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ABSTRACT:

In this paper a general fuzzy approach for segmentation-based classification is proposed. Traditional segmentation techniques focus on
partitioning imagery into image-objects with well-defined boundaries. Instead, the proposed methodology aims to produce and analyze
fuzzy image-regions expressing degrees of membership to different target classes. This approach, called Fuzzy Image-Regions Method
(FIRME), is suitable to deal with the spectrally and spatially complexity of urban landscapes. The main stages of the FIRME approach
are described, including techniques to produce such regions, alternatives to measure region attributes, and a number of methods for de-
fuzzification. The FIRME method is tested for an urban classification experiment using multi-spectral imagery from Bogota, Colombia.
Results suggest that, in complex environments, the FIRME method may be asuitable alternative to hard segmentation as it performs
well in discriminating between spectrally mixed geographic objects.

1 INTRODUCTION

Pixel-wise approaches for image classification are not usually
suitable to solve spectral mixture problems which are often found
in different remote sensing applications (Mesev, 2003), (Thomas
et al., 2003). Recent research clearly shows the advantages of
integrating spatial dimension to spectral features by using seg-
mentation based classification methods and, hence, focusing into
image-objects instead of pixels (Jensen, 2006), (de Jong and Freek,
2006). However, producing meaningful and well defined image-
objects able to represent the structural properties of the target
classes is a time consuming, iterative, and not always well suc-
ceed process (Schiewe et al., 2001), (Lang et al., 2006). This
paper aims to demonstrate that a more generic fuzzy image seg-
mentation approach is appropriate and desirable when dealing
with complex environments like urban landscapes. This paper
is organized as follows. Section 2 reviews fuzzy segmentation
concepts and introduce the general functional model of our ap-
proach. Section 3 demonstrates the potential of the proposed ap-
proach with a land-cover classification experiment in an urban
environment. Section 4 discusses the main experimental results.
Section 5 presents the concludsions.

2 FUZZY IMAGE SEGMENTATION

2.1 Fuzzy Classification: an overview

Fuzzy classification has been applied in remote sensing for nat-
ural phenomena that are distributed gradually and continuously
over space. In such cases, there are no hard boundaries dividing
geographic objects (Roberts et al., 2001). In other cases, well de-
fined objects appear blurred in images because of sensor noise,
shading and highlights. Thereby, a fuzzy classification may be
more appropriate than representing reality through sharp objects
and crisp classes (Cheng et al., 2001). Fuzzy classification meth-
ods assign gradual membership of pixels to classes measured as
degrees in[0, 1]. This gives the flexibility to represent pixels that
belong to more than one class.

The concept of these membership degrees is based on the defini-
tion and interpretation of fuzzy sets (Zadeh, 1965). An element of

a fuzzy set can have different degrees of membership to the set.
It can be full member (100% membership) or a partial member
(between 0% and 100% membership). That is, the membership
value assigned to an element is no longer restricted to two val-
ues, but can be0, 1 or any value in-between. The mathematical
function that defines the degree of an element’s membership in
a fuzzy set is called membership function. Since membership to
classes is fuzzy, there is no single label indicating to which cluster
a pixel belongs. Instead, fuzzy classification methods associate a
fuzzy label vector to each pixelxj which states its membership
to each one ofc classes:

Uj = (µ1j , . . . , µcj)
T (1)

The c x n matrix U = (µij) = (µ1, . . . , µn) is called a fuzzy
partition matrix. Based on this notion it is possible to handle
ambiguity of classes assignments when they are overlapping or
badly delineated (Kruse et al., 2007).

One of the most commonly used fuzzy classification methods
is the unsupervised Fuzzy c-Means (FCM) classifier (Fisher and
Arnot, 2007). Fuzzy interpretation of satellite imagery is usually
focused on Type-1 fuzzy sets, that is, the membership of pixels
to classes is defined by a crisp value in the range[0, 1]. Recent
research uses lower and upper bounds to describe the degrees of
pixels belonging to one specific class. By using a vector with
minimum, average and maximum membership values, a Type-2
fuzzy set is produced (Mendel, 2001). Fuzzy sets concepts have
been useful to define classification schemas for interpretation of
environmental phenomena (Fisher and Arnot, 2007). In this pa-
per, we use fuzzy sets to generalize the image segmentation pro-
cess as it has been suggested in the computer vision community
(Bezdek et al., 1999).

