
LIBRARY CONCEPT AND DESIGN FOR LIDAR DATA PROCESSING

Nicolas David, Clément Mallet, Frédéric Bretar

Institut Géographique National (IGN) – MATIS laboratory
2-4 avenue Pasteur 94165 Saint-Mandé, FRANCE

http://recherche.ign.fr/labos/matis
firstname.lastname@ign.fr

KEY WORDS: lidar data, Point Cloud, Design, Data Management System, Processing

ABSTRACT:

Airborne Laser Scanning (ALS) is nowadays a very popular technology providing accurate altimetric data for remote sensing and
mapping purposes. Therefore, many algorithms have been developed so far to process these data, depending on the application.
Nevertheless, for researchers, it is still a challenging task to handle large amount of heterogeneous data and adapt them for their specific
aim and processes. This paper reports the thoughts and the strategy developed by the MATIS laboratory of the Institut Géographique
National (IGN) about an efficient lidar library design in order to tackle these issues. The specification of an efficient and versatile
lidar file format is first discussed. The standard and current lidar file formats are first reviewed and a new one, dedicated to raw data
processing with high feature modularity is presented. Besides, existing code components and libraries are reviewed with regard to
their compatibility for research development. Modularity, availability and license conditions are here the main selection criteria. Then,
differents strategies for large data set handling are summarized and extended by a new solution, both based on lidar strip and raw sensor
topology. These workflows are illustrated through a UML activity diagram dedicated to 2D spatial query. Finally, the current status of
the implementation of this federative software as well as the perspectives of development are sketched.

1 INTRODUCTION

In the last decade, airborne lidar systems have become an alter-
native source for acquiring altimetric data. Such devices deliver a
reliable, fast and accurate representation of terrestrial landscapes
through unstructured 3D point clouds. These systems are based
on the recording of the time-of-flight distance between an emit-
ted laser pulse and its response after a reflection on the ground.
Points cloud are georeferenced with an integrated GPS/INS sys-
tem and the amplitude of the reflected laser pulse give intensity
information. Moreover, a single laser pulse can provide multi-
ple returns (echoes) which correspond to different measured alti-
tudes.
Lidar data management and processing are today well-known
tasks; many softwares and tools are now available for that pur-
pose. Thus, lidar data filtering and Digital Terrain Model (DTM)
generation on large areas and data sets can be carried out with
good performance with many commercial (Soininen, 1999; Ap-
pliedImagery, 2008) or research softwares (Hug et al., 2004; In-
pho and TU-Vienna, 2008). If such solutions fit to ”end user”
expectations, it is no longer the case for research purposes when
scientists expect customisable tools or source code to test their
own algorithms (Beinat and Sepic, 2005).
On the one hand, most of these solutions are no freely available
and the description of the implementation is subsequently never
provided. Different strategies exist concerning the lidar data man-
agement, and many questions remain: which spatial indexing is
supported by lidar file database –raw laser strips, pretiled files
(Chen, 2007), both? Which data is used for lidar processing –
point cloud or interpolated raster? It is possible to add or re-
move features from the data when new information is available
(intensity, classification. . .)? Which neighborhood topology has
be chosen for RAM lidar data structure –quadtree, octree, cells or
database?
On the other hand, the conception of an adaptive, efficient, easy-
to-use lidar library with good interoperability toward well-known
lidar softwares is not obvious. Few articles have been dedicated
to the design of lidar libraries, with appropriate data structure and

workflow (Hug et al., 2004; Chen, 2007) and even less to their im-
plementation.
Since no existing software can fit the research aims of the MA-
TIS laboratory and in order to not to depend on commercial de-
veloment toolkit – GIS or remote sensing– it has been decided to
elaborate a versatible lidar library, as a basis of lidar processing
sofware. The file format is flexible, large lidar data sets can be
efficiently handled, one can select its workflow and even switch
between existing ones and finally researchers can easily “plug”
their algorithms. A raw sensor file format has been designed for
the lidar sensor data georeferencing and intensity calibration is-
sues.

