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ABSTRACT: 
 
The specific objective of this paper was to provide a comparative analysis of three automatic classification algorithms: Quinlan’s 
C4.5 and two robust probabilistic classifiers like Support Vector Machine (SVM) and AdaBoost (a short for “adaptive boosting”). 
This work is part of a wider project whose general objective is to develop a methodology for the automatic classification, based on 
CORINE land-cover (CLC) classes, of high resolution multispectral IKONOS images. The dataset used for the comparison is an area 
of approximately 150 km2 comprising both urban and rural environments. Input data are basically constituted by multispectral (red, 
green, blue and infrared bands), 4m ground-resolution images. In some classifications they are integrated by the Normalized-
Difference-Vegetation-Index (NVDI), derived from the red and infrared bands, a Digital Terrain Model (DTM) of the area and pixel 
by pixel gradient values, derived by the DTM. All the above algorithms had to perform full data classification into four classes: 
vegetation, water bodies, bare soil, and artificial cover. The output is constituted by an image with each pixel assigned to one of the 
above classes or, with the exception of C4.5, let unclassified (somehow a better solution than a classification error). In addition, a 
confusion matrix for control data is produced to evaluate the accuracy of each algorithm, by computing the percentage of correctly 
classified pixels with respect to the total number of pixels, the user’s and producer’s accuracy indexes and the Cohen’s coefficient to 
evaluate global accuracy. Even if an optimal distribution of the samples in the training set has a great influence, results demonstrate 
the suitability of supervised classifiers for high resolution land cover classification. In particular, all the proposed approaches work 
fine, so that we are now exploring the use of more classes, that is at the second level of the CORINE legend. 
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1. INTRODUCTION 

The concept of classification is based on the following 
definition: given a set of observations of a concept, the learner 
induces a general concept description that covers the instances 
observed. The best is the generalization from learning data to 
test data, the better is the classificatory performances. 
Classification has been used in several fields: from robotics to 
genetics, from document classification to vision and risk 
management (Wood 1996), (Burges, 1998), (Meyer 2003). 
Image classification for the production of thematic maps, such 
as those depicting land cover, is one of the most common 
applications of remote sensing. In fact, the land cover maps 
derived are often judged to be of insufficient quality for 
operational applications, due to disagreements between the 
derived land cover map and some ground or other reference 
dataset. Consequently, an updating of these maps must be 
carried out on a regular basis to keep the databases up to date. 
This work is part of a wider project whose general objective is 
to develop a methodology for the automatic classification, 
based on CORINE land-cover classes (EEA, 2008), of high 
resolution multispectral IKONOS images.  
The whole project was divided into four stages consisting of: 
i) pre-processing – the image dataset has been orthorectified 

with respect to a chosen coordinate system; 
ii) definition of training and control sample sets – an 

exhaustive number of samples, based on a hierarchical 
classification nomenclature, is the base for the training of 
algorithms and for accuracy assessment. The spectral 
analysis of the different channels of the image has been also 

carried out to select optimal bands or combination of bands, 
to be used in the classification process; 

iii) classification – different supervised classification methods 
were tested; 

iv) accuracy assessment of classification results – an estimate 
of the accuracy of different classifications was carried out. 

The specific objective of this paper was to provide a 
comparative analysis of three automatic classification 
algorithms: Quinlan’s C4.5 and two robust probabilistic 
classifiers like SVM and AdaBoost. 
The case study refers to an area of approximately 150 km2 

belonging to the Ancona province of the Marche region in Italy 
(Figure 1). The images were provided thanks to a research 
agreement signed between Regione Marche, a regional 
institution of central Italy, and three departments (DARDUS, 
DIIGA and DiSASC) of the Polytechnic University of Marche. 
In the rest of this section we describe the CLC legend for land 
cover classification, in Section 2 the definitions of the analysed 
automatic classification algorithms, in Section 3 we present the 
results obtained, and in Section 4 comments and conclusions. 
 
1.1 Land cover classification: CLC legend 

In 1985 the European Commission approved the CORINE 
programme, led by the European Environmental Agency in 
coordination with the member countries, to compile, in a 
consistent and compatible way, information on certain topics 
with regard to the state of the environment. Among the results 
there was the definition of CORINE Land Cover inventories for 
all European countries, at the scale of  1 : 100,000,  based  on  a  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Case study: Italy, Marche region, Ancona province. On the right a panchromatic image of the area that has been processed. 
 
 
standard methodology and nomenclature, for use with remote 
sensing techniques. The CLC legend has a hierarchical structure 
on three levels, containing 44 land cover classes grouped into 
five major categories: 1. Urban Fabric, 2. Agriculture areas, 3. 
Forest and semi-natural areas, 4. Wetlands, 5. Water bodies. 
With respect of this structure, the high ground resolution of 
current sensors, suitable for a map scale 1:10,000, suggested the 
introduction of fourth and fifth level categories. 
 
