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ABSTRACT: 
 
The object-based classification approach needs an adaptation of the traditional accuracy assessment methodology.  This paper 
presents a methodology that considers the inherent variability within each wetland class for the sampling size calculation based on 
objects and a stratified random sampling to select samples for each category. The polygons selected for validation are overlaid on 
the data used for classification.  The analyst uses all ancillary data available to build an interpretation key which defines the labels of 
the polygons.  The error matrix representing the whole territory could then be calculated.  Finally, considering that wetland classes 
are not completely discrete and that the delineation is rarely categorical, fuzzy logic is used to analyze the accuracy.  Decision rules 
are built based on class description to accept a relative level of confusion between similar classes. 
 
 

1. INTRODUCTION 

1.1 

1.2 

Accuracy assessment considerations 

The knowledge required to manage territory is increasingly 
based on information and maps created from remote sensing 
images (Campbell 2007; Jensen 2005). These maps generally 
provide an approximate and synthetic description of the 
geographic reality, and therefore the results obtained through 
image analysis contain information that is not completely 
accurate (Casemier et al., 1998). The validation of results from 
image processing has become an inherent component of 
mapping projects using remote sensing (Song et al., 2005; 
Mowrer, 2000; Congalton and Green 1999). Frank (1998) 
reported that the evaluation of the precision of results must 
inform the user on the quality of the product as well as the 
limits of its use.  According to Congalton and Green (1999), the 
validation informs about the quality of the results obtained by 
using remote sensing images and comparing them to the 
reference data, assuming that these data are accurate.  
Validation must therefore provide information on the exactness, 
based on a degree of precision defined and confirmed by a test 
of hypothesis (USGS, 1994). The development of remote 
sensing validation methods has increased considerably, going 
from the qualitative confidence-building assessment to the 
quantitative evaluation of these results based on statistical 
methods (Congalton, 2004; Kyriakidis and Dungan, 2001; 
Mowrer, 2000).  The error matrix has become a standard in the 
evaluation of remote-sensing results (Congalton, 2004, 
Congalton and Green, 1999; Hammond and Verbyla, 1996; 
Congalton, 1991; Story and Congalton, 1986). However, if the 
matrix is created without taking into account statistical 
requirements, the validation can be misleading (Mower, 2000; 
USGS, 1994). Hammond and Verbyla (1996) recommended 
inclusion of methodological details for the calculation of error 
matrix, namely the sample size, sample plan, data and 
references.  This way, the user will be able to evaluate the risk 
associated with the decisions based on these results. Additional  
methods such as the standard error matrix (Congalton, 1991), 
the Monte Carlo Method (Goodchild et al., 1992), geostatistics 
(Kyriakidis and Dungan, 2001) and bootstrapping (Verbyla and 
Hammond, 1995) have been developed overtime to improve the 

required statistical conditions. Despite these developments, 
validation of results is still a concern for projects based on 
image analysis (Campbell 2007; Jensen 2005). In remote 
sensing, calculation of minimum sample size needed for 
population representativeness is based on a law of probability 
corresponding to a binomial and multinomial distribution 
(Congalton and Green, 1999; Congalton, 1991; Story and 
Congalton, 1986). Although this equation is independent from 
the reference unit, it seems to be better adapted to a traditional 
pixel-based image classification, since the number of samples is 
generally very high (Grenier et al., 2007; Wang and Howart, 
1993). In the case of a classification using an object-based 
approach, the image is broken down into several smaller spatial 
objects that are relatively homogenous (segments). These 
objects are then classified following traditional supervised 
classification methods (nearest neighbor) or according to fuzzy 
logic using statistical membership functions. The thematic map 
resulting from the object-based classification must therefore be 
evaluated by taking the following characteristics into account: 
thematic accuracy must be based on the object; ground control 
data or reference data must reflect the object; and spatial 
precision must validate the fit between the segment and the 
object of interest (Tiede et al., 2006; Schöpfer and Lang, 2006, 
Zhan et al., 2005). In real world, land use classes are not 
completely distinct, and limits are rarely categorical.  
Furthermore, area covered by one pixel may encompass several 
categories thus resulting in a mixed pixel (Zhan et al., 2005; 
Campbell, 2007). Assigning these mixed pixels to a given class 
may result in overestimating the class. In order to take this 
uncertainty into account, fuzzy logic was introduced (Fritz and 
See, 2005; Falzarano and Thomas, 2004; Zhu, 2001; Woodcock 
and Gopal, 2000). 
 