The specification of an efficient and versatile lidar file format is
first discussed in Section 2. The common lidar formats are anal-
ysed, and a new format, dedicated to raw data processing with
high feature modularity is presented. The global architecture of
the software, designed to solve most of the raised issues, is de-
tailed and several additional useful open-source libraries are in-
troduced in Section 3. The relevant workflows and their appli-
cation to efficient queries on lidar data are outlined in Section 4.
Finally, the current status of the software implementation is pre-
sented and the perspectives of development are drawn.

2 FILE FORMAT

A major issue when designing a library as a basis for managing
and processing task is to clearly define inputs and outputs. For
ALS data, the specification of the input file format is therefore
a crucial task and has been first tackled in this study to design
the library. On the one hand, such format has to be compatible
with existing standard file formats. On the other hand, it must
be flexible and must take into account more information than the
typical {(x, y, z), intensity, classification} quintuplet.

2.1 Standard and current lidar file formats

The definition of laser data is still a work in progress. The dif-
ferent solutions strongly depend on lidar manufacturers, software

companies, data providers and, end users. Most of the existing
laser data file formats are summarized in (Samberg, 2007).For
that purpose, the LAS data exchange format of the American
Society for Photogrammetry and Remote Sensing (ASPRS) has
been designed in order to make the exchange of lidar data more
convenient (widely used, weak storage volume, acquisition meta-
data). The last version of the ASPRS LAS standard is 2.0 (AS-
PRS, 2007), improving the last 1.1 version (ASPRS, 2005), and
has become a de facto standard. It is now widely used by ALS
community.
Even if such format is suitable for storing and handling Terres-
trial Laser Scanning (TLS) and other 3D digitalization lidar data,
the PLY format is used by the Computer Vision community, in-
terested in 3D point clouds for graphical models. PLY has been
defined by the Standford University and is one of the most current
interoperable format for 3D model (Turk and Mullins, 2006). It
aims at providing a simple format but enough general to be use-
ful for a wide range of models. Models could be based on point
clouds or on faced items, (e.g., Triangular Irregular Network).
Nevertheless, there are still many lidar file formats which differ
from standards. Numerous ASCII formats exist, depending on
the information available. It could be classical XYZ file or an
extended version with intensity, XYZI. Other features could be
added as ASCII columns and in any possible order. The most
frequent features are the classification field, the GPS acquisition
time and the pulse number. In addition, a file can represent dif-
ferent things, a strip (raw acquisition geometry) or a tile of lidar
data. And finally, as detailled in section 4, some formats also pro-
pose spatial indexing (McGaughey, 2007).
Finally, it becomes clear that a modern lidar library should be
able to manage this two standards but also to supply extended
ASCII import and export functionnalities for ensuring compati-
bility with toolkits and current software packages.

2.2 Raw file description

A common point of every lidar format is the use of cartesian co-
ordinates expressed in a given datum, with minor exception for
TLS in LAS 2.0 specification which accepts range point encod-
ing (r, θ, φ). Several lidar processing tasks (intensity calibration,
fine strip registration, full-waveform echo extraction) could be
carried out more easily easily performed when applied directly
on the raw sensor geometry. Therefore, it has been decided to in-
vestigate a file format related to the sensor geometry. In addition,
a XML metadata file is used to describe the file as well as sensor
information. The format is then splitted into two specific parts
(figure 1).

Figure 1: Lidar data file structure divided on two specific parts.
Left: metadata file. Right: examples of data within raw sensor
topology.