 

2. AUTOMATIC CLASSIFICATION ALGORITHMS 

In this section, we describe the main classification methods that 
will be used in this paper. We start by formally defining the 
classification problem. Assume that we are given a training set 
D, consisting of pairs <xi, li>, for i=1,2, … m. Each sample xi is 
a vector in Rm that describes features joined to a certain 
concept. The label li associated with xi is a binary or a multiple 
label (for simplicity, we will discuss two-label classification 
problems that can be easily generalized). A classification 
algorithm is a function F that depends on two arguments, the 
training set D and a query about xq that returns a predicted label 
lq. We also allow for no classification to occur if xq is either 
close to none of the classes or when it is too borderline for a 
decision to be taken. Formally, this is realized by allowing the 
label lq to be 0, 1 or 2, the latter representing an unclassified 
query. Good classification procedures predict labels that 
typically match the “true”, intended as ground truth, label of the 
query. When unclassified is accepted as a possible output one 
needs to consider the costs/penalties of the various outcomes in 
analyzing the value of a classification method. 
In our case <xi,li> are respectively a set of feature coming from 
pixel based or region based analysis of multispectral images 
joined, in some cases, with other pixel or region specific 
characteristics (e.g. altitude, exposition, etc. ).  
Here following we give a brief description of the three proposed 
and tested classification methods: Quinlan’s C4.5, Support 
Vector Machine (SVM) and AdaBoost. 
 
2.1 - C4.5 

The machine learning community has produced a large number 
of programs to create decision trees for classification. 
Noteworthy are Quinlan’s C4.5 (Quinlan, 1993), which is a 
descendant of his earlier program ID3, and CART - 

Classification And Regression Trees (Breiman, 1984), which is 
a sophisticated program for fitting trees to data.  
In general, tree-structured classifiers are constructed by making 
repetitive splits of the measurement space X and the 
subsequently created subsets of X, so that a hierarchical 
structure is formed. It should be noted that when X is divided 
into two subsets, these subsets do not both have to be 
subsequently divided using the same variable, allowing 
modelling a non homogeneous response. Besides, the 
classification trees produced by tree-structured classification 
methods are not guaranteed to be optimal: at each stage in the 
tree growing process the split selected is the one that will 
immediately increase the node purity the most (all cases from 
the learning sample corresponding to the node belonging to the 
same class); that is, on the contrary of using a tree-growing 
program that “looks ahead”, which would require much more 
time to create a tree, they are greedy algorithms. 
C4.5 is a quite standard Decision Trees (Breiman, 1984) used as 
general purpose learning technique for supervised 
classification; it produces a flow chart like tree structure where 
each node denotes a test on an attribute. Each branch represents 
an outcome of the test and leaf nodes represent classes or class 
distributions. In general the decision tree approach has several 
disadvantages (multiple trees, variations) and the main 
advantages are effectiveness and efficiency. 
The basic algorithm to build decision trees uses a greedy 
algorithm that constructs the tree starting from the top and then 
goes down recursively by divide and conquer manner. C4.5 
uses sophisticated pruning, and probabilistic facilities are used 
to handle unknown and imprecise attribute values; unlike basic 
approaches, C4.5 selects a working set of examples at random 
from the training data and then tree growing/pruning process is 
repeated several times to ensure that the most promising tree 
has been selected. 
 
2.2 - Support Vector Machine (SVM) 

Support vector machines (SVMs) are a set of related supervised 
learning methods used for classification and regression. They 
belong to a family of generalized linear classifiers. They can 
also be considered a special case of Tikhonov regularization. A 
special property of SVMs is that they simultaneously minimize 
the empirical classification error and maximize the geometric 
margin; hence they are also known as maximum margin 
classifiers. 



 

Support vector machines map input vectors to a higher 
dimensional space where a maximal separating hyperplane is 
constructed. Two parallel hyperplanes are constructed on each 
side of the hyperplane that separates the data. The separating 
hyperplane is the hyperplane that maximizes the distance 
between the two parallel hyperplanes. An assumption is made 
that the larger the margin or distance between these parallel 
hyperplanes the better the generalisation error of the classifier 
will be. A tutorial has been produced by C.J.C Burges (Burges, 
1998). A comparison of SVM to other classifiers has been made 
by Meyer et al. (2003). An assessment of SVMs for land cover 
classification is in Huang et al. (2002). 
 
