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ABSTRACT: 

 

Canopy surface height (CSH) is a significant forest biophysical parameter to estimate above-ground biomass and carbon content. 

High- spatial resolution optical remotely sensed data have shown promising results to delineate various forest biophysical properties; 

though few studies have evaluated the accuracy of forest height information from such data. In this study, we compare several 

strategies using high-resolution Quickbird imagery to estimate CSH measured from small-footprint lidar data in a forest scene. Two 

main approaches were tested: 1) geographic object-based image analysis (GEOBIA), where the areal units are the objects from a 

segmentation-derived partition, which are akin to forest patches; and 2) pixel-based, where the areal units used to estimate CSH are 

the cells of a grid-shaped partition, which are akin to square field plots. Multiple linear regression models between within areal unit 

spectral response and lidar-measured CSH were developed for these two types of approaches using various areal unit sizes (AUSs). 

The best results (derived from the optimal AUSs) illustrated a better fitting model employing the GEOBIA approach (R2 = 0.605, 

RMSE = 2.86 m) than the pixel-based approach (R2 = 0.544, RMSE = 2.97 m). To develop more representative models when using 

their optimal AUSs, texture (i.e., standard deviation, skewness and kurtosis) and tree-ray-shadow geometry were investigated and 

applied to GEOBIA and pixel-based approaches. For the GEOBIA approach, the addition of texture and tree-ray-shadow geometry 

explained more variance of lidar-measured CSH by 5 percent and 10 percent respectively. The best performance (R2 = 0.739, RMSE 

= 2.60 m) was achieved using the combination of all three types of variables. For the pixel-based approach, only slight improvements 

were made with the best result (R2 = 0.577, RMSE = 2.88 m) achieved using all types of variables in the regression analysis. The 

comparisons in this study illustrate the potential of using meaningful image-objects instead of traditional fixed-size square grids to 

achieve higher accuracies in estimating the vertical structure of tree canopies. 
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1. INTRODUCTION 

Forests play an important role in the global carbon budget 

because they dominate the dynamics of the terrestrial carbon 

cycle (Dong et al., 2003), for example, 90% of above-ground 

carbon is stored in tree stems (Hese et al., 2005). As a signatory 

of the Kyoto Protocol and a guardian of approximately 10% of 

global forests, Canada has committed to produce accurate 

estimates of its forest's carbon content. Since forest vertical 

structure (e.g., height) - a significant component of forest 

inventories - is highly correlated with above-ground biomass 

and therefore carbon content (Lefsky et al., 2002), an accurate 

and efficient measurement of forest height is crucial to the 

success of carbon estimation.  

 

Lidar (light detection and ranging), a relatively recent remote 

sensing tool, has demonstrated the ability to provide highly 

accurate information on forest vertical structure (Lim et al., 

2003). Compared with satellite data acquisition, lidar data 

collection and processing are expensive, typically covering only 

small sites (e.g., narrow transects); however larger provincial 

and state-wide acquisition programs are currently being 

developed. Optical remote sensing imagery provide a 

continuous view of broad areas with a relatively low cost, 

especially for high-spatial resolution imagery  (<5.0m) 

(hereafter H-res), which have shown promising results to 

estimate various forest biophysical properties, such as stand 

density, age and tree species composition (Wulder et al., 2004). 

In addition, a number of studies have evaluated the accuracy of 

forest height information from H-res optical data. Franklin and 

McDermid (1993) found a significant correlation between H-res 

CASI (Compact Airborne Spectrographic Imager) red band and 

forest height at the stand level (R = 0.75). Hyde et al. (2006) 

compared different types of remotely sensed data to map forest 

structure for wildlife habitat analysis and found a R2 of 0.566 

while using Quickbird imagery to estimate mean canopy height. 

Similarly, Donoghue and Watt (2006) used IKONOS data to 

estimate lidar-measured forest height for densely stocked 

plantation areas in northern England. They found lidar and 

IKONOS data appear to show good agreement with trees less 

than 10 m in height. However, height predictions were very 

poor above 10 m.  