2.2.1 XML metadata file : XML is a general-purpose speci-
fication, widely supported and extensible since it allows users to
define their own data markups. Thus, it permits to add new meta-
data, when available or computed (e.g., the real point density of
a survey is not known beforehand). Moreover, XML facilitates
the sharing of lidar metadata between different information sys-
tems. XML files can be displayed within a simple text file, Web
browsers, GIS softwares. . . and even can be formatted for a Web-
catalogue purpose (Consortium, 2008). Indeed, the XSL (eXten-
sible Stylesheet Language) can be used to describe how XML
files or parts of a XML document are to be transformed and visu-
ally formatted.
As for the LAS file header, some metadata fields included in the
file are: file ID, project ID, number of echoes, strip bounding
box. For the registration of raw data, the trajectory (INS and
GPS) and the reference coordinate system are required. Sev-
eral specific fields as the simplified convex hull and the trajectory
of the strip, are consequently added to improve query efficiency
(see Section 4). Besides, it has been decided to adopt a modular
attribut format. Therefore, each feature intensity, classification
or some others owns its specific XML markup, with a complete
feature description: which type (e.g., intensity)? which encod-
ing (e.g., char/float)? Which file compression is used (e.g.,
LZW/ZIP)?

2.2.2 RAW data : Concerning the raw data file architecture,
it has been decided to use a multi-channel image for each feature
(see figure 2). One axis of the image corresponds to the sensor
acquisition angle θ and the others represents the scan line number
(which can be considered as the acquisition time). Their bound
values are specified in the XML metadata file.
The first image is the range image and the others correspond to
feature images. For each image, the first channel is linked to the
first echo of the current lidar pulse, the second one to the second
echo and the last one to the greatest number of detected echoes.
All images have exactly the same structure but can be encoded
differently (e.g., intensity with char or short, echo width with
int or float).
Each first channel contains dense information, thus raw data could
be preserved. However, other channels are bounded to hold sparse
data. Therefore, compressed algorithm as LZW could be use to
store this channel, depending on the feature (compression algo-
rithms are not always adapted to all encoding types).

Figure 2: Lidar data within raw sensor structure. Each feature is
linked to a N-channel image. Image indexes are scan line number
(as time) and angle acquisition θ

3 GLOBAL LIBRARY DESIGN

3.1 Use case

The current design of the library aims at tackling some clearly
identified use cases; some of them dedicated to specific tasks and
other common to all tasks. The basic needs are described above:

• import and export data (Section 2.1);
• convert data from one geodesic coordinate system to another

one;
• add/remove lidar feature;
• perform efficient search query on large data set;

Then, some specific components are data processing and display
as:

• filter lidar point cloud;
• generate DSM/DTM (Bretar, 2007);
• display the data on 2D or 3D;
• perform cross-sections on point cloud jointly with DEM;

Theses specific tasks depend on the previous common tasks. They
are directly “client” of the core library components.

3.2 Useful libraries overview

The first step when developing a software is to find open-source
libraries matching with our needs. Hopefully, open-source geo-
matic community is active and many libraries are available for
GIS, geodesic, geometric and display purposes.
First, concerning GIS components, the PROJ4, OGR, and GDAL
libraries have been studied. They are used on the core of nearly
all open-source GIS.

• PROJ4 is dedicated to cartographic projection and datum
transform (PROJ team, 2007). A wide range of projections
are supported in the PROJ4 library. However, some other
advanced geodesic features are required: georeference raw
data and transform coordinates between vertical datums (e.g.,
to support quasi-geoide).

• GDAL and OGR are libraries for GIS raster and vector data
handling respectively (GDAL team, 2008). GDAL can be
used for raster DEM handling but large lidar point clouds
do not fit very well with the abstraction data model. Both of
them depend on PROJ4 for cartographic projections.

Taking the drawback of GDAL/OGR into account, it has been
decided to develop a similar library but specifically dedicated to
handle lidar data sets. PROJ4 is kept for coordinate transform
tasks.
Besides, LAS and PLY formats have to be supported. Conse-
quently, LAS and PLY librairies will be chosen (both have nu-
merous dedicated open-source libraries).

• PLY:
- plytools (Turk and Mullins, 2006) and RPly are both coded

with C language;
- libply (Lagae, 2007) is coded with a modern C++ design:

more flexible than plytools but also more difficult to handle.