2.3 - AdaBoost 

Boosting (Sutton, 2005) is a method of combining classifiers, 
each of which iteratively created from weighted versions of the 
learning sample, with the weights adaptively adjusted at each 
step to give increased weight to the cases that were 
misclassified on the previous step. The final predictions are 
obtained by weighting the results of the iteratively produced 
predictors. Boosting was originally developed for classification, 
and is typically applied for creating an accurate strong classifier 
by combining a set of weak classifiers. A weak classifier is only 
required to be better than chance, and thus can be very simple 
and computationally inexpensive. However, combining many of 
them results in a strong classifier, which often outperforms most 
“monolithic” strong classifiers such as SVMs and Neural 
Networks. In 1990 Schapire (Schapire, 1990) developed the 
predecessor to later boosting algorithms developed by him and 
others. AdaBoost (a short for “adaptive boosting”) is now the 
most popular boosting algorithm (Freund, 1997). Different 
variants of boosting are known such as Discrete Adaboost, Real 
AdaBoost, and Gentle AdaBoost (Schapire 1999). All of them 
are identical with respect to computational complexity from a 
classification perspective, but differ in their learning algorithm. 
As already said, boosting uses a weighted average of results 
obtained from applying a prediction method to various samples, 
but the samples used at each step are not all drawn in the same 
way from the same population, rather the incorrectly predicted 
cases from a given step are given increased weight during the 
next step. Thus boosting is an iterative procedure, incorporating 
weights, as opposed to being based on a simple averaging of 
predictions, as is the case with bagging (Sutton, 2005). In 
addition, boosting is often applied to weak learners (e.g., a 
simple classifier such as a two node decision tree), whereas this 
is not the case with bagging. 
AdaBoost is an algorithm for constructing a ”strong” classifier 
as the linear combination 
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of simple weak classifiers ht(x), which can be seen as basis 
classifier, hypothesis or features. The strong classifier H derives 
from the sign evaluation of the weak classifiers:  

( ) ( ( ))H x sign f x=  
The modified Real AdaBoost algorithm can be sketched as: 
 

Modified Real AdaBoost algorithm 
 
Input: Set of N labelled examples (x1, y1), . . . , (xN, yN), with 

{ }1,  1iy ∈ − , for 1 ,  k
ii N x≤ ≤ ∈ℜ , and where yi = +1 for 

positive examples and yi = −1 for negative examples. xi is a 
feature vector with k-components, each encoding a feature 
relevant for the learning task.  

 
Initialize weights D1(i) = 1/N  
 
for t = 1, . . . , T do 
1. Call the weak classifier ht(xi) that returns the minimum error 
with respect to the distribution Dt; 
It returns weak classifier ht : X ∈ {−1, 1} from H = {h(x)} 
according to the following error function: 
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where zt is a normalization factor chosen so that Dt+1 is a 
distribution. 
 
3. Choose the weight tα ∈ℜ , so to greedily minimize Zt in 
each step 
end for 
 
Output: The final strong classifier: 
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It is important to notice that the complexity of the strong 
classifier depends only from the weak classifiers.  
The algorithm repeatedly selects a weak classifier hj(x) using a 
distribution D over the training examples. The selected weak 
classifier is expected to have a small classification error on the 
training data. The idea of the algorithm is to modify the 
distribution D by increasing the weights of the most difficult 
training examples in each round. The final strong classifier H is 
a weighted majority vote of the best T weak classifiers. 
To deal with non binary results we used a chain of binary 
classifier. A binary classifier Ci classifies data x into belonging 
to either class Hi

0 or class Hi
1 (i.e. false or positive 

classification). We assume each classifier Ck passes through 
data that it classifies as belonging to class Hi

0 only (this 
approach is also named filtering classifier). In this way  we 
obtain a n-class classifier starting from a binary one. 
 
 

3. RESULT AND DISCUSSION 

In this section, after a brief description of the dataset and of the 
pre-processing operations, and the definition of the performance 
measures, we report and comment the classification results for 
the C4.5, SVM and Adaboost algorithms.  
 
