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ABSTRACT: 
 
This paper investigates the contribution of Enhanced Vegetation Index (EVI) data to the improvement of object-based image 
analysis using multi-spectral Moderate Resolution Imaging Spectral-radiometer (MODIS) imagery. Object-based image analysis 
classifies objects instead of single pixels. The idea to classify objects stems from the fact that most often the important information 
to process an image is not presented in single pixels but in groups of pixels (objects) (Blaschke et al. 2001). Based on image 
segmentation, object-based image analysis uses not only spectral related information, but spatial, textural and contextual information 
as well. However, which type of information to use depends on the image data and the application, among many other factors. EVI 
data are from the MODIS sensor aboard Terra spacecraft. EVI improves upon the quality of Normalized Difference Vegetation 
Index (NDVI) product. It corrects for some distortions in the reflected light caused by the particles in the air as well as the ground 
cover below the vegetation. The EVI data product also does not become saturated as easily as NDVI when viewing rainforests and 
other area of the Earth with large amounts of chlorophyll. In this research, 69 EVI data (scenes) collected during the period of three 
years (from January of 2001 to December of 2003) in a mountainous vegetated area were used to study the correlation between EVI 
and the typical green vegetation growth stages. These data sets can also be used to study the phenology of the land cover types. 
Different land cover types show distinct fluctuations over time in EVI values and this information might be used to improve land 
cover classification of this area. Object-based image analysis was used to perform the land cover classification: one was only with 
MODIS multispectral data (seven bands), and the other one included also the 69 EVI images. Eight land cover types were 
distinguished and they are temperate forest, tropical dry forest, grassland, irrigated agriculture, rain-fed agriculture, orchards, lava 
flows and human settlement. The two classifications were evaluated with independent (from the training data) verification data, and 
the results showed that with EVI data, the classification accuracy was significantly improved, at 0.01% level, evaluated by 
McNemar’s test. 
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1. INTRODUCTION 

In the last three decades, advances in computer technology, 
earth observation sensors and GIS science, led to the 
development of “Object-based image analysis” as an alternative 
to the traditional pixel-based image analysis. Many studies have 
shown that traditional pixel-based image analysis is limited 
because basically it uses only spectral information of single 
pixels and thus produces poor results especially with high 
spatial resolution satellite images. By contrast, object-based 
image analysis (OBIA) works on (homogeneous) objects which 
are produced by image segmentation. As an object is a group of 
pixels, its characteristics such as the mean, standard deviation 
of spectral values, etc. can be calculated and used in the 
classification; besides shape and texture features of the objects 
can also be derived and used to differentiate land cover classes 
with similar spectral information.  

 
Enhanced Vegetation Index (EVI) data were obtained from the 
MODIS sensor aboard Terra spacecraft. EVI improves upon the 
quality of NDVI product. It corrects for some distortions in the 
reflected light caused by the particles in the air as well as the 
ground cover below the vegetation. The EVI data product also 

does not become saturated as easily as NDVI when viewing 
rainforests and other area of the Earth with large amounts of 
chlorophyll. The EVI data are designed to provide consistent, 
spatial and temporal comparisons of vegetation conditions, and 
it offers the potential for regional analysis and systematic and 
effective monitoring of the forest area. This paper investigates 
the contribution of EVI data to the improvement of the 
performance of OBIA with MODIS imagery. The 69 EVI data 
collected during the period 2001 to 2003 were plotted to obtain 
the phenology information of the land cover types.  
 
Phonology is the study of the times of recurring natural 
phenomena. One of the most successful of these approaches is 
based on tracking the temporal change of a Vegetation Index 
such as NDVI or EVI. The evolution of vegetation index 
exhibits a strong correlation with the typical green vegetation 
growth stages. The results (temporal curves) can be analyzed to 
obtain useful information such as the start/end of vegetation 
growing season. However, remote sensing based phonological 
analysis results are only an approximation of the true biological 
growth stages. This is mainly due to the limitation of current 
space based remote sensing, especially the spatial resolution, 
and the nature of vegetation index. A pixel in an image does not 
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contain a pure target but a mixture of whatever intersected the 
sensor’s field of view.  
 
Since EVI is a good indicator of the phenology of the land 
cover types, the research tested the contribution of EVI data to 
the land cover classification. OBIA was carried out: one was 
with single date MODIS spectral reflectance data (seven bands), 
and the other one included also the EVI data (69 dates). The 
classification results were evaluated with independent 
verification data and were compared in order to examine the 
contribution of the EVI data to image classification using object 
based method with MODIS multi-spectral data.  
 