• LAS:
- LAStools is an earlier open source code for LAS 1.1 format

(Isenburg et al., 2006; Isenburg and Schewchuck, 2007).
- LibLAS (Butler et al., 2008) supports the LAS 1.0 and 1.1

specifications but still needs improvement for the LAS 2.0
implementation. It is a refactoring of LAStools.

Since upper flexibility is required, libply and LibLAS have been
chosen for that purposes.
Concerning the raw sensor format (section 2.2), it is planned to
use the common TiFF or JPEG libraries for managing raw data
and a standard XML library (TinyXML, Xerces) for the metadata
file.
Some geometrical capacities for neighborhood search and inter-
nal (RAM) data management are also required:
• (Refraction and GEOS team, 2007) library has numerous

functionnalities but only in 2D .
• (CGAL, Computational Geometry Algorithms Library, 2008)

is a comprehensive C++ library for geometrical computa-
tion, including both algorithms and data structures. The
main drawbacks are a difficult source code handling and
the fact that some components are only available under QPL
(and not BSD or GPl/LGPL) license.

Despite its license term, CGAL has been chosen in order to in-
crease geometrical capabilities of the lidar library.

3.3 Architecture Overview

The lidar library is splitted into distinct components: a “kernel”
for low-level object modelling, an import/export (I/O) library, a
topology module, a geodesy wrapper based on PROJ4 library,
a processing unit including algorithms developed in the MATIS
laboratory and, a display module (see figure 3). This order corre-
sponds to the priority of each component of the library develop-
ments.

Figure 3: Library UML component view. Top: specific task com-
ponent depending on core API. Middle: core component. Bot-
tom: external component.

• The ”kernel” component is dedicated to internal data struc-
ture. It contains an abstraction model for lidar data, more
precisely a class for single lidar echo and a attribut struc-
ture, and also a container class for collection of lidar echoes
(this can be view as unstructured point cloud). A query en-
capsulation class is also included in kernel.

• The I/O library has similar functionnalities as GDAL (but
for lidar and not raster data), and master specific tools, like
the metadata computation or the conversion and reprojec-
tion. It is a client of the kernel component and uses its ab-
straction model as a bridge between different file formats.

• The topology module implements the internal ordering and
search data structure e.g the quadtree and cell topology struc-
ture as well as an interface class for an efficient and simple
neigborhood search.

• The geodetic component extends PROJ4 functionnalities.
It is linked to PROJ4 and contains module for coordinate
transform, from height to altitude and from cartesian to sen-
sor datum.

• The processing unit contains lidar filtering algorithms and
DEM/DTM utilities developed in the MATIS laboratory: the
generation and resampling of raster DEM and, the DTM reg-
ularization. For more details see for instance (Bretar, 2007)

• The display module is divided in three parts. A 3D viewer
to easily visualize the data, a 2D (planimetric) interactive
interface for the survey visualization and query.The point
clouds can be displayed in 2D or 3D with a specific feature
selected by the user (classification, intensity. . . and height is
available). Finally, it is also possible to plot cross-sections
within the point cloud, in conjunction with the DEMs or
DTMs in order to assess the quality of the algorithms (e.g.,
filtering or DEM/DTM generation).

