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ABSTRACT 
 
The key step in object-based image interpretation is segmentation. Frequently the relationship between the segmentation parameter 
values and the corresponding segmentation outcome is not obvious, and the definition of suitable parameter values is usually a time 
consuming, trial and error process. In (Costa et al., 2008), a supervised, semi-automatic method for the adaptation of segmentation 
parameters was proposed. Initially a human operator delineates polygons enclosing a representative set of target image objects. The 
manually drawn polygons are then used as reference segments by a Genetic Algorithm (GA), which searches the segmentation 
parameter space for values that produce segments as similar as possible to the reference. Although GA based methods have been 
successfully applied in many optimization problems, they are characterized by a high computational load, and do not guarantee that 
optimal values are found. Alternatives to the basic GA model have been proposed in order to accelerate convergence, preventing at 
the same time convergence to local maxima. In this work two of such alternatives have been investigated: Quantum-Inspired 
Evolutionary Algorithm (QIEA) (Abs da Cruz, 2007) and Differential Evolution (DE) (Storn and Price, 1997). Those two models 
were employed in the method proposed in (Costa et al., 2008), substituting the conventional GA originally used. Experiments showed 
that both models converge significantly faster than the original GA. Additionally, for an equivalent computational load, dissimilarity 
among the reference segments and the ones generated with the parameter values found by applying QIEA and DE was in average 
respectively 44% and 50% lower, when compared to the results obtained with the original GA. 
 
 

1. INTRODUCTION 
 
Segmentation is the key step in object-based interpretation of 
remote sensing image data (Blaschke and Strobl, 2001). The 
basic elements of the interpretation process are created at this 
step. Regarded as segments, those elements represent 
geographical regions that will be later classified through the use 
of rules, which take into account the segments’ particular 
morphological, spectral or topological attributes, among other 
data. The quality of the segmentation outcome is, therefore, a 
determining factor for interpretation performance. 
 
Most segmentation algorithms have explicit parameters that can 
be used to tune them, considering the characteristics of the 
particular type of images to be processed or of the particular 
classes of objects expected to be found. In most cases, however, 
the relationship between the parameter values and the 
corresponding segmentation outcome is not obvious, and the 
definition of appropriate values is usually done through a time 
consuming, trial and error process. 
 
Automatic adaptation of segmentation parameters involves two 
main issues: the selection of an objective function that expresses 
adequately the quality of the segmentation (Bhanu et al. 1995); 
and the choice of the optimization method for the search of 
parameter values that maximize the objective function. 
Generally, though, the relationship among the parameter values 
and the segmentation quality measure cannot be formulated 
analytically, and calculus based optimization methods can’t be 
used.  
 
A Genetic Algorithm (GA) is an optimization technique that 
does not require an explicit model of the underlying process 
(Davis 1990), and that can work with virtually any objective 
function. GAs, however, do not guarantee that optimal values 
are found and are characterized by a high computational cost. If 
one considers the use of a GA for the adaptation of 

segmentation parameters, its high processing load becomes a 
critical issue, since segmentation is also usually a demanding 
process in terms of computational resources. 
 
Aiming at increasing convergence speed and at hindering 
convergence to local maxima, alternatives to the conventional 
GA model, such as Quantum-Inspired Evolutionary Algorithm 
(QIEA) (Abs da Cruz, 2007) and Differential Evolution (DE) 
(Storn and Price, 1997), have been proposed.  
 
In (Costa et al., 2008) a method for the adaptation of 
segmentation parameters based on a conventional GA was 
introduced. Initially a human operator delineates a set of 
reference segments. Then the GA searches the segmentation 
parameter space for values that will produce segments similar to 
the references. The segmentation procedure used was the region 
growing algorithm proposed in (Baatz and Shäpe, 2000). 
 
In this work the two alternative evolutionary computational 
techniques – QIEA and DE – were employed in the method 
proposed in (Costa et al., 2008), substituting the GA originally 
used. The performance of the two new variants of the method 
was assessed through a set of experiments and compared to that 
of the original implementation. 
 
The subsequent text is organized in the following way. It begins 
with an introduction on the evolutionary computation 
techniques mentioned in this paper. Next, a succinct overview 
of the method proposed in (Costa et al., 2008) is presented. The 
succeeding section reports on the experimental investigation 
carried out within this work. The final section contains 
conclusions and suggestions of future research directions. 
 



2. EVOLUTIONARY COMPUTATION 
 
In this section a brief introduction on the evolutionary 
computational techniques used in this work is given. Initially 
the conventional GA model used in (Costa et al., 2008) is 
described, subsequently the QIEA and DE models are 
presented. 
 