 

2. STUDY AREA AND DATA 

The study area 2.1 

The study area is located in Michoacán state, central west of 

México, covering an area of approximately 58*60 km , within 
the longitude of 102° 00’ W and 102° 32’ W, and latitude of 
19° 02’ N and 19° 36’ N (figure 1). The main land cover types 
in the study area are temperate forest, tropical dry forest, 
orchards, grassland, irrigated agriculture, rain fed agriculture, 
lava flow, and human settlement.   
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Figure 1: The study area. Left side of the figure are two sketch 
maps indicating México and Michoacán state where the study 
area is located; right side is the false colour composite of 
MODIS imagery with R, G, B represented by bands 2 (near-
infrared), band 1 (red), and band 3 (green).  
 
2.2 Earth observation data 

This part of the research relies on the data acquired by the 
MODIS instrument on board Terra and Agua satellites from 
National Aeronautics and Space Administration (NASA). Terra 
MODIS and Agua MODIS take between one and two days to 
cover the entire Earth’s surface, with a complete 16-day repeat 
cycle. Both sensors acquire data in 36 spectral bands, or groups 
of wavelengths, and their spatial resolution (pixel size at nadir) 
is 250m for channels 1 and 2 (0.6 μm -0.9 μm), 500m for 
channels 3 to 7 (0.4 μm -2.1 μm) and 1000m for channels 8 to 
36 (0.4 μm -14.4 μm). These channels are calibrated on orbit by 
a solar diffuser (SD) and a solar diffuser stability monitor 
(SDSM) system, which convert the Earth surface radiance to 
radio-metrically and geo-location calibrated products for each 
band (Xiong et al. 2003). Although recent evaluations have 
reported a geo-location error of 113m at nadir (Knight et al. 
2006), official technical specifications warrant 50m geo-
location accuracy (Wolfe et al. 2002). In both cases, the geo-
location is less than half a pixel dimension, and hence 
acceptable for the multi-spectral analysis (Carrao et al. 2007).  

 
The data acquired by the MODIS sensor is used to generate 
multiple products at different pre-process stages. In this study 
the MOD09A1 product was used, a weekly composite of 
surface reflectance images, freely available from MODIS Data 
Product website (http://modis.gsfc.nasa.gov). This specific 
product is an estimate of the surface spectral reflectance imaged 
at a nominal spatial resolution of 500m for the first seven bands 
as it would have been measured at ground level if there were no 
atmospheric scattering or absorption. The applied correction 
scheme compensates for the effects of gaseous and aerosol 
scattering and absorption, for adjacency effects caused by 
variation of land cover, for Bidirectional Reflectance 
Distribution Function (BRDF), for coupling effects, and for 
contamination by thin cirrus (Vermote and Vermeulen 1999). 
Seven first spectral bands (1-7) of MOD09A1 imagery obtained 
on 08 March 2007 were used because they are closely related to 
land cover mapping. In addition, a set of 69 MODIS Enhanced 
Vegetation Index (EVI) images covering a full three years 
observation period, from January 2001 to December 2003 were 
also used for image classification. 
 
EVI is an ‘optimized’ index designed to enhance the vegetation 
signal with improved sensitivity in high biomass regions and 
improved vegetation monitoring through a de-coupling of the 
canopy background signal and a reduction in atmosphere 
influence. EVI is computed following this equation (Huete et al. 
2002): 
  

)*2Re*1(
)Re(*

LBluecdcNIR
dNIRGEVI

+−+
−

=                      

 
Where NIR/red/blue are atmospherically corrected or partially 
atmosphere corrected (Rayleigh and ozone absorption) surface 
reflectance, L is the canopy background adjustment that 
addresses non-linear, differential NIR and red radiant transfer 
through a canopy, and c1, c2 are the coefficients of the aerosol 
resistance term, which uses the blue band to correct for aerosol 
influence in the red band. The coefficients adopted in the 
MODIS EVI algorithm are: L = 1, c1 = 6, c2 = 7.5, and G (gain 
factor) = 2.5. Whereas the NDVI is chlorophyII sensitive, the 
EVI is more responsive to canopy structural variations, 
including leaf area index (LAI), canopy type, plant 
physiognomy, and canopy architecture. The two VIs 
complement each other in global vegetation studies and 
improve the detection of vegetation changes and extraction of 
canopy biophysical parameters. For this work, OBIA is carried 
out in an object-based image analysis software eCognition 
(Definiens 2006).  
 