 

For almost three decades, traditional pixel-based image 

processing approaches have been applied to medium resolution 

remotely sensed data, because individual pixels - the basic study 



 

units - were capable of characterizing different land-cover 

classes (Castilla and Hay, 2008). However, the spatial patterns 

of the objects composed by pixels were neglected, especially for 

H-res imagery. Recently, there has been a shift from pixel-based 

approaches to object-based approaches, which combine spatial 

and spectral information to define image-objects (i.e., groups of 

pixels that represent meaningful entities in the real world 

scene), instead of pixels as their basic unit. To emphasize 

object-based image analysis in the geographical domain, the 

name of GEOgraphic Object-Based Image Analysis (GEOBIA) 

was proposed by Hay and Castilla (2008). Advantages of 

GEOBIA approaches over pixel-based approaches have been 

shown in several forest studies. For example, in early work, Hay 

et al. (1996) presented an object-based adaptive triangulated 

primitive neighborhood method (TPN) applied on H-res CASI 

imagery to extract forest structural texture. This improved the 

overall classification accuracy to 78% versus the classification 

generated from the pixel-based grey level co-occurrence matrix 

(GLCM) approach (35%). Another study to estimate vegetation 

parameters (i.e., above-ground biomass and leaf area index) also 

showed that object-based parameter estimation performed better 

than per-pixel estimation (Addink et al., 2007). 

 

Lidar data have proven their ability to accurately estimate forest 

vertical structure. However, the high cost of data collection and 

processing typically confine the use of lidar systems to 

relatively small areas. In this study, we hypothesize that H-res 

optical data (which have been used to estimate forest 

biophysical properties at a relatively low cost), can be combined 

with profiling lidar data to spatially extend forest height 

information from small areas to large areas. A prerequisite to 

this hypothesis is that a high R2 must be obtained between lidar-

measured canopy height and optical variables. In this study, our 

first objective is to (i) examine the potential of using H-res 

Quickbird imagery to estimate canopy surface height (CSH) 

measured from small-footprint lidar data covering the same 

study area. Our second objective is to (ii) develop and compare 

two types of CSH estimation models using pixel-based and 

GEOBIA approaches. (iii) Our third objective is to investigate if 

an optimal areal unit size (AUS) exists for these approaches. 

 

2. METHODS 

2.1 Study area 

The study area (49°52'N, 125°20'W) is located approximately 

10 km southwest of Campbell River on the east coast of 

Vancouver Island, British Columbia, Canada (Figure 1). The 

forest types are dominated by Douglas-fir [Pseudotsuga 

menziesii (Mirb.) Franco] of 80%+, with small proportions of 

Western Red Cedar [Thuja plicata (Donn.)], Western Hemlock 

[Tsuga heterophylla (Raf.) Sarg.] and Red Alder (Alnus rubra 

Bong.). This study is performed over a 2.5 × 2.5 km (625 ha) 

area, where most forest stands consist predominantly of 

regenerating forest from harvest and are between 20-60 years of 

age.  

 

2.2 Field data 

This study area has been the subject with a relatively large 

campaign in Coops et al. (2007), who investigated the ability of 

using the same small-footprint lidar data to estimate mean 

canopy height. Six 20 × 20 m square plots were selected in six 

separate stands covering the range of Douglas-fir structural 

stage conditions. They compared field measured plot height and 

lidar measured height and obtained a R2 of 0.85 and a standard 

error of 1.8 m. 

 

 
 

Figure 1.  Study area located southwest of Campbell River, 

Vancouver Island, Canada 

 

2.3 Lidar data 

Lidar data were acquired June 8, 2004, by the Terrain Scanning 

Lidar system (Terra Remote Sensing Inc., Sidney, Canada) on a 

Bell 206 Jet Ranger helicopter. Terrain Scanning Lidar is a 

discrete return lidar system (Lightwave Model 110) with a pulse 

repetition frequency of 10 kHz, a wavelength of 1047 nm, a 

swath width of 56°, and a beam divergence of 3.5 mrad. This 

mission used a continuous scanning mode in a typical zigzag 

pattern, yielding point densities of 0.7/m2 and a footprint size of 

0.19 m.  
  