2.1. Conventional Genetic Algorithms 

 
A Genetic Algorithm is a computational search technique, 
inspired on natural selection and genetic reproduction, to find 
approximate solutions to optimization problems. GAs 
implement adaptive, parallel search processes suited for 
complex optimization problems – problems that are hard to be 
mathematically formulated or characterized by a large search 
space.  
 
An individual, in evolutionary computing terms, stands for 
potential solution for a given problem, its relevant 
characteristics with respect to the problem are called genes, and 
its fitness value is a measure of its capacity to solve the 
problem. An individual’s fitness value is determined through a 
fitness function, which indicates numerically how good an 
individual is as a solution to the problem. A population is a set 
of individuals in a particular generation.  
 
GAs implement an evolutionary process to search for solutions 
that maximize or minimize a fitness function. This search is 
performed iteratively, over generations of individuals. The 
process starts with the creation of an initial population. The 
gene values of the individuals in the initial population are 
generated randomly. Then the best fittest individuals are 
selected and new individuals are created through a process 
called reproduction, in which information encoded into the 
genes of the fittest individuals are exchanged or randomly 
changed by procedures denoted as genetic operators, such as 
crossover or mutation. Furthermore, a number of the best 
individuals from one generation can be kept in the next 
generation. The evolutionary process stops after a fixed number 
of generations, and the fittest individual of the final population 
is taken as the final solution. 
 
A more comprehensive and detailed description of genetic 
algorithms can be found in (Michalewicz, 1996). 
 
2.2. Quantum-Inspired Evolutionary Algorithm (QIEA-R) 
 
Quantum-Inspired Evolutionary Algorithm using Real 
Representation (QIEA-R) is an evolutionary computation 
technique inspired in concepts of quantum physics, namely the 
uncertainty principle and the observer effect. In practical terms, 
this model keeps knowledge of the most promising regions of 
the search space, and uses it to speed up convergence.  
 
QIEA-R deals with two distinct populations of individuals: a 
population of conventional individuals with conventional genes, 
structurally similar to those of a conventional GA; and a 
population of quantum individuals, characterized by quantum 
genes. While conventional genes usually store information 
encoded into a single value, represented by a scalar variable, 
quantum genes represent a probability density function.  
 
The general idea is that individuals of a conventional population 
are created through observations of the quantum individuals, 
and that the effect of performing observations is the alteration of 
the information stored in the quantum individuals’ genes. 

 
In the model proposed in (Abs da Cruz, 2007), which was used 
in the experiments presented in this work, the quantum genes’ 
probability density function is a square pulse function. The 
information stored in the genes are the center (µ) and the width 
(σ) of the pulse.  

 
In the beginning of the evolutionary process a population of 
identical quantum individuals is created. Then a fixed number 
of observations is made, each observation generating a different 
conventional individual. 
 
To obtain a real, conventional gene value from a quantum gene, 
a random real number r, in the interval [0, 1] is generated. The 
conventional gene value y is then given by: 
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where Fij

-1 is the inverse of the cumulative distribution function 
Fij associated to the probability distribution function fij 
(Equation 4), whose parameters are stored in the quantum gene. 
The indexes j and i identify the jth quantum gene of the ith 
quantum individual. 
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A fitness value – determined through the fitness function – is 
assigned to each conventional individual generated. After the 
conventional population has been created, a reproduction phase 
starts, in which new conventional individuals are created from 
the fittest individuals of the conventional population. Moreover, 
the fittest individuals created in the reproduction phase 
substitute the worst evaluated individuals in the conventional 
population. 
 
The quantum individuals’ genes are then updated in such a way 
as to map the most promising regions of the search space – by 
shifting the respective probability density functions towards the 
(conventional) gene values of the better evaluated conventional 
individuals. New observations are realized, and the process is 
repeated until a certain number of generations of conventional 
individuals have been created. During this process, the 
probability density functions for the correspondent quantum 
genes of the quantum individuals tend to converge to the same 
function, and this function tend to a unit impulse function. The 
best conventional individual at the last generation is taken as the 
final solution.  
 
A detailed description of QIEA-R can be found in (Abs da Cruz, 
2007). 

 
2.3. Differential Evolution (DE) 
 
Differential Evolution (DE) is regarded as a perfected version of 
genetic algorithms for rapid numerical optimization. DE has a 
lower tendency to converge to local maxima with respect to the 
conventional GA model, because it simulates a simultaneous 
search in different areas of solution space. Moreover, it evolves 
populations with smaller number of individuals, and have a 
lower computation cost. DE individuals’ genes are represented 
by real numbers. 
 