2.2 Fuzzy image-regions

Fuzzy segmentation is understood here as the process of convert-
ing a given multi-spectral image into a fuzzy set by indicating,
for each pixel, the degree of its membership to every target class.
Thus, fuzzy segmentation producesn images, i.e. a grey-level
image for every class, where pixels show the possibility of be-
longing to one or more of the target classes. Each output image is



Figure 1: Traditional image segmentation produces image-
objects with well defined boundaries.

Figure 2: Fuzzy image segmentation produces a set of image-
regions whith uncertain boundaries.

a thematic grouping of pixels based on their degrees of similarity
to the training samples. However, this is not a discrete grouping,
where pixels are allocated to one or another class and contiguous
pixels are aggregated to create polygons. This is a new kind of
grouping which can be referred to as fuzzy image-regions.

A fuzzy image-region has an uncertain thematic description and
also an uncertain spatial extent, i.e. it is a fuzzy-fuzzy image-
region (Cheng et al., 2001). As such, a fuzzy image-region is
not defined by a predefined outline astraditional image-objects
do. Instead, a fuzzy image-region is a fuzzy set of pixels over
a two-dimensional domain. All pixels are assigned membership
grades in the range [0, 1] indicating the extent to which each pixel
belongs to the region. Thus, a membership grade 1 indicates it
belongs fully to the region. A membership grade 0 indicates that
a pixel does not belong to the region (Verstraete et al., 2007).
Figures 1 and 2 illustrate the main difference between hard seg-
mentation which produces one single image at every scale, and
fuzzy segmentation which produces a set of as many images as
target classes exist. In this paper, fuzzy segmentation is under-
stood as the supervised process which takes early advantage of
user knowledge.

A simple way of processing fuzzy-regions is converting them into
a single layer, that is, aggregating into a single image in order to
produce a complete partition of the area into non-overlapping re-
gions. Although this way does not exploit the information-rich
content of the fuzzy regions, it provides a quick method to pro-
duce hard classes. Two basic alternatives used in such approach
are either: (i) a conditional boundary is set to define explicitly
the spatial extent of the fuzzy regions and allocate each pixel to
a specific land cover class; or (ii) a clear boundary cannot be de-
fined but there might be transition zones between objects (Cheng
et al., 2001). In the first option, the initial set of fuzzy-fuzzy (FF)
image-regions may be transformed into crisp-fuzzy (CF) image-
objects. In the second option, the output are converted into fuzzy-
crisp (FC) objects. On one hand, CF image-objects have crisp
boundaries and fuzzy interiors (i.e. memberships must be kept
within a certain range in order to avoid overlap between classes).
On the other hand, FC image-objects have uncertain boundaries
and certain cores (i.e. zones in which membership equals 1)
(Cheng et al., 2001). Although this aggregation-based approach
has been useful in previous studies, we propose a different way
for managing the uncertainty of fuzzy regions. In essence, we

Figure 3: Image classification workflow using the FIRME
method.

argue that, following the object-based image analysis approach,
fuzzy image-regions properties and relationships should be mea-
sured in order to include contextual properties in the subsequent
classification stage.

2.3 FIRMEs functional model

Figure 3 shows a simplified workflow diagram of our method
FIRME, a generic way for implementing image classification us-
ing fuzzy image-regions. It depicts a sequential development of
three stages: (i) fuzzy segmentation, (ii) feature analysis and (iii)
defuzzification. Note that knowledge inputs and feedback loops
are not shown in the diagram. The overall process of image clas-
sification is based on the concept of supervised pattern recogni-
tion, that is, that given a certain number of classes it is necessary
to allocate a new individual to one of these classes (Duda et al.,
2001). Typically, the classes of a certain number of individu-
als are known. These individuals, often referred to as a training
set, are used for selecting the relevant features or attributes of
the individuals and the algorithms for the class recognition. Next
sections will discuss the main stages of the FIRME approach for
image classification.