Wetland considerations 

Wetlands are complex and can vary depending on water 
conditions. They often have various vegetation structures 
which, in addition to the presence of water, results in an 
heterogeneous spectral response (Founier et al., 2007; Ozesmi 
and Bauer, 2002).  Object-based classification improves 
wetlands identification. The segmentation process takes into 
account neighboring pixels and provides a better ecological 
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definition of these environments (Grenier et al., 2007; Hurd et 
al., 2006; Blaschke and Strobl 2001). Grenier et al., (2007), 
developed a method for mapping wetlands with object-based 
classification using Landsat-ETM and RADARSAT-1 images.  
This top-down approach aims to map the five wetlands classes, 
as defined by The Canadian Wetland Classification System 
(CWCS) (NWWG, 1987).  These five classes (shallow water, 
marsh, wetland, fen and bog) are mapped with a minimum 
geographic unit of one (1) hectare.  Since the characterization 
of wetlands is based on medium-resolution satellite images, the 
description of classes is a generalization of the characteristics of 
each wetland category.  For example, in the case of bogs and 
fens, objects are classified in one of the peatland classes 
according to ombrotrophic and minerotrophic dominance of the 
object, regardless of ecological criteria such as formation and 
structure.  An error in identifying a bog versus a fen is therefore 
less important than the distinction between wetland and upland 
(Fournier et al., 2007). Remote sensing may introduce sources 
of error during processing steps (Jensen 2005).  As part of this 
study, we assumed that the errors generated during acquisition 
and pre-processing of images were overall uniform, and 
therefore had no specific effect on determining wetland types.  
Statistical rigor is essential to accurately quantify results 
obtained from image analysis (Congalton, 2004).  The 
validation approach suggested in this paper is adapted from the 
method developed by Morisette et al., 2004, as part of the 
Global Land Cover project (Global Land Cover 2000) along 
with the fuzzy accuracy approach of Green and Congalton 2004 
and Falzarano et al. 2004 in the NIMA project.  The main 
objective of this article is to propose a practical validation 
method for object-based classification of wetlands in order to 
inform on the accuracy as well as respect the statistical 
requirements for measuring precision. 
 

2. DATA COLLECTION 

2.1 

2.2 

2.3 

Site description 

As part of the methodological development phase of Canadian 
Wetland Inventory, several sites in Quebec, Canada have been 
tested (Grenier et al., 2007). Among these sites, the Montérégie 
region was analyzed more closely because of the greater 
availability of ancillary data.  The region of Montérégie covers 
an area of 11,883 km² and is part of the Mixedwood Plains 
ecozone (Ecological Stratification Working Group, 1995). This 
ecozone is characterized by a high agricultural density with 
some of the most productive agricultural soils in Canada. On 
the other hand, forest cover is relatively small (less than 10%).  
Approximately half of Canadian population lives in this 
ecozone.   
 

Field data 

Orthophotos at 1: 40,000 acquired in 1998-1999-2000 by the 
Agence de géomatique Géomont (www.geomont.qc.ca) were 
made available for this study.  Ground control data were 
collected using random stratified sampling. Sample size was 
predefined to 50 per class based on Congalton and Green 
(1999) recommendations. Only the five wetland classes were 
sampled with a total of 250 samples overall. Of that number, 90 
were validated in the field or were flown over by plane in the 
fall of 2007. The remaining samples were validated by visual 
interpretation on aerial photos. Note that the sample size 
calculation based on variability, as suggested in this study, was 
carried out after the field campaign.  
 

Images 

Wetlands in the Montérégie sector were mapped with four 
Landsat-ETM+ images acquired in 2001 and 2002, and three 
RADARSAT-1 images acquired in the spring of 2004.  The 
object-based classification method developed to extract the five 
wetland classes is described in Grenier et al. (2007). Spatial 
resolution of summer images was resample from 25 m to 12,5 
m using the Pansharp module from PCI Geomatica.  
Classification results of  Landsat-ETM and RADARSAT-1 
images for wetland mapping are presented in Table 1.   
 
Table 1: Distribution of classes based on the area and number of 
polygons 

Classes  Area (ha) % area nb 
polygons 

% of 
polygons 

Bog 21803 2,25 236 9,45 
Fen 1404 0,15 23 0,92 
Swamp 15367 1,59 960 38,43 
Marsh 9846 1,02 623 24,94 
Shallow water 569 0,06 53 2,12 
Other 852907 88,13 301 12,05 
Open water 65933 6,81 302 12,09 
Total 967829   2498   
 

3. METHOD 

3.1 

3.2 

Reference Unit 

In the case of object-based classification, the attributes used for 
classification are calculated based on the object; consequently, 
the sampling unit for validation is the object or polygon (Tiede 
et al., 2006; E. Schöpfer and S. Lang, 2006; Zhan et al., 2005).  
Nevertheless, in the case of multi-level classification, the final 
result is a map made up of contiguous polygons belonging to 
the same class. Since the objective of validation is to inform 
about the result and not about the classification process, 
polygons from different levels were merged to produce a single 
polygon.  This final polygon, resulting from the merger of 
objects, is used for validation. 
 