 

3. METHODS 

3.1 OBIA in eCognition 

OBIA in eCognition comprises two parts: multi-resolution 
image segmentation and classification based on objects’ 
features in spectral, spatial, and textural domains. Image 
segmentation is a kind of regionalization, which delineates 
objects according to a certain homogeneity criteria and at the 
same time requires spatial contingency (Lang et al. 2006). 
Several parameters are used here to guide the segmentation 
result. The scale parameter determines the maximum allowed 
heterogeneity for the resulting image objects. The colour 
criterion defines the weight with which the spectral values of 

http://modis.gsfc.nasa.gov/


 

the image layers contributes to image segmentation, as opposed 
to the weight of the shape criterion. The relationship between 
colour and shape criteria is: colour + shape = 1. Maximum 
colour criterion 1.0 results in objects spectrally homogeneous; 
while with a value of less than 0.1, the created objects would 
not be related to the spectral information at all. Smoothness is 
used to optimize image objects with regard to smooth borders, 
and compactness allows optimizing image objects with regard 
to compactness (Baatz et al. 2004). The resulting objects also 
depend on the image data. For a given set of segmentation 
parameters, heterogeneous image data result in smaller image 
objects than homogeneous image data.  
 
The image objects can then be classified either using a 
(standard) nearest neighbour (NN) classifier or fuzzy 
membership function, or a combination of both. The first 
classifier describes the class by user-defined sample objects, 
while the second one describes intervals of feature 
characteristics (Hofmann 2001b). The variety of object features 
can be used either to describe fuzzy membership functions, or 
to determine the feature space for NN. More detailed 
description of image segmentation and classification is given in 
Hofmann (2001a) and Gao et al. (2006). In this paper, the 
OBIA was performed with a standard NN classifier.  
 
3.2 

3.3 

Accuracy assessment 

Classification accuracy is used to describe the degree to which 
the derived image classification agrees with reality (Campbell 
1996), and a classification error is, thus, the discrepancy 
between thematic map and reality. Accuracy assessment result 
is often represented by a confusion matrix. It is a simple cross-
tabulation of the mapped class label against that observed one 
in the ground or reference data for a sample of cases at 
specified locations. The confusion matrix provides an obvious 
foundation for accuracy assessment (Campbell 1996, Canters 
1997), by providing the basis to both describe classification 
accuracy and characterize errors, which may help to refine the 
classification. Many measures of classification accuracy can be 
derived from a confusion matrix (Stehman 1997). One of the 
most popular is the percentage of cases correctly allocated 
which is often regarded as overall accuracy, which is calculated 
by dividing the total number of the verification data with the 
number of the correctly classified image data. For the accuracy 
of individual classes, the percentage of cases correctly allocated 
may be derived from the confusion matrix by relating the 
number of cases correctly allocated to the class to the total 
number of cases of that class. This can be achieved from two 
standpoints, depending on whether the calculations are based on 
the matrix’s row (user’s accuracy) or column marginal 
(producer’s accuracy) (Foody 2002). The detailed description 
of the error matrix and the calculation of the measures of 
classification accuracy can be found in the second chapter 2.4.  
 
Image classifications were evaluated with independent 
reference data which comprised of in total 496 points. These 
points were generated with a stratified random sampling 
method. Based on the land use map from the year 2000, random 
points were extracted from the 8 classes of interest. The 
properties of these points were interpreted based on the 
information from ortho-corrected photographs (1995), land use 
map from year 2000, and Landsat-7 ETM+ image (2003). 
 