2.3.1 Fuzzy segmentation: The objective of this process is to
build fuzzy image-regions from the pre-processed (ambiguous)
pixels. As explained above, the fuzzy image-regions have values
restricted to the range [0, 1]. Such values represent degrees of
belonging of every pixel to the classes under study. In any pat-
tern recognition application, a number of methods for inferring
fuzzy memberships from labelled training samples to new data
are available (i.e. inference, rank ordering, neural networks, ge-
netic algorithms and inductive reasoning) (Ross, 2004). Many of
these methods have been used for remote sensing image classifi-
cation (Lu and Weng, 2007) and provide a range of capabilities to
deal with incomplete or imprecise data. Even more, they may be
used to produce fuzzy image-regions. Once a set of membership
grey-level images has been produced using any of the existing
methods, there will be one fuzzy image-region available for each
target class and the subsequent analysis may continue.

2.3.2 Feature Analysis: This process aims to define, select
and extract a relevant set of image-regions properties and rela-
tionships suitable to infer appropriate decision rules and resolve
the spectral ambiguity in land-cover classes. By default, the mem-
bership values of regions to target classes are part of the attributes
under study. In addition, intersection of fuzzy image-objects may
be conducted to detect problematic zones. A useful option for
doing this is the confusion index (CI) (Burrough et al., 1997):

CI = 1 −
[

µmaxi − µ(max−1)i

]

. (2)

whereµmaxi andµ(max−1)i are, respectively, the first and sec-
ond largest membership value of theith pixel. TheCI measures



the overlapping of fuzzy classes at any point and provides insight
for further investigating the sites with high membership values to
more than one class (Bragato, 2004).CI values are in the range
[0, 1], values closer to 1 describe zones where overlapping is crit-
ical.

Other useful indexes to analyze overlapping fuzzy-regions may
be adapted from the crisp realm (i.e. indexes commonly used for
comparison of raster maps). An index used in the present study
is the absolute normalized difference index (ANDI):

ANDI = |µiA − µiB | (3)

whereµiA andµiB are the membership values of theith pixel to
the classes A and B, respectively. The ANDI index measures the
overlapping existing between two specific classes.

Although the concept of fuzzy regions or objects has been used
in geographic information science for some time, practical imple-
mentation of specific methods suited to the spatial realm has only
recently started being developed (Verstraete et al., 2007). Well
known generic fuzzy operators include: union (UNI), intersection
(INT), complement (COM), difference (DIF), and the principles
of middle included (MID) and contradiction (CONT), and a num-
ber of specific operators for defuzzification, for instance alpha cut
(ALP) and intensification (INS) (Ross, 2004). Geometric opera-
tions (surface area, distance to a fuzzy region) and specific ge-
ographic operations (minimum bounding rectangle, convex hull)
are much more complex as a recent implementation has demon-
strated (Verstraete et al., 2007).

Also, a number of ways of measuring shape of spatial vague ob-
jects have been recently proposed (Chanussot et al., 2005) (Dilo
et al., 2006). Modelling and query of spatial vague objects using
shapelets have been proposed by (Zinn et al., 2007) and might ex-
tend the FIRME method. Although the suitability of using these
operators on the fuzzy image-regions studied here still remain to
be investigated, their application may enhance the feature vector
to be used to inferring appropriate decision rules for discriminat-
ing target classes.

2.3.3 Defuzzification: The objective of this process is to in-
fer and apply decision rules to assign full membership of the
fuzzy regions to the target land-cover classes. General defuzzi-
fication techniques include: max membership principle, centroid
method, weighted average method and mean max membership
(Ross, 2004). A simple method of defuzzification - not exploit-
ing feature analysis - uses a logical union operator like the fuzzy
t-conorm MAX operator (Ross, 2004):

µi1Uµi2 . . . Uµic = max(µi1, µi2, . . . , µi3) (4)

wheremax() indicates the largest membership value of theith

pixel or neighborhood.

As it was suggested before, a more elaborated option, akin to
GEOBIA approach, is to enrich the feature vector of member-
ships with additional attributes of the fuzzy image-regions. Then,
a variety of inferential statistical learning methods may be used
for accomplish the defuzzification stage (Lizarazo and Elsner,
2008). As it was suggested, users of specific applications have
to make decisions about suitable methods to be applied to solv-
ing a particular problem. In the next section, one implementation
of the FIRME method for an urban land-cover classification ex-
periment is reported.