The evolution process starts with the creation of an initial 
population, containing individuals with randomly generated 
gene values. After the fitness values are calculated through the 



fitness function, each individual from the population is selected 
in sequence. Once an individual is selected, the following 
procedure is executed. Initially, three other individuals are 
selected randomly. The differences of the gene values of the 
two first individuals are multiplied by a random, real value r in 
the interval [0, 1]. Then, the gene values of the third individual 
are added to the result of the last operation, and a new 
individual is created by performing a uniform crossover 
between the newly calculated gene values and the individual 
originally selected. The new individual’s fitness is calculated 
and compared to that of the original individual, and the fittest of 
the two individuals will be moved to the next generation. A new 
population results from the execution of the above procedure for 
all individuals of a population, and this is repeated for a number 
of generations. The gene values of the best individual of the last 
generation are taken as the solution to the problem.  
 
A detailed description of DE can be found in (Storn and Price, 
1997). 
 

3. GENETIC ADAPTATION OF SEGMENTATION 
PARAMETERS  

  
The method proposed in (Costa et al, 2008) uses a conventional 
GA for the adjustment of segmentation parameters. It evolves a 
population of individuals whose genes correspond to 
segmentation parameters.  
 
Although the proposed adaptation method can be applied to any 
segmentation procedure, the experiments reported in (Costa et 
al, 2008) were limited to the region growing algorithm proposed 
in (Baatz and Shäpe, 2000). The parameters subjected to 
adaptation were the scale parameter (s), the spectral band 
weights (wc), the color weight (wcor), and the compactness 
weight (wcmpct).  
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Figure 1:  Fitness evaluation procedure 
 
The fitness of each individual is calculated by comparing the 
segmentation produced through the use of its respective 
parameter values with a manually created reference 
segmentation (Fig. 1).  

 
In mathematical terms, given a set of segments S, a set of 
parameter values P and the objective function F(S,P), the task 
of the GA consists in searching for the parameter vector Popt, for 
which the value of F is minimum:  

 
( )[ ]( )P,SFminargP Popt =  (1)

 
The fitness function is defined as follows. Let Si denote the set 
of pixels belonging to the ith segment of the set S. Let Oi(P) 
denote the set of pixels belonging to the segment with the 
largest intersection with Si among the segments produced by 
using P as parameter values of the segmentation algorithm. The 
fitness function is then given by the equation below, in  
which ‘-‘ represents the set difference operator, ‘#( )’ is the 
cardinality function, and n is the number of segments in the set 
S.  
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Figure 2 shows graphically the components of the proposed 
fitness function. The region with the solid contour represents a 
referent segment S, and the region with the dashed contour 
represents O(P). A perfect match between the reference 
segmentation and the output segmentation corresponds to F=0. 
 

 
 

Figure 2: Graphical representation of the fitness function 
 

It is important to point out that S does not need to represent a 
complete segmentation of the input image – where every pixel 
of the image would belong to a segment in S. Actually if S 
represents a complete segmentation, we would be looking for 
the best set of parameters, considering all different objects on an 
image. This means that the adapted parameters would work 
equally well for all object classes represented on the image, 
eventually including natural and man-made objects. However, 
objects from different classes have different morphological and 
spectral characteristics, and, for most segmentation algorithms, 
the ideal segmentation parameters for a specific object class 
would be different then the optimum parameters for any other 
class. In this sense the segmentation parameters can specialize 
segmentation algorithms with respect to a particular object 
class. 
 

4. EXPERIMENTS 
 
The experiments implemented in this work followed the same 
design as the second set of experiments described in (Costa et 
al. 2008). The only methodological difference was that the 
Genetic Algorithm used in that work was substituted in turn by 
two other evolutionary computation techniques, namely QIEA-
R and DE. Furthermore, the same images and reference 
segments were used.  
 
The objective of the experiments was to compare the 
performance obtained by using each of the three evolutionary 
techniques described in Section 2 as the search technique in the 
parameter adaptation method proposed in (Costa et al. 2008), 



both in terms of segmentation quality and of computational 
load. 
 
4.1. Input data 
 
The images used in the experiments were produced by different 
sensors, over areas with different land covers. Image 1 (Figure 
3) was extracted from an aereal photograph taken over a 
residential area in the City of Rio de Janeiro. The other two 
images are satelitte images obtained from public resources on 
the Internet. Image 2 (figure 4) shows the parking area of bus 
company, also situated in Rio de Janeiro, and image 3 (figure 5) 
shows storage thanks of an industrial plant in the City of Duque 
de Caxias, in Rio de Janeiro State. The three images have 
400x400 pixels, RGB format with 24 bits (8 per band). 
 