The test of McNemar 

Map accuracy statements are often compared to evaluate the 
relative suitability of different classification techniques for 
mapping. Accuracy statements should be compared in a 
statistically rigorous fashion to provide a more objective basis 
for comment and interpretation (Foody 2004). In many remote 
sensing studies, the same set of ground data are used in the 
assessment of the accuracy of the thematic maps to be 
compared. For related samples, the statistical significance of the 
difference between two accuracy statements maybe evaluated 
using tests that take into account the lack of independence such 
as McNemar’s test. It is a non-parametric test that is based on 
confusion matrixes that are 2 by 2 in dimension. The attention 
is focused on the binary distinction between correct and 
incorrect class allocations. The McNemar test equation can be 
expressed as  
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the number of pixels that with one method were correctly 
classified, while with the other one were incorrectly classified. 
Z
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2 follows a chi-squared distribution with one degree of 
freedom (Agresti 1996). The statistical significance can be 
obtained with the derived z2 compared against tabulated chi-
square values. For example, with one degree of freedom, when 
the calculated z2 >= 3.84, the two classifications are 
significantly different at 0.05% level; when z2 >= 6.64, the two 
classifications are significantly different at 0.01% level; when 
z2 >= 10.83, the two classification are significantly different at 
0.001% level; and when z2 < 3.84, the two classifications are 
not significantly different. 
 

4. RESULTS 
 
4.1. Phenology of land cover types 
 
69 EVI images from 2001 to 2003 were used to monitor the 
phenology of the eight land cover types.  
 
In figure 6-2, the horizontal axis represents the 69 MODIS EVI 
data in three years from which, each year there are 23 image 
data. The vertical axis represents the EVI values of the land 
cover types from different time of the year. The 23 images from 
each year were taken every 16 days. In the example of the 
image data from 2001, roughly, image data 1 and 2 corresponds 
to data from January, 3 and 4 corresponds to February, and so 
on and so forth. The figure shows that for land cover types such 
as ‘rain fed agriculture’, ‘tropical dry forest’ and ‘grassland’, 
there are big changes in EVI values during different seasons in 
the period of three years; while for ‘lava flow’ and ‘human 
settlement’ the fluctuation of the EVI values during different 
seasons of the year is small. In the example of EVI values of 
‘tropical dry forest’, the EVI values are low for image data 1 to 
11, which corresponds in season to January – the end of May, 
dry season in México. In dry season, ‘tropical dry forest’ loses 
all the leaves and becomes totally dry, causing the rather low 
EVI values during this period. Its EVI values start to rise from 
data 11 and reach its peak on 17/18, which corresponds to the 
period from the end of May to the end of September and which 
is the rainy season in Mexico. Thus ‘tropical dry forest’ has 
high EVI values because in rainy season it regains its leaves 



 

and tends to have higher reflection in near infrared band. From 
data 18 its EVI value starts to drop and keeps dropping until 
data 28 which corresponds to March/April of the next year, 
during which the dry season starts and continues until the 
beginning of the rainy season of the next year. ‘Tropical dry 
forest’ and ‘grassland’ show evident seasonal change of EVI 
data because the growth of these two land cover types depends 
on the water from the natural rain. Other land cover types such 
as ‘lava flow’ and ‘human settlement’, having few vegetation 
cover, do not show much change in EVI values during different 
seasons of the year. Also, their EVI values are rather low 
among the eight land cover types (the EVI value of ‘human 
settlement’ is even lower than that of the ‘tropical dry forest’ 
during the dry season due to little vegetation cover).  Figure 6-2 
also shows that during the dry season, four land cover types 
‘grassland’, ‘human settlement’, ‘rain fed agriculture’, and 
‘tropical dry forest’ are not separable.  
 
Land cover types such as ‘orchard’, ‘irrigated agriculture’, and 
‘temperate forest’ show high EVI values during the year and 
small fluctuations during different seasons of the year. These 
land cover types keep green all the year round and show only 
small difference between dry season and rainy season. The 
sudden drop of the EVI value of data 11 for ‘orchards’ is due to 
the noise of image data. In rainy season, the constant presence 
of rain clouds influences the image data quality and produce 
noises. One way to derive the missing value at this point is to 
average data value 10 and 12. 
 
4.2. OBIA with single data MODIS multispectral imagery 
 
First, the multispectral MODIS image was segmented using the 
following parameters: scale factor 20, colour 0.7, shape 0.3, and 
smoothness 0.5. By giving more weights to colour factor, the 
segmentation procedure considers more spectral information. 
For the shape factor, we gave the same weight to smoothness 
and compactness for the produced objects. The selection of the 
parameters was based on the visual checking. Altogether 3518 
objects were created. In the class hierarchy, eight land cover 
classes were created and for each of them, the standard nearest 
neighbour classifier using the mean values of the spectral 
information from the 7 bands of MODIS multispectral image. 
Training samples were defined for each of the seven classes, 
and the image was classified (figure 6-4). The classified image 
was evaluated with the independent verification data which is 
comprised of 499 stratified random sample points. Error matrix 
was produced and it is shown in table 6-1. The classification 
obtained an overall accuracy 57.3%. 
 