(a) (b)

Figure 4: Colour compositions of QuickBird image data: (a) True
Colour (RGB321) ; False Colour (RGB432).

3 DATA AND METHODS

3.1 Data

The image used is a QuickBird multi-spectral dataset covering a
small urban area in Bogota (Colombia). QuickBird imagery is
adquired by Digital GlobeTM in four bands: blue (479.5 nm),
green (546.5 nm), red (654 nm) and near infra-red (814.5 nm).
The input data set is 352 columns x 344 rows. Spatial resolution
is 2.44 m and radiometric resolution is 11 bits. Spectral bands
are referred here to asb1 (blue),b2 (green),b3 (red) andb4 (near
infrared). Figure 4(a) and (b) show colour compositions intrue
colour (RGB321) andfalsecolour (RGB432).

3.2 Methods

The FIRME implementation in this paper relies on two statistical
inferential methods: Generalized Additive Models (GAM) and
Support Vector Machines (SVM). GAMs and SVMs are gener-
alizations of linear models (LM) which are used widely in most
branches of science (Hastie et al., 2001). Linear models are statis-
tic models in which a univariate response is modelled as the com-
bination of a linear predictor and a zero mean random error term.
In the equation 5, a variable response datum,yi , is treated as an
observation on a random variable,Yi , with E(Yi) as expecta-
tion, theǫi as zero mean random variables, and theβi are model
parameters, the values of which are unknown and will need to be
estimated using training data:

E(Y i) = β0 + xiβ1 + ziβ2 (5)

whereY i = E(Y i) + ǫi , is a linear model in whichy depends
on predictor variablesx andz.

A key feature of a linear model is that the linear predictor depends
linearly on the parameters. Statistical inference with such models
is usually based on the assumption that the response variable has
a normal distribution (Wood, 2006).

Generalized linear models (GAM) allow the expected value of
the response to depend on a smooth monotonic function of the
linear predictor. Similarly, the assumption that the response is
normally distributed is relaxed by allowing it to follow any dis-
tribution from the exponential family (i.e. normal, Poisson, bino-
mial, gamma). Moreover, a GAM is a GLM in which part of the
linear predictor is specified in terms of a sum of smooth functions
of predictor variables. The exact parametric form of these func-
tions is unknown, as is the degree of smoothness appropriate for
each of them. Statisticians state that, by going from linear models
through GLMs to GAMs, such models become better able to de-
scribe the reality and the methods for inference more consistent
but less precise (Wood, 2006).



Table 1: Land-cover classes code and description
Code Land-cover class Observations

148 Roads
180 Rooftops 1 Medium reflectance
183 Rooftops 2 High reflectance
311 Grass
325 Trees
521 Water Body
731 Bare Soil

On the other hand,Support Vector Machines(SVM) are robust
classifiers which transform the original feature space into a new
one using a kernel function, and then use a selected number of
samples located in the boundaries of classes- as support vectors
to discriminate target classes. Available kernels include: linear,
polynomial, radial basis function and sigmoid. The kernel trans-
formation (or kernel trick as many authors refers to it) allows
finding a new feature space in which linear hyper-planes are ap-
propriate for class separation. Separating boundaries are non-
linear in the original feature space (Hastie et al., 2001). SVMs
are becoming a popular technique for regression and classifica-
tion tasks.

For theFuzzy Segmentationstage, a GAM model was fitted using
a small training sample whose class labels are known. Training
sample, shown in Figure 4(a), comprises 324 pixels which ac-
count for less than 0.5 % of the image size. We use an additive
approach to model the presence/absence of every land-cover class
ci, as

logit(E(Y i)) = f(b1i, . . . , bni) (6)

wherelogit(E(Y i)) = log(E(Y i)/(1−E(Y i))), f is a smooth
function of the principal component transformation of the multi-
spectral variables,b1i, . . . , bni aren predictor variables, andci
is a binomial function(1, E(Y i)).