  
 

Figure 3: Image 1 and respective reference segments 
 

  
 

Figure 4: Image 2 and respective reference segments 
 

  
 

Figure 5: Image 3 and respective reference segments 
 
The reference segments were manually drawn by a photo-
interpreter, delimiting different image objects for each input 
image: respectively, roof tops of ceramic material; buses; and 
storage tanks. For each image the delimited segments were 
organized in three groups (A, B and C), each group containing 
approximately the same number of segments. The segments 
were assigned to the groups randomly. In the figures 3, 4 and 5, 
the segments in each group are identified by different shades of 
gray (group A: black; group B: dark gray; group C: light gray). 
 

4.2. Experimental procedure 
 
Segments representing only one class of objects (roofs, busses, 
tanks) were considered in each experiment.  One of the segment 
groups (A, B or C) was selected to serve as the reference for the 
parameter evolution. The selected group was regarded as the 
training set. Three experiments were performed for each image, 
using different groups of segments for the training set. 
 
For both evolutionary techniques – QIEA-R and DE – the 
population size was set as 10 individuals, and in each execution 
of the respective algorithms a total of 1805 individual fitness 
evaluations were performed – the exact same number of 
evaluations made by the conventional GA in the experiments 
reported in (Costa et al. 2008). 
 
4.3. Results 
 
Table 1 shows the best results obtained for 3 executions of each 
evolutionary technique for each experiment. The column image 
indicates the image used in the experiment. The column group 
shows the segment group used as the training set. The column 
fitness contains the fitness values calculated for the fittest 
individuals obtained with each evolutionary technique, using as 
reference segments the different training sets. The best fitness 
value in each experiment is shown in bold style. 
 

Fitness exp image group  GA QIEA-R DE 
1 1 A 0.21 0.18 0.20 
2 1 B 0.28 0.19 0.18 
3 1 C 0.19 0.18 0.16 
4 2 A 0.48 0.11 0.13 
5 2 B 0.51 0.14 0.13 
6 2 C 0.45 0.09 0.09 
7 3 A 0.38 0.19 0.21 
8 3 B 0.26 0.14 0.28 
9 3 C 0.39 0.18 0.19 

 
Table 1: Comparative results 

 
In all experiments the best solutions were found with either 
QIEA-R or DE. 
 
Figures 6 to 8 allow a visual inspection of the results obtained 
respectively in experiments 1, 4 and 7, in which the QIEA-R 
evolutionary algorithm was used. Those images were produced 
from the complete segmentation of respective input images, but 
contain only the segments with largest intersection with the 
reference segments. A large similarity can be perceived among 
the manually drawn segments and those produced by the 
segmentation procedure with the parameters found through the 
adaptation method. 
 
Figure 9 shows a graph in which the fitness values of the best 
individuals, in consecutive generations of the evolution process 
for experiment 3, are plotted. The graph is exemplary for a 
behavior noticed in the majority of the experiments: in less than 
40 generations (less than 400 individual evaluations), both 
QIEA-R and DE found solutions that were equal or better than 
the ones found using the conventional GA. This means that 
similar results were obtained with approximately 20% of the 
computational load required by the conventional GA.  
 
Furthermore, for an equivalent load, dissimilarity among the 
reference and the corresponding segments – largest intersecting 
segments – generated with the parameter values found with 



QIEA and DE was, in average, respectively 44% and 50% lower 
then that achieved with the conventional GA. 
 
In most experiments the solutions found by using the AEIQ-R 
technique were the best ones. When that was not the case –
experiments 2, 3 and 5, the fitness values of the best solutions 
were very similar to the ones found with AEIQ-R. 
 

 
 

Figure 6: Segmentation result of experiment 3 
 

 
 

Figure 7: Segmentation result of experiment 6 
 

 
 

Figure 8: Segmentation result of experiment 9 
 

5. CONCLUSIONS 
 

In this work two alternative evolutionary computational 
techniques – QIEA and DE – were employed in the method for 
the adaptation of segmentation parameters proposed in (Costa et 
al, 2008), substituting the conventional GA originally used.  
 
Experiments demonstrated that the use of the alternative 
techniques resulted in significantly higher convergence rates 
and lower computational costs – the performance of the genetic 
adaptation method has showed a notable improvement when the 
two alternative techniques were used as the method’s search 
technique. 
 

Further investigation of the method is under way, considering 
different segmentation procedures and different fitness 
functions. 
 

 
 

Figure 9: QIEA-R and DE evolution for experiment 3 
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