4 WORFLOW AND QUERY APPLICATIONS

In order to efficiently process large lidar data sets, a data work-
flow strategy must be defined. A significant and recurrent need
when implementing lidar algorithms is to perform spatial queries.
A spatial query could be a coarse 2D/3D polygonal selection
within the point cloud or a fine neihgborhood search. Therefore, a
lidar workflow have to tackle this issue. Both external (file based)
and internal (RAM data) topology structures are used for spatial
query strategies.
The management of the external topology depends on the files
processed by the chosen algorithm. A first spatial indexing could
be made on the file object level. Each file contains its bounding
box or is a pretiled file with exactly known convex hull (Chen,
2007). By testing for each file whether or not its bounding box
or its convex hull intersects the 2D spatial query, this indexation
speeds up the query. Besides this low level indexing, some more
accurate spatial indexes exist which enable to load only regions
of interest (ROI) within each file (McGaughey, 2007). Moreover,
it should be noticed that using tiled files and current fine spatial
indexing increases the pre-processing step.
Then, once the data are loaded in memory, the algorithms should
still benefit from the internal data indexing structure. Quatree and
2D cells point indexing are the more common used on 2D spatial
indexing (and could be extended in 3D by respectively octree and
3D cells). These dynamic structures increase the efficiency of
the neigborhood search algorithm and the data management for
adding and removing echoes. A database architecture could also
be used both to manage fine external topology and internal data
structure (Höfle, 2007).

4.1 Raster based strategy

One of the main common strategy solution to manage lidar data
is to rasterize raw data. This lidar workflow processing can be de-
tailled in two major steps. The raw data are resampling on a range
image and image processings are made with this raster data. Ma-
jor advantages of this workflow are its simplicity and the fact that
all the classical image processing algorithms can be used. Cur-
rent raster data are first and last echo DEM and eventually some
density or intensity images. With only raster data, spatial queries
become easier and are now well-known processes. This workflow
also benefit from very efficient raster cache data management and
streaming algorithms used by modern image processing toolkits.

Such functionnalities are not yet avaible for point cloud process-
ing but are increasingly studied (Wand et al., 2007).

4.2 Standard tile workflow

Nowadays, most of lidar softwares prefer handling directly point
cloud data. Nevertheless, some key ideas of raster based strategy
has to be retained, especially inside the tiled workflow (Chen,
2007; Lausten, 2007). Indeed a strategy extended from raster to
3D point cloud is the tiled file organisation. Raw data are recom-
puted from lidar strips to predefined squared file data, e.g., tiles.
A tile includes all echoes of a given lidar survey into a precisely
defined bounding box. Consequently, for a spatial query, a sim-
ple test on bounding boxes quickly enables to know which files
have to be processed in order to find the required part of the lidar
point.
An extension of this strategy is to spatially index the points in-
cluded in a tiled file on a gridded topology. Such workflow has
been used and well explained in (McGaughey, 2007), with the
LDA format dedicated to the FUSION/LDV software.

Figure 4: Tile workflow strategy. Left: raw strips (above) are
tiled (below). Right: tiles are spatially reorganised.

To summarize the pre-processing step:

1. All lidar strips (1 strip=1file) are reorganized on tiled data
files with well defined bounding box.

2. Each tile is gridded on square cells with fixed resolution.
Each cell is indexed by an (i, j) position like pixels on im-
age.

3. Lidar points of each tiles are reordered within the file. A
new tile indexing begins with the point inside cell (0, 0),
then cell (0, 1) . . . (N,M).

4. An image of index pointers is generated. Pointer at index
(i, j) leads to the tile index of the first lidar points contained
on cell (i, j).

When lidar data are tiled and indexed with cells, the workflow for
query point becomes (see figure 5 for details):

1. Get all tiles whose bounding box intersect the query bound-
ing box.

2. For each selected tile, get cells inside the 2D query:

2.1 compute the bounding box of the intersection between
tile and query (BBoxI);

2.2 get all index (i, j) of cells included in BBoxI;

2.3 load all lidar points contained on selected cells using
the image of index;

Figure 5: Global query activity diagram workflow with different files and echo spatial indexing.

