as they are for texture. In 

this study, MENT was the texture measure ranking either first 

or second from scale 15 to 80 and was chosen in every decision 

tree. It also had the least correlation with other texture 

measures, and if only one variable were chosen for analysis, it 

would be MENT. Figure 3 shows the texture measure MENT at 

all segmentation scales. Gray values describing Bare Ground, 

Grass, and Shrub show more differentiation at coarser than at 

finer scales.  

 

 
4. CONCLUSIONS AND FUTURE WORK 

Using a decision tree allowed for reducing the number of input 

texture variables and assisted with the selection of the image 

analysis scale, which was confirmed based on overall accuracy 

and KIA values. Correlation analysis for texture pairs was used 

to further reduce the number of input variables.  In our study, 

correlated variables were selected by the decision tree at finer 

scales, but less so at the coarser scales. Reducing data 

dimensionality is especially important when texture is used at 

fine analysis scales due to computation times.  

 

We observed both increasing and decreasing correlation 

coefficients for texture pairs with increasing segmentation 

scales, with larger variability from one scale to the next at finer 

segmentations and more consistency in correlation at medium 

to coarse scales. This study suggests that the boundary problem 

common to texture analysis in pixel-based approaches appears 

to decrease in object-based image analysis with segmentation 

scale. 

 

In this study, the highest overall accuracy, the CVRC of the 

decision trees, and the stability of correlation for variable pairs 

from one segmentation scale to the next all pointed to an 

optimal segmentation scale at or around 60. Additional studies 

in other vegetation communities and/or the use of more classes 

are needed to confirm if CVRC of decision trees coupled with 

correlation analysis can be used to determine not only the most 

suitable variables, but also the analysis scale. This would 

reduce computation times significantly, because calculating 

overall accuracies at multiple scales is computer intensive, 

while decision tree analysis can be performed more rapidly. 

Tools that allow for the determination of the optimal 

segmentation scale as well as feature selection are crucial in 

OBIA using Definiens, because much time is spent on those 

two aspects of image processing.  

 

This approach allowed for determining the most suitable and 

uncorrelated texture measures at the optimal image analysis 

scale for mapping vegetation structure groups with sub-

decimeter resolution imagery. In future studies, we plan to map 

individual species with this approach and incorporate these 

techniques into rangeland monitoring protocols with very high 

resolution imagery acquired either with piloted or unmanned 

aircraft.  
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