3.1 - Dataset, pre-processing and sample definition 

The dataset used for the comparison is an area of approximately 
150 km2, located near the Ancona city, comprising both urban 
and rural environments, and with a topography that includes flat 
areas, but also the Natural Park of the Conero mountain, with a 
550 m elevation range.  
IKONOS images were acquired in July 2006, with a 29 degrees 
solar zenith angle. The dataset is composed by a panchromatic 
image at a ground resolution of 1m and multi-spectral 4m 
resolution data constituted by four bands: red, green, blue and 
near-infrared. These data were integrated by a Digital Terrain 
Model (DTM) of the area, derived from the Regional Technical 
Map (CTR) at the scale 1:10,000, which, however, by 
definition, does not consider artificial structures. In addition, in 
some classifications we used pixel by pixel gradient values, 
derived by the DTM, and the Normalized Difference 



 

Vegetation Index (NVDI) derived from the red (r) and near-
infrared (nir) channels, according to the following formula:  

nir rNDVI
nir r

−
=

+
 

During the pre-processing phase, first all the images were 
orthorectified in the UTM N33 WGS84 System, using a rational 
function model. Then a geometric correction was performed 
using 15 control points and the third order degree polynomial 
equations, giving an RMS error below 1 pixel (1 meter). A 
radiometric interpolation by means of the nearest neighbour re-
sampling method preserved the original image values. Finally, 
the study area was extracted from a submap of the original 
image. 
A classification system should be informative, exhaustive and 
separable (Jensen 1996, Landgrebe 2003). The first step to this 
aim is the definition of a hierarchical classification structure, 
principally based on the user’s needs and spatial resolution of 
remotely sensed data. To fit a standard classification system we 
planned to use the CLC legend, but adopting the extended 
legend provided by the Italian agency for environmental 
protection and technical services (Agenzia per la Protezione 
dell'Ambiente e per i servizi Tecnici - APAT) for the 
Agriculture areas and introducing new levels, based on the 
spectral response of different materials, for Urban areas. 
On the base of this structure, a sufficient and significant number 
of training samples have to be defined. The software training 
stage was carried out by means of about 100,000 sample points 
grouped in 130 training sites. After a dedicated-GIS platform 
implementation each sample was collected by means of specific 
in field campaign and/or pan-sharpened IKONOS dataset visual 
interpretation. The choice of the detail level of the samples (i.e., 
if belonging to the first or to the second level of the legend) was 
carried out by class separability statistical measurements. This 
also allowed to improve the training set by excluding sites with 
spectral values largely ranging far from corresponding class 
mean values. 
 
3.2 - Performance measures 

We decided to analyse all the three classification algorithms 
while performing full data classification at the first level of our 
land cover legend, that is, into four classes: vegetation (V), 
artificial cover (A), water bodies (W) and bare soil (B). The 
output is constituted by an image with each pixel assigned to 
one of the above classes or, with the exception of C4.5, let 
unclassified (somehow a better solution than a classification 
error).  
The quantitative evaluation of the accuracy of each algorithm 
was made according to the values of the confusion matrixes 
(Foody, 2002) resulting from control data classification. In 
particular, each confusion matrix is constituted in our case by 
the labels of the four classes plus the user’s accuracy index 
(UA) as last column attribute and the label NC, corresponding 
to not-classified pixels, plus the producer’s accuracy index (PA) 
as further row attributes:  
 

 V A W B UA 
V X11 X12 X13 X14 UAV
A X21 X22 X23 X24 UAW 
W X31 X32 X33 X34 UAB 
B X41 X42 X43 X44 UAA 

NC X51 X52 X53 X54  
PA PAV PAW PAB PAA  

 

Each Xi,j represents the number of pixels of a given class 
(column label) classified as the row label, so that their sum 
represents the total number (N) of control pixels. Consequently, 
the percentages of correctly (CC) and erroneously (EC) 
classified pixels are given, respectively, by: 
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UA and PA are defined as the ratio between the total number of 
pixels correctly assigned to a class with respect to the total 
number of pixels assigned or, respectively, belonging to the 
class:  
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Finally, we used as a global accuracy index the Cohen’s K 
coefficient (Rosenfield and Fitzpatrick-Lins, 1986), defined as: 
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In short, while UA and PA make a survey on the behaviours of 
different classes, K and percentage of correctly classified pixels 
represent in a general way the performance of each algorithm. 
 