4.3 Strip file management and raw sensor topology

If the strip information have to be kept on tiled workflow, it be-
comes necessary to add new feature to each point (strip ID, ac-
quisition range and angle). As a consequence, issues related to
sensor acquisition as intensity calibration or fine strip registration
are made more difficult. To avoid such drawback, it has been de-
cided to investigate in depth the raw sensor topology.
Since lidar strips are spatially long and oblique rectangles, their
bounding boxes are not suitable to finely select which strips are
concerned by a spatial query (figure ??a). Therefore, a simplified
convex hull is computed. Convex hull can be computed by some
triangulation or α-shape geometrical algorithm (with CGAL) or
simplier by detecting jumps or inflexion points between two lidar
scan lines. In addition, the number of pulses by scan line is al-
ways the same along the strip and such information can be used
to robustify the convex hull detection.
Besides, it has been considered that a raw sensor file has an in-

Figure 6: a): Query intersecting only strip bounding box and not
convex hull. b): raw sensor data.

herent 2D topology. More precisely, raw measurements can be
indexed by their scan line number (timestamped) and by the mir-
ror angle at the acquisition time (figure ??b).

If the acquisition time and the approximate trajectory have been
kept, the 2D indexes inside a spatial query can be approximated
in raw sensor topology by the workflow below (figure??):

1. compute intersection of the strip convex hull with the query;
2. project intersection on the approximate trajectory;
3. order projected point according to their acquisition time.

and extract maximum and minimum times (with some se-
curity margins due to approximations);

4. load all points contained between these two acquisitions time;

Figure 7: Steps of a spatial query processing with raw sensor
topology

The first step on query processing is to intersect the query convex
hull with the strip convex hull. To speed up this computation, the
convex hull can be generalized. One possible generalization is to
keep only the oriented bounding box of the strip (Höfle, 2007).

5 DEVELOPMENT STATUS AND FUTURE WORKS

The implementation of a library for lidar data handling and pro-
cessing is an on-going process.
The kernel component has been fully developed since this is the
basis of all the detailed library. The IO wrapper architecture is

tested with the ALS format wrapper and one of the previous for-
mat developed in the MATIS laboratory (for data and algorithm
compatibility). The PLY wrapper is under development. Con-
cerning the topology part, first implementation of spatial query
and neigborhood search strucure have been made and are on a
testing phase. First studies to add height transform within PROJ4
are finished and the final implementation is already planned. All
other components are still prototypes.
Concerning future developments, adapt our algorithm on the new
lidar library-API has been defined as next implementation prior-
ity.
Then, it is planned to develop and test our raw sensor topol-
ogy strategy and, on parallel, to study whether or not a high ab-
straction level component for lidar survey management is needed.
Some other open-source toolkits like QGIS and OSSIM should
probably be investigated for this task.
Other modelling works are also well defined. First, automatic se-
curity margin computation will be deeply studied to improve the
effiency and to robustify the raw sensor topology query workflow.
Next, it could be of interest to adopt Geographic Markup Lan-
guage (GML) normalisation from Open GIS Consortium (OGC)
for our own XML metadata file.

6 CONCLUSION

Lidar data management is a challenging task with only young
background compared to image processing and other remote sens-
ing data. The increasing abilities of multi-echo data offer great
opportunities to model a modern lidar data management architec-
ture and implement a modular library, gathering efficient open-
source libraries and taking previous lidar community experience
into account.

References

AppliedImagery, 2008. QTModeler 6.0.5 : Quick Terrain Mod-
eler. http://www.appliedimagery.com/.

ASPRS, 2005. ASPRS Lidar Data Exchange Format Standard
version 1.1. Technical report.

ASPRS, 2007. ASPRS Lidar Data Exchange Format Standard
version 2.0. Technical report.

Beinat, A. and Sepic, F., 2005. Un programma per l’elaborazione
di dati LIDAR in ambiente Linux. In: 50o Convegno
Nazionale della Società Italiana di Fotogrammetria e To-
pografia, Palermo, Italy.

Bretar, F., 2007. Processing fine Digital Terrain Models by
Markovian Regularization from 3D Airborne Lidar Data. In:
IEEE International Conference on Image Processing, Atlanta,
USA, pp. 125–128.

Brovelli, M., Cannata, M. and Longoni, U., 2002. Managing and
processing LiDAR data within GRASS. In: Open source GIS
GRASS user conference, Trente, Italy.

Butler, H., Loskot, M. and Vachon, P., 2008. Liblas, a C++ library
for reading and writing LAS LiDAR data. http://liblas.
org/.

CGAL, Computational Geometry Algorithms Library, 2008.
http://www.cgal.org/.

Chauve, A., Mallet, C., Bretar, F., Durrieu, S., Pierrot-
Deseilligny, M. and Puech, W., 2007. Processing full-
waveform lidar data: modelling raw signals. In: IAPRS, Vol.
39 (Part 3/W52), Espoo, Finland, pp. 102–107.

Chen, Q., 2007. Airborne Lidar Data Processing and Information
Extraction. PE&RS 73(2), pp. 109–112.

Consortium, W. W. W. W., 2008. XML. http://www.w3.org/
XML/.

GDAL team, 2008. GDAL 1.5 : Geospatial Data Abstraction
Library. http://www.gdal.org/.

Graham, L., 2007. Las specification version 2.0 (final draft).
Technical report.

Grass Development Team, 2006. Geographic Resources Analysis
Support System GRASS Software. Technical report, Trente,
Italy.

Höfle, B., 2007. Detection and Utilization of the Information Po-
tential of Airborne Laser Scanning Point Cloud and Intensity
Data by Developing a Management and Analysis System. PhD
thesis, University of Innsbruck.

Hug, C., Krzystek, P. and Fuchs, W., 2004. Advanced lidar data
processing with LasTools. In: IAPRS, Vol. 35 (Part B2), Istan-
bul, Turkey, pp. 832–837.

Inpho and TU-Vienna, 2008. SCOP++. http:
//www.ipf.tuwien.ac.at/products/produktinfo/
scop/scop_dtm_sheet.htm.

Isenburg, M. and Schewchuck, J., 2007. LAStools : converting,
viewing and compressing LiDAR data in LAS format. http:
//www.cs.unc.edu/~isenburg/lastools/.

Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J. and Thirion, T.,
2006. Generating raster dem from mass points via tin stream-
ing. In: International Conference on Geographic Information
Science, Münster, Germany, pp. 186–198.

J. Lüthy and H. Ingensand and R. Stengele, 2005. Production
suite for airborne data. In: Proc. of the 7th Conf. on Optical
3D Measurement Techniques, Vienna, Austria.

Lagae, A., 2007. libply :a modern C++ library for parsing the ply
file format. http://www.

Lausten, K., 2007. ENVI LiDAR Toolkit. Technical report.

McGaughey, R., 2007. FUSION/LDV : software for Li-
DAR data analyse and visualization. http://forsys.cfr.
washington.edu/fusion/fusionlatest.html.

PROJ team, 2007. proj-4.6 : Cartographic Projection Library.
http://proj.maptools.org.

Refraction and GEOS team, 2007. GEOS 3.0 : Geometry Engine
- Open Source. http://trac.osgeo.org/geos.

Samberg, A., 2007. An Implementation of the ASPRS LAS
Standard. In: IAPRS, Vol. 39 (Part 3/W52), Espoo, Finland,
pp. 363–372.

Soininen, A., 1999. Terra Scan for MicroStation, user’s guide.
Technical report, Helsinki, Finland.

Turk, G. and Mullins, B., 2006. Plytools. http://www.cc.
gatech.edu/projects/large_models/ply.html.

Visual Learning System, 2008. Lidar Analyst 4.2. http://www.
vls-inc.com/lidar_analyst.htm.

Wagner, W., Roncat, A., Melzer, T. and Ullrich, A., 2007. Wave-
form Analysis Techniques in Airborne Laser Scanning. In:
IAPRS, Vol. 39 (Part 3/W52), Espoo, Finland, pp. 413–418.

Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M.,
Jenke, P., Maier, B., Staneker, D. and Schilling, A., 2007. In-
teractive Editing of Large Point Clouds. In: PBG07, Prague,
Czech Republic.