Sample Size 

In practice, the number of samples is limited by the operational 
constraints of a study, and often represents a compromise 
between the wish to obtain a precise measurement and the 
desire to remain efficient or able to process all samples 
properly.  According to Congalton and Green (1999), the 
evaluation of the number of points required to validate the 
results of an image is based on several criteria, including the 
number of classes (or sampling strata), and their proportion. 
From a statistical perspective, the number of samples to be 
validated must be adequate for measuring the variability 
associated with the variable tested.  The sample size needed to 
validate the thematic map with several classes depends on a 
multinomial distribution (Equation 1) (Congalton and Green, 
1999).  
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Where: 

∏ i is the proportion of a population (number of polygons) in 
the ith class out of k classes that the proportion closest to 50% 
(in our case, swamp is 38%), b is the desired precision (5%),  is 
the upper  of the chi square (X²) distribution with 1 degree of 



 

freedom (1- as X² (1, 0.99285) = 7.04 and k is the number of 
classes.  N = 7.04 (0.38) (1-0,38)/0,05², i.e., 666 samples/7 
classes = 95 samples per class. This number is very high and 
requires far too much effort compared to the classification 
process.  Congalton (1991) and Congalton and Green (1999) 
suggest to use a rule of thumb and collect a minimum of 50 
samples for each class in the error matrix (N=350, 7 classes X 
50 samples). In theory, the sample size should be biased against 
the variability of a class (Congalton, 2004; Congalton and 
Green 1999; Congalton, 1991).  A wetland category is 
considered variable when it is difficult to classify.  This high 
variability can be explained at the spectral level, when the 
wetland is highly heterogeneous, and at the spatial level, when 
it is very abundant. It is then deemed to cover a large spectral 
signature.  Note that a class that is barely present on a territory 
could also be difficult to classify, but this is mainly due to 
missing information required to establish a valid spectral 
signature. To calculate the variability of a class, averages and 
standard deviations are used for the main attributes that serve to 
classify the objects. These statistics were calculated for the 
entire Montérégie territory including all polygons for each 
wetland class as well as the open water and other classes. We 
can then calculate the variance.  The variance is used to 
combine all values within a dataset to obtain the measure of 
dispersion. Variance of a discrete variable made up of n 
observations is defined as follows: 
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The pooled standard deviation for all sites is then calculated 
using Equation 3 (Thalheimer, W. and Cook, S., 2002) 
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The pooled standard deviation (S pooled) obtained for each 
class can then be used as a weighting factor in Equation 4. 
 
nvar = S class /S total * N  (4) 
 
Sclass is the standard deviation for the class over total standard 
error for all Stotal classes. N (350) is the sample size (7 classes X 
50 samples).  Thus, a high standard deviation means that the 
class has a greater spectral range and is therefore difficult to 
classify.  Since the objective is to weight samples based on the 
variability of classes, the sample size should be reduced for 
classes that are easier to identify, or increased for those that are 
not.  However, less frequent classes are generally the most 
difficult ones to identify. In this case, all available objects are 
evaluated.  
 

3.3 Sampling design 

Statistically speaking, sampling must be representative of the 
whole territory and selected without bias to ensure the validity 
of the statistical analyses (Congalton, 2004).  In this study we 
used a systematic unaligned sampling, which combines the 
advantages of randomness and stratification with the benefits of 
systematic sampling, without falling into the trap of its 
periodicity (Congalton and Green, 1999; Jensen, 2005).  
Initially, the image to be validated is divided into cells 
systematically distributed to give N equal cells.  The number of 

cells is equivalent to the sample size.  Within these cells, the 
points are placed randomly in order to select the polygons to be 
validated.  This approach ensures that the samples are selected 
randomly in each strata of wetland, but are distributed 
uniformly or systematically throughout the image.  We then 
assume that all polygons in a cell have an equal probability to 
be chosen within the stratification.  Within these cells, a point is 
randomly placed.  It is then possible to select polygons of 
different classes that are closest to the point.  Figure 1 gives an 
example for the selection of a bog polygon. These polygons 
will then be selected for validation of wetland classes.  
 

 
 
Figure 1: Example of the selection of a “bog” polygon based on 
stratified unaligned sampling. 
 