For theFeature Analysisstage, R functions were written in order
to compute CI index for the whole set of fuzzy-regions, and the
ANDI indexes for the pairs of most problematic classes. Then,
fuzzy membership of image-regions plus these indexes were used
as feature vector.

For the finalDefuzzificationstage, a Support Vector Machine was
used to discriminate final crisp objects. We use a radial basis
function to transform from the original feature space to a new
one linear space, to be able to assign a crisp land-cover classci

using the fuzzy predictors, as indicated in this model:

E(Y i) = SV M(K(µi1, . . . , µic, ø1, . . . øn)) (7)

where K is a radial basis kernel applied toc fuzzy image-regions
(µic) andn fuzzy operators (on), in order to find SVM vectors
able to classifyci as a multinomial function of(E(Y i)). As
a final step, an evaluation of thematic accuracy was conducted
using a testing sample, shown in yellow colour in Figure 4(b),
accounting for 0.5% of the image size. Classs labels follow the
USGS Anderson land-cover codes (Anderson et al., 1976) shown
in Table 1.

FIRME’s implementation was done usingR, a free software en-
vironment for statistical computing and graphics (Bivand et al.,
2008). Besides theR base package which provides basic statisti-
cal capabilities, additional packages likergdal, spandmaptools,
gamande1071were used. They provide, respectively, functions
for reading and writing images in standard formats, creating and
manipulating spatial classes, building generalized additive mod-
els and applying machine learning algorithms.

(a) (b)

(d)(c)

(e) (f)

Figure 5: Fuzzy Image-Regions representing membership to
land-cover classes. (a) Roads, (b) Rooftops, (c) Grass, (d) Trees,
(e) Water, (f) Bare Soil. Light tones represent high degrees of
membership.

4 RESULTS AND DISCUSSION

In the Fuzzy Segmentation stage, a GAM model was fitted using
the following formula:

LAND.ABC = s(b1 + b2 + b3 + b4 + b5 + b6) (8)

whereLAND.ABC stands for each one of the different land-
cover classes (i.e LAND.148, LAND.180, and so on),s is a smooth
function, b1, b2, b3 andb4 represent the principal components
transformation of the original multi-spectral channels, andb5 and
b6 represent thex and y coordinates normalized to the range
[0, 1].

Quality indicators of the GAM model fitting, that is, Null de-
viance, Residual deviance and Akaike Information Criteria (AIC)
of each predictor variable, are shown in Table 2. Note that model
fitting quality for natural classes (grass, trees, water and bare soil)
outperforms quality for artificial classes (roads and rooftops).

Fuzzy Image-Regions obtained for every target land-cover class
are shown in Figure 5: (a) Roads, (b) Rooftops, (c) Grass, (d)
Trees, (e) Water and (f) Bare Soil. Light tone represents high
degrees of membership.

In the Feature Analysis stage, standard fuzzy operations were
conducted in order to produce the global confusion index (CI) and
to evaluate the Absolute Normalized Difference Index (ANDI)



Table 2: GAM models’ quality indicators
Code Null dev. Resid. dev. AIC

148 390.23 100.23 74 184.22
180 377.69 121.69 67 201.68
183 88.93 0 100 50.00
311 305.48 0 100 50.00
325 165.26 0 100 50.00
521 175.30 0 100 49.99
731 132.76 0 100 50.00

Table 3: Confusion matrix for land-cover classification using
FIRME method. PCC= 0.86. Kappa value = 0.82

Map Road Roof Grass Trees Water Soil

Road 135 30 1 5 0 1
Roof 18 116 0 1 0 7
Grass 1 1 60 0 0 0
Trees 0 0 1 43 0 0
Water 0 0 0 0 34 0
Soil 0 3 0 0 0 21

PR0D. 0.88 0.77 0.97 0.88 1.00 0.72

for the following pairs of spectrally similar classes: Roads and
Rooftops1, and Roads and Rooftops2. Figure 6, depicts global
CI and the two relevant ANDI indexes. ANDI index for Grass
and Trees are also shown for reference. These images show that
natural classes (i.e. Trees, Grass, Water and Soil) are relatively
easy to discriminate. On the contrary, Roads and Rooftops are
very confusing classes.

In the Defuzzification stage, a SVM classifier with radial basis
kernel was applied. Predictor variables were