3.3 - Quantitative comparison of algorithms 

The output is constituted by an image with each pixel assigned 
to one of the above classes or, with the exception of C4.5, let 
unclassified (somehow a better solution than a classification 
error). In our comparative analysis we took into great attention 
UA and K. The first was used to evaluate which classes reveal 
classification problems, the latter to give a comprehensive 
evaluation of classification performance. 
Algorithms were compared on three datasets: the first one (D1) 
using only the four multi-spectral bands (“red”, “green”, “blue” 
and “near IR”); while in the second dataset (D2) the NDVI 
index for each pixel is added, and the last dataset (D3) uses the 
previous five features plus the DTM and its gradient values. 
The dataset and the algorithm used are appended to the name of 
each classification test. For example, L0-D1-A means test L0 
on dataset D1 using the Adaboost algorithm. For all tests the 
number of control pixels is always N=24393. 
In the following tables we report the confusion matrix values 
for the most significant classification tests. Below each table the 
performance measures defined in the previous section are 
reported.  
Table 1 and Table 2 report the results of two tests performed 
using the Adaboost algorithm with the dataset D1 and D3, 
respectively. Their comparison shows how, despite L0-D3-A 
uses 7 features versus the 4 features of L0-D1-A, it gets lower 
CC and K values. While this could be explained by the fact that 
the DTM and its gradient values could be imprecise because 
they do not consider artificial structures, it is more difficult to 
explain why using the dataset D2 with the NDVI index in 
addition to the 4 multi-spectral bands furnishes a similar result. 
The same behaviour occurs also the C4.5 algorithm, while the 
SVM algorithm generally gets, with respect to D1, greater K 
but lower CC with D2, and very lower K and CC with D3. 
Table 3 and Table 4 report the results of the two best 
performing tests using C4.5 and SVM, respectively. 
Figure 4 reports the classification results of the whole case 
study area using the Adaboost algorithm, test L0-D1-A, while 
in Figure 2 a zoomed part of it, near a small harbour, is shown. 
the interpretation of the image is the following: V=green, 
A=orange, W=blue, B=grey and NC pixels=white. 



 

 
 
Figure 2. Portion of classification results for test L0-D1-A near 

a small harbour: V=green, A=orange, W=blue and B=grey, 
NC=white. 

 
 

 V A W B UA 
V 9362 4 3 9 99,83% 
A 0 1320 2 347 79,09% 
W 2 6 11043 23 99,72% 
B 3 584 0 1543 72,44% 

NC 10 96 7 29  
PA 99,84% 65,67% 99,89% 79,09%  

CC=95,39%;    EC=4,61%;    NC=0,58%;    K=94,62% 
Table 1. Confusion matrix and indexes for test L0-D1-A 

 
 

 V A W B UA 
V 9343 4 0 22 99,72% 
A 1 823 2 238 77,35% 
W 2 10 11045 12 99,78% 
B 5 1060 0 1548 59,24% 

NC 29 113 8 131  
PA 99,61% 40,95% 99,91% 79,34%  

CC=93,29%;    EC=6,71%;    NC=1,15%;    K=89,43% 
Table 2. Confusion matrix and indexes for test L0-D3-A 

 
 

 V A W B UA 
V 9333 37 0 31 99,28% 
A 0 1243 3 300 80,40% 
W 2 14 11051 0 99,86% 
B 42 716 1 1620 68,10% 

NC 0 0 0 0  
PA 99,53% 61,84% 99,96% 83,03%  

CC=95,30%;    EC=4,70%;    NC=0,00%;    K=93,79% 
Table 3. Confusion matrix and indexes for test L0-D1-C 

 
 

 V A W B UA 
V 9304 5 0 17 99,76% 
A 0 1393 5 344 79,97% 
W 36 3 11050 0 99,65% 
B 37 609 0 1590 71,11% 

NC 0 0 0 0  
PA 99,22% 69,30% 99,96% 81,50%  

CC=95,67%;    EC=4,33%;    NC=0,00%;    K=94,25% 
Table 4. Confusion matrix and indexes for test L1-D1-S 

 
Figure 3. Cohen’s coefficient (K) and percentages of correctly 

classified pixels (CC) in the test with best CC for each 
algorithm (A=Adaboost, C=C4.5, S=SVM). 

 
 

4. DISCUSSION AND CONCLUSIONS 

The comparison of the results of three automatic classification 
algorithms (C4.5, SVM and AdaBoost) over different datasets 
has been presented. The comparison has been performed both 
qualitatively (photo-interpretation by the superimposition of 
classification results to an RGB or panchromatic image) and 
quantitatively (using measures derived from the confusion 
matrix). 
Results demonstrate the suitability of supervised classifiers for 
high resolution land cover classification. In particular, taking 
the best performing tests of each algorithm the performances 
are comparable (see Figure 3). However, the presence of not 
classified data constitutes a good quality of the two 
probabilistic approaches; usually in the classification literature 
this kind of result is considered better than false and positive 
results and usually not classified classes data are then 
disambiguated using a second level classifier (different from the 
first one) mixed with rule based approaches 
In conclusion, even in presence of very small training sets the 
proposed approaches work fine; so that we are now exploring 
the use of more classes, that is at the second level of the 
CORINE legend, and an optimal distribution of the samples in 
the training set. 
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