3.4 Visual evaluation of results 

Interpreting results.  To insure the independence between 
data, the polygons to be validated are replaced without labels on 
the Landsat/ RADARSAT color composite used for 
classification. The analyst who carries out the validation at no 
time participates in classifying the image.  All ancillary data 
that can inform on the type of wetland are used as references to 
built interpretation keys.  Very often, ground control points and 
existing maps provide context that is different from the one 
observed on the images (e.g.: Emerging plant size in the marsh, 
water level in the wetlands). It is preferable to use ancillary data 
as a support to the interpreter's decision.  Figure 2 shows a 
wetland polygon selected for validation superimposed over a 
Landsat color composite image. From this image, the analyst 
can assign one of the wetland classes to the polygon.   
In order to validate the objectivity of the interpretation made by 
the analyst, the results of the validation derived from the 
interpretation were compared 1) with the ground survey and 2) 
with the interpretation of aerial photos made by a second 
analyst.  
 



 

 
Figure 2: An example of the validation module using the 
ArcGis software 
   
3.4.1 

4.1 

4.2 

Fuzzy logic error matrix: Given that wetland classes’ 
definitions from CWCS are based on biological criteria 
observed on the ground, use of remote sensing to map wetland 
could introduce overlapping between classes. However, 
overlapping may be explained when looking at the spectral 
response.  Based on the classes’ description, it is possible to 
create decision-making rules that completely or partially accept 
overlapping. A four-level agreement system was developed, and 
a new precision estimate of the wetland classes was calculated. 
 

4.  RESULTS 

Reference Unit 

The four hierarchical levels for segmentation/classification 
were merged to create polygons representative of wetland 
patches. These polygons were merged using ArcGis software 
from ESRI.  Therefore, the population is the number of merged 
polygons, and the proportion of a class corresponds to the 
number of polygons associated with this class divided by the 
total number of merged polygons (table 1). 
 

Sample Size 

For the Montérégie site, the sample size calculated with the 
multinomial formula (1) gave 666 samples.  To increase 
efficiency in the validation process, the number of samples 
should be reduced and adjusted to the inherent variability of 
each class with respect to statistical requirements. The sample 
size was based on a rule of thumb of 50 per class (7) giving 350 
samples.  It is therefore possible to weight the sample size 
according to the effort needed to classify a category. 
 
Table 2: Sample size modified according to variability 

Class S pooled n (var) 
Shallow water 0,1350 3 
Fen 1,2738 25 
Open water 1,5310 31 
Swamp 1,9440 39 
Marsh 2,7315 55 
Other 3,2330 65 
Bog 6,6678 133 
Total 17,5160 350 

 

4.3 Sampling design 

The territory was divided according to a systematic grid, to 
provide 350 equal cells, i.e., a grid of 14 by 25. Within these 
cells, points were placed randomly in order to select the 
polygons to be validated.  For each class, the number of 
polygons selected is equivalent to the sample size. 
 

4.4 Error matrix 

For each polygon, the class resulting from image classification 
is compared against the class defined by the interpreter, which 
corresponds to the reference. Table 3 shows the error matrix 
with omission and commission errors.   
 
Table 3: Error matrix for the Montérégie classification (B=bog, 
F=fen, SW= Shallow water, M=Marsh, S=Swamp, OW= open water 
and O=other, % of O=% of omission, % of C=% of Commission). 
 

 Reference (image interpretation) 
Class B F SW M S OW O Tot 
B 74 4 3 15 22 1 14 133 
F 4 15 0 5 1 0 0 25 
SW 0 0 3 0 0 0 0 3 
M 1 0 1 45 7 0 1 55 
S 2 0 0 1 36 0 0 39 
OW 0 0 3 0 0 28 0 31 
O 0 0 0 2 2 0 61 65 
Total 81 19 10 68 68 29 76 351 
% of O 9 21 70 34 47 3 20 - 
% of C 44 40 0 18 8 10 6 - 
Global accuracy      75 
Kappa      69 

 
Validation derived from the interpretation was compared with 
90 wetland polygons in the field. Table 4 shows details for each 
class.  Bog and fen classes were grouped under peatland class 
because there were no distinctions made in the field.  81% of 
peatland visited were correctly interpreted but only 55% of the 
peatland interpreted were real.  Note that peatland is the most 
variable wetland class. 
 