4.3. OBIA with multi-date EVI data and multispectral 
imagery 
 
OBIA was performed with both single date spectral reflectance 
data and 69 dates EVI data. Image was segmented with only 7 
spectral reflectance bands and with the same parameters in 
order to obtain the same number of objects as the first 
classification (section 6.4.3). The same class hierarchy and the 
same training samples were used for the eight classes of 
interest. NN classifier was also used here but based not only on 
the spectral information of the reflectance data, but also on the 
69 EVI data. The image was classified and shown in figures 6-
5. In the obtained result, land cover types were visually more 
homogeneous. The classified image was evaluated with the 
same independent reference data which is comprised of 499 
stratified random sample points. Error matrix was produced and 

it is shown in table 6-2. This classification obtained an overall 
accuracy 62.5%.   
 
 
 
4.4. Comparison and discussion 
 
The two classifications were compared. The OBIA using both 
single date spectral reflectance data and multiple dates EVI data 
shows an improvement of 5.2% in accuracy than that obtained 
by using only single date spectral reflectance data. McNemar’s 
test was used to evaluate the significance of the difference 
between these two classifications. 249 pixels were correctly 
classified and 150 pixels were wrongly classified by both 
classifications, 63 pixels were correctly classified by the 
classification with both spectral reflectance and EVI data, and 
37 pixels were correctly classified by the classification using 
only spectral reflectance data. The calculated chi-square z2 = 
6.76, Checked by the significance table, the two classifications 
are significantly different, at 0.01% level. The result shows that 
the OBIA with both spectral reflectance and EVI data obtained 
the accuracy significantly higher than the classification with 
only spectral reflectance data. Further checking these two 
classifications shows that the improvement is mainly 
represented by classes ‘tropical dry forest’, ‘lava flow’, 
‘orchards’, and ‘irrigated agriculture’, which contributed 3.8%, 
0.8%, 1.0%, and 2.2% to the improvement of the accuracy, 
respectively. As shown in the accuracy assessment tables, by 
adding the EVI data, the spectral confusion between ‘tropical 
dry forest’ and ‘rain fed agriculture’ in the MODIS image was 
alleviated and it improved 15.4% the produced accuracy of 
‘tropical dry forest’. EVI data alleviated the confusion between 
‘lava flow’ and ‘tropical dry forest’; between ‘irrigated 
agriculture’, and ‘grassland’; and between ‘orchards’ and 
‘irrigated agriculture’.  
 
The MODIS spectral reflectance data contain information from 
visible, near infrared and mid infrared spectral regions which 
record the most important spectral signature of the classes for 
land cover mapping. Due to the coarse spatial resolution of 
250m and 500m, multi-spectral MODIS image was composed 
mostly of mixed pixels, which reduced the spectral separability 
between classes of interest. The multi-date EVI data helped to 
separate land cover classes which were difficult to be 
differentiated with only single date spectral reflectance 
information. For example the ‘grassland’ showed serious 
spectral confusion with ‘rain fed agriculture’ in the spectral 
reflectance image; also ‘tropical dry forest’ and ‘lava flow’; and 
‘rain fed agriculture’ and ‘tropical dry forest’. By observing 
figure 6-2, we can see that these pairs of classes exhibit 
different reflectance values and are separable using EVI data. 
 
 

5. CONCLUSIONS 

This research investigates the contribution of EVI data to the 
improvement of OBIA with MODIS spectral reflectance data. 
The evolution of the 69 EVI data collected during the period 
2001 to 2003 exhibits a strong correlation with the phenology 
of the land cover types. The results (temporal curves) were 
analyzed and various land cover types show different 
fluctuations in EVI values, which were used to improve the land 
cover classification. OBIA was carried out for land cover 
classification: one was only with MODIS spectral reflectance 
data, and the other one included also the 69 EVI images. The 
classifications were evaluated with independent verification 



 

data, and the results showed that with EVI data, the accuracy 
was significantly improved, at a level of 0.01%, by McNemar’s 
test. This paper shows that the MODIS EVI data supply 
important information not only to monitor the phenology of the 
land cover types, but to differentiate land cover types which 
were difficult to be differentiated using single date spectral 
reflectance data. 
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