The raw lidar point cloud data were derived containing both 

ground and non-ground returns. In this study, non-ground 

points were assumed equivalent to the returns from tree canopy, 

because no artificial objects exist in the study site. Classifying 

point cloud data into ground and tree canopy returns was 

implemented in the software of Terrascan v4.006 (Terrasolid, 

Helsinki, Finland). Ground and tree canopy returns were then 

separately interpolated to form a digital terrain model (DTM) 

and a digital surface model (DSM) with 1 m grid cell size. The 

final step was to create the canopy height model (CHM), which 

was generated by subtracting DEM from DSM. 

 

2.4 Quickbird data 

A cloud-free Quickbird image was acquired August 11, 2004 

over the same study area. This image consists of four 

multispectral bands [i.e., blue, green, red and near infrared 

(NIR) bands] and one panchromatic band. A geometric 

correction was performed using a coarse DEM when the image 

was ordered at the standard product level. The different spatial 

resolutions between the Quickbird and lidar data made for a 

difficult comparison. Therefore, a PC spectral sharpening 

technique (Welch and Ahlers, 1987) was used to rescale the 

Quickbird image to a 1 m spatial resolution multispectral image 

by fusing multispectral bands with the panchromatic band. The 

Quickbird image was then geometrically co-registered to lidar 

data using 105 ground control points. A 2nd degree polynomial 

warping method and nearest neighbor resampling were selected 

in co-registration, yielding the RMSE of 0.65 m.  

 



 

2.5 Data analysis 

2.5.1 Pixel-based approach 

Since all regression models were developed to estimate lidar-

measured CSH using Quickbird imagery, independent variables 

were derived from Quickbird data, while the dependent variable 

(i.e., CSH) was measured from the lidar CHM. The basic areal 

units for the pixel-based approach are the cells of a grid-shaped 

partition, which are akin to contiguous square field plots. 

Independent variables included spectral responses [i.e., digital 

numbers (DNs)], image-texture [i.e., standard deviation (SD), 

skewness and kurtosis] and tree-ray-shadow geometry (TG), 

which were extracted and averaged within each grid cell. 
  

 

Table 1.  Variables extracted from Quickbird imagery  

 

As Table 1 shows, DNs were calculated from pan-sharpened (1 

m pixel size) Quickbird multispectral bands (i.e., blue, green, 

red and NIR). Image-texture plays an important role in forest 

landscapes as well. Especially for H-res remote sensing 

imagery, texture, which normally refers to a statistical 

measurement of the spatial variability of neighbouring pixels 

within a fixed window assessed across the image, can provide 

valuable tree structure information in forest studies. Generally, 

subjective decisions to define square kernel sizes are made in 

pixel-based texture analysis. The grid-shaped cells with a range 

of sizes were chosen as the square texture windows in this study 

(Figure 2). To make a straightforward comparison between 

pixel-based and GEOBIA approaches, only the first-order 

texture measures of SD, skewness and kurtosis were applied to 

four spectral bands in this study (Equations 1, 2 and 3).  

 

 
where  SDi = SD of the texture window in the ith band 

 xij = value of the pixel j in the ith band 

 µi = mean value of the texture window in the ith band 

 N = number of pixels in the texture window 

 SKi = skewness of the texture window in the ith band 

 KUi = kurtosis of the texture window in the ith band 

           
Figure 2.  A typical forest area using square windows (left) and 

object-based windows (right) to extract texture 

 

Shadow effects are becoming more obvious and attractive with 

the emergence of H-res optical remote sensing imagery. In 

forests, variables of CSH, tree shadow fraction and stem density 

are highly correlated due to the relationship between trees, sun's 

rays and shadows (Figure 3). When stem density is fixed, higher 

CSH typically has larger crown diameter and causes a larger 

shadow fraction. Similarly, if shadow fraction remains the same, 

higher CSH means lower stem density in the study site. 

Therefore, the variable of TG calculated by dividing shadow 

fraction by stem density was applied to estimate CSH. 

Specifically, shadow fraction was derived using two steps: (i) a 

visually defined threshold was used to separate the Quickbird 

NIR band into shaded and non-shaded pixels, and (ii) the ratio 

between the number of shaded pixels and all pixels within each 

areal unit was applied to the shadow fraction. Stem density was 

calculated by the following steps: (i) the mean filter, using a 

window size of 3 by 3 pixel, was applied to remove image 

noise, (ii) the local maximum algorithm, using a window size of 

3 by 3 pixel, was applied to extract all tree tops, and (iii) the 

ratio between the number of tree tops and all pixels within each 

areal unit was applied to stem density. 

 
Figure 3.  The relationship between trees, sun's rays and shadows 

 

The lidar-measured dependent variable CSH was obtained from 

the lidar CHM. Similar to the extraction of independent 

variables, CSH for each cell was calculated by averaging all 

height values within the cell extent. 

 

2.5.2 GEOBIA approach 

The basic areal units for the GEOBIA approach are the objects 

(i.e., segments) of a segmentation-derived partition, which are 

akin to forest patches. The Definiens Professional 5 (Definiens 

Imaging GmbH, Munich, Germany) multi-resolution 

segmentation software was applied on the pan-sharpened 

multispectral Quickbird imagery to create image-objects. The 

characteristics of similarity and heterogeneity for each object 

are controlled using four parameters, color, shape, smoothness 

and compactness. Software default values of 0.7 and 0.3 were 

used for color and shape. To obtain smoother boundaries for 

forest segments, smoothness and compactness were set as 0.8 

and 0.2, respectively. All four spectral bands were assigned the 

same weight during the segmentation.   

Variables  

(Pixel-based) 

Variables  

(GEOBIA) 
        Description 

Spectral Response 

� DNi_Pix     DNi_Obj DNs for the ith band 

Image-texture 

� SDi_Pix 

� SKi_Pix 

� KUi_Pix 

    SDi_Obj 

SKi_Obj            

KUi_Obj 

SD for the ith band 

Skewness for the ith band 

Kurtosis for the ith band 

Tree-ray-shadow Geometry (TG) 

� TG_Pix     TG_Obj TG for the NIR band 
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In order to compare the GEOBIA approach with the pixel-based 

approach in lidar-measured CSH estimation, similar variables 

were extracted for the GEOBIA approach (Table 1). However, 

all variables were extracted from objects instead of grid-shaped 

cells. The name - geographic object-based texture (GEOTEX) 

is used to describe texture extracted from image-objects (Figure 

2). It should be noted, traditional pixel-based texture analysis 

(e.g., GLCM) normally uses square moving windows to extract 

texture, which cannot fully characterize the real forest 

landscape. This is primarily because image-objects (e.g., 

individual trees or tree clusters) in forests generally represent 

highly variable shapes that are difficult to describe using square 

texture windows. With GEOBIA, these boundaries can 

automatically represent image-object edges, thus GEOTEX 

measures derived from the inner pixels of objects are more 

reliable. The lidar-measured dependent variable CSH was also 

obtained from lidar CHM by averaging all height values within 

each object extent. 

 

2.6 Models and AUSs 

2.6.1 Pixel-based approach 

Multiple linear regression models were developed using 

Quickbird-derived independent variables to estimate lidar-

measured CSH. To avoid the overfitting problem in models, 

correlation coefficients were first calculated between all 

variables. Independent variables were retained under two rules: 

(i) variables having correlations lower than 0.7 and (ii) the 

variable having a higher correlation with CSH in case two 

variables had a correlation of 0.7 or higher with each other. 

Then a stepwise method was used in the regression analysis to 

develop models, which were performed at a 0.05 level of 

significance. The whole study area was partitioned into discrete 

non-overlapping areal units in the form of grid-shaped cells. 

The models were developed using all the cells.  

 

The leave-one-out cross-validation technique was applied for 

model validation. In this study case, validation was performed 

each time using one unit as the validation sample and the 

remaining units as the training data each time to estimate the 

residual between model predicted CSH and lidar-measured 

CSH. This step was repeated until each unit was used once as 

the validation sample. All residuals were used to calculate a 

RMSE for each validated model. Consequently, the R2 and 

RMSE were selected to evaluate the accuracy of our models. 

 

The pixel-based approach was performed using 14 different 

levels of AUSs, 0.010 ha (10×10 m), 0.040 ha (20×20 m), 0.160 

ha (40×40 m), 0.360 ha (60×60 m), 0.640 ha (80×80 m), 1.000 

ha (100×100 m), 1.440 ha (120×120 m), 1.960 ha (140×140 m), 

2.403 ha (155×155 m), 2.890 ha (170×170 m), 3.610 ha 

(190×190 m), 4.410 ha (210×210 m), 5.290 ha (230×230 m) 

and 6.503 ha (255×255 m) from plot levels to stand levels. To 

ascertain the optimal AUS, fitting models were developed at all 

14 levels separately. In order to simplify the comparison 

between pixel-based and GEOBIA approaches, only spectral 

responses were used to determine the optimal AUSs for these 

two types of approaches. Then the performances of texture and 

TG in the regression models were examined using the optimal 

AUS for each approach. 

 

2.6.2 GEOBIA approach 

Similar to the pixel-based approach, multiple linear regression 

models were developed for the GEOBIA approach using 

Quickbird-derived variables to estimate lidar-measured CSH. 

Independent variables were obtained under the same rules as 

they were mentioned in section 2.6.1. Moreover, a stepwise 

method was also applied in the regression analysis at a 0.05 

level of significance. All objects were used in the regression 

analysis.  

 

The leave-one-out cross-validation technique was applied for 

model validation as well. However, RMSE was calculated in a 

different way. Unlike the pixel-based approach, where all 

samples (i.e., grid-shaped cells) have the same size for each 

level of AUS, image-objects in the GEOBIA approach are of 

varying sizes and shapes even at the same scale. Therefore, an 

area-weighted RMSE, where each object was considered based 

on the size of its area, was obtained using the following 

equation: 
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where  CSHQB_i = CSH calculated from the regression using    

                  Quickbird imagery for the ith object 

 CSHLidar_i = CSH measured from lidar data for the ith  

                                    object 

 Ai = area for the ith object 

 AN = area for the whole study area (i.e., 625 ha in this  

                         study) 

 N = number of objects  

 

In order to be comparable with the AUSs used for the pixel-

based approach, 14 different values of mean object size (MOS) 

(0.011 ha, 0.060 ha, 0.151 ha, 0.332 ha, 0.640 ha, 0.994 ha, 

1.454 ha, 1.990 ha, 2.332 ha, 2.741 ha, 3.511 ha, 4.371 ha, 

5.165 ha and 6.579 ha) were chosen and then translated into 

scale parameters in Definiens Professional 5 segmentation 

software.  

 

3. RESULTS AND DISCUSSION 

3.1 Optimal Areal Unit Sizes (AUSs) 

Figure 3 shows the trends of R2 values for both pixel-based and 

GEOBIA approaches with various AUSs. To simplify the 

comparison and ascertain the optimal AUSs for the two 

approaches, only spectral responses were used in the regression 

analysis. As the cell size and the MOS increase using relatively 

small AUSs (i.e., smaller than 0.500 ha), R2 values of both 

approaches increase rapidly. However, two different styles of 

changing lines were generated using relatively large AUSs (i.e., 

larger than 0.500 ha). For the pixel-based approach, the R2 

value increases slightly before it reaches the maximum value of 

0.544 using an AUS of 1.000 ha. Then it decreases slightly 

using cell sizes from 1.000 ha to 6.503 ha. For the GEOBIA 

approach, the R2 value significantly increases from 0.393 to 

0.605 in the similar range of AUSs (from 0.640 ha to 6.579 ha). 

The maximum R2 value of 0.605 was obtained using the AUS of 

6.579 ha. 
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Figure 3.  A comparison of R2 values derived from 14 different 

levels of AUSs using pixel-based and GEOBIA approaches 



 

It should be noted that, there is a threshold using the AUS of 

approximately 3.600 ha, where pixel-based and GEOBIA 

approaches have the similar performance, with a R
2 of 

approximately 0.510 (Figure 3). When the AUSs used in both 

approaches are smaller than this threshold, the pixel-based 

approach can explain more variance of CSH. However, a steady 

increase of the R2 makes the GEOBIA approach more accurate 

to estimate CSH when larger AUSs (than the threshold) were 

applied. This indicates that it is appropriate to use a small size 

of grid-shaped cells for the pixel-based approach in this study 

area, while large objects are more suitable in the GEOBIA 

approach. This condition may be caused by the forest shadows 

in H-res remote sensing imagery. When relatively small AUSs 

are used, shaded and sunlit image-objects are grouped 

separately, which cause a high variation between various 

objects to estimate CSH. However, pixel-based approaches 

average the values of DNs in the grid-shaped partitions, which 

reduce the shadow effect and decrease the variation. When 

relatively large objects are used, objects derived from GEOBIA 

approaches can dramatically increase the accuracy because (i) 

the objects are more reasonable to cover the real forest patches 

compared to grid cells derived from pixel-based approaches and 

(ii) shaded and sunlit portions are grouped together to reduce 

the shadow effects. In the case of this study area, the GEOBIA 

approach has a relatively better performance (R2 = 0.605, 

RMSE = 2.86 m) than the pixel-based approach (R2 = 0.544, 

RMSE = 2.97 m) using their optimal AUSs (Table 2). 

 

Approach 
AUS 

(ha) 
R2 

RMSE 

(m) 
Model 

Pixel-

based 
1.000 0. 544 2.97 

37.9170-

0.1939*DN3_Pix    

GEOBIA 6.579 0. 605 2.86 
32.6604-

0.1321*DN3_Obj 
 

Table 2. Best fitting models (derived from the optimal AUSs) 

using pixel-based and GEOBIA approaches 

 

3.2 Model Performance of Image-texture and Tree-ray-

shadow Geometry (TG) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression models only using spectral responses derived from 

remote sensing imagery to estimate forest biophysical 

parameters have been widely applied in forest studies. However, 

texture and TG, which consider the spatial and spectral 

relationships within each areal unit, can provide more valuable 

information to improve the CSH estimation accuracy. Results in 

Table 3 show that the accuracy of each model using either a 

pixel-based or GEOBIA approach is improved by the addition 

of texture and TG variable. However, only slight improvements 

were made using different variable combinations for the pixel-

based approach (Tables 3). Compared to the models only using 

DNs, the best result (R2 = 0.577, RMSE = 2.88 m), which was 

obtained by applying all three types of variables in the 

regression analysis, can only explain ≈ 3 percent more variance 

of lidar-measured CSH. For the GEOBIA approach, the 

addition of GEOTEX helps the GEOBIA approach explain 65.4 

percent variance of the lidar-measured CSH. Additionally, 

spectral responses together with TG bring a significant 11.4 

percent improvement of R2 with an RMSE of 2.73 m. Similar to 

the pixel-based approach, the best performance (R2 = 0.739, 

RMSE = 2.60 m) was achieved using the combination of all 

three types of variables. All models developed for the GEOBIA 

approach are more accurate than the models developed for the 

pixel-based approach with an exception of low RMSE of 3.07 

m when both spectral responses and GEOTEX were applied in 

the GEOBIA approach. The results in this study indicate that 

the variables of GEOTEX and TG (depending on appropriate 

kernel sizes and shapes), perform better in the GEOBIA 

approach than the pixel-based approach. This is especially true 

for the variable of TG (which extracts the spatial relationships 

between trees, and the sun's rays and shadows from image-

objects tree-ray-shadow geometry). 

 

Figure 4 is the scatter plot of residual values for the best fitting 

model (i.e., highest R2 values and lowest RMSE) using the 

GEOBIA approach. Similar to the calculation of area-weighted 

RMSE, an area-weighted residual value was used for each 

object. Since the optimal AUS is 6.579 ha, each residual value 

was multiplied by a ratio between the object size and 6.579 to 

obtain the final area-weighted residual value. The study area is 

dominated by approximately 78.7 percent of forest objects with  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approach Variable Inputs R2 RMSE (m) Variables Used in the Model 

� Spectral Response + Image-texture:  

       DNi_Pix, SDi_Pix 

       SKi_Pix, KUi_Pix 

0.573    2.89 DN3_Pix, SD4_Pix, SK1_Pix 

� Spectral Response + TG:  

       DNi_Pix, TG_Pix 
0.570    2.89 DN3_Pix, TG_Pix, DN4_Pix Pixel-based 

� Spectral Response + Image-texture + TG: 

       DNi_Pix, SDi_Pix, SKi_Pix,  

       KUi_Pix, TG_Pix 
0.577    2.88 DN3_Pix, SK1_Pix, SD4_Pix, TG_Pix 

� Spectral Response + GEOTEX:  

       DNi_Obj, SDi_Obj 

       SKi_Obj, KUi_Obj 

0.654    3.07 DN3_Obj, KU2_Obj 

� Spectral Response + TG:  

       DNi_Obj, TG_Obj 
0.719    2.73 DN3_Obj, TG_Obj, DN4_Obj GEOBIA 

� Spectral Response + GEOTEX + TG: 

       DNi_Obj, SDi_Obj, SKi_Obj,  

       KUi_Obj, TG_Obj 

0.739    2.60 
DN3_Obj, TG_Obj, KU2_Obj, 

DN4_Obj 

 

Table 3. Best fitting models (derived from the optimal AUSs) with different variable combinations  

using pixel-based and GEOBIA approaches 



 

the mean CSH ranging between 19 m and 30 m. The regression 

trend line shows a threshold of 23 m in the CSH estimation. 

When CSH is in the range between 19 m and 23 m, the model 

appears more likely to overestimate lidar-measured canopy 

height. Conversely, the underestimation of canopy height is 

more likely to occur when CSH is in the range between 23 m 

and 30 m.  
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Figure 4. Scatter plot of estimated CSH versus lidar-measured 

CSH for the best fitting model using the GEOBIA approach 

 

4. CONCLUSION 

In this study, we investigated the potential of using high-spatial 

resolution Quickbird imagery to estimate canopy surface height 

(CSH) measured from small-footprint lidar data in a forest 

scene. We compared the results from pixel-based and GEOBIA 

approaches. The best performance was achieved from the 

GEOBIA approach (R2 = 0.739, RMSE = 2.60 m), which might 

be used to facilitate the practical application of forest 

management, such as the relatively accurate and efficient 

delineation of forest inventory polygons. 

 

The results in this study also show that an appropriate AUS 

(e.g., grid cell size or mean object size) plays an important role 

in CSH estimation for both pixel-based and GEOBIA 

approaches, though the pixel-based approach is less sensitive to 

various AUSs when the AUS is larger than a certain threshold. 

An arbitrary decision of the AUS can cause a low-accuracy 

result, even though the correct approach is applied. This relates 

to the Modifiable Areal Unit problem (MAUP), but is beyond 

the scope of this letter. 

 

Although spectral responses (i.e., DNs) are the measures 

directly derived from remote sensing platforms, we note that 

image-texture (i.e., SD, skewness and kurtosis) and tree-ray-

shadow geometry (TG) extracted from spectral responses also 

provide useful spatial and spectral information, which help our 

models explain more variance and achieve less RMSE of the 

forest vertical structure. Especially for the GEOBIA approach, 

variables of texture and TG calculated from image-objects 

instead of grid-shaped cells have proven to be more reasonable 

and accurate in characterizing the real forest landscape.  
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