Table 4: Comparison of reference from ground truth and aerial 
survey with interpretation on the images (O=Other, P=Peatland, 
SW= Shallow water, M=Marsh, S=Swamp, OW= Open water, and EP= 
exploited peatland). 
Nb poly. Reference (ground  truth and aerial survey) 
 O P SW OW M S EP Tot % O. 
O    1    1 0 
P  11   4 4 1 20 55 
SW  1 13 1 3   18 72 
OP   2     2 0 
M 3  1  19 1  24 79 
S  5   4 14  23 61 
EP       2 2 100 
Total 3 17 16 2 30 19 3 90  
% of C. 0 81 50 63 74 65 67  65 

 
A second validation for the objectivity of the interpretation 
made by the analyst was compared with the interpretation of 
aerial photos made by an independent analyst.  
 
Table 5: Comparison of interpretation of orthophotos and 
interpretation on the images 
Nb poly. Reference (interpretation of orthophotos) 
 O P SW OW M S E.P Tot % O 
O 2 2  1   1 6 33 
P 2 15 1  2 9   29 52 



 

SW    6 5 11   24  25 
OW   7 16    23 69  
M 7 8 2  8 4 2 31  26 
S 7 9   8 17 4 41 41  
EP       4 4 100 
Tot 18 34 16 22 29 30 11 158  
% of C. 1 44 37 73 27 57 36  43 
 

4.5 Fuzzy logic matrix 

Based on the four-level agreement decision rules, a new 
precision estimate for wetland classes was calculated.  The 
calculation used the maximum potential agreement to evaluate 
the % of correspondence for each class (table 6). 
  
Table 6: Error matrix using fuzzy logic for the object-based 
classification, image interpretation as reference 

 Reference (image interpretation) 
Class B F SW M S OW O Tot Max 
B 296 8 3 15 22 0 0 344 532 
F 8 60 0 5 2 0 0 75 100 
SW 0 0 12 0 0 0 0 12 12 
M 1 0 2 180 7 0 0 190 220 
S 2 0 0 1 144 0 0 147 156 
OW 0 0 3 0 0 112 0 115 124 
O 0 0 0 0 0 0 244 244 260 
Tot 307 68 20 201 175 112 244 1127 1404 

Global Accuracy      80,3 
 

5. RESULTS ANALYSIS AND DISCUSSION 

The calculation of the sample size must be adjusted for use with 
object-based classification. If not, the number of objects to 
validate requires a disproportionate effort compared to the 
classification.  Calculation of variability for wetland classes 
allows optimization of validation time by focusing on those 
classes that are difficult to identify.  It should be noted that the 
variability measured according to standard deviation of 
attributes clearly reflects the effort of the analyst during 
wetland classification. Agreement level of 65% between image 
interpretation and ground surveys shows that the validation by 
interpretation approach is reliable. Main confusions happen 1) 
in classes that are often contiguous in space and for which 
transition is sometime fuzzy (marsh vs. swamp; marsh vs. 
shallow water) 2) in situations where the geographical context 
is not considered (peatland vs. swamp). A weaker agreement 
level of 43% between interpretation of orthophotos and 
interpretation on the images shows that it is wiser to ensure that 
the interpretation keys used for reference are calibrated against 
the ground control data.  In the same way as for the sample size 
calculation, class variability could define the proportion of 
ground data needed to better calibrate the interpretation 
approach.  The calculation of the error matrix based on fuzzy 
logic is better adapted to the definition of classes obtained via 
image analysis. Global accuracy increases from 75% to 80%, 
which represents a stronger validation estimate when compared 
to other land cover classes (e.g. forest, agriculture). However, 
decision-making rules must also respect bio-geographical and 
climatic characteristics valid for a pre-defined territory.  
Ecological limits should be preferred (eco-regions and eco-
districts).  
 

6. CONCLUSIONS AND RECOMMENDATIONS 

Validation of remote sensing results remains an issue and needs 
additional work particularly for adaptation of classification 
methods to object-based approaches. Validation methods should 
also take into account externals factors that impact its efficiency 

such as budget limitations and the need for national or global 
coverage. A similar issue arises in the case of very high 
resolution images where large amount of information also 
requires higher validation levels. Spectral and spatial variability 
can weight the sample size, and thus optimize the validation 
efforts.  Therefore, a minimum of ground surveys is required to 
calibrate interpretation keys. Interpretation can fill information 
gap and enables the validation of the entire territory while 
achieving statistical requirements and reducing the time and 
costs associated with this step. This approach using 
interpretation can also serve as a quality control process and 
could also guide field survey operations. In addition, it can be 
applied to other themes than wetlands. Information derived 
from remote sensing images is increasingly used in 
management decisions. Therefore, validation of image 
classification must provide quantitative information on its 
exactness as well as the inherent limitations in using these 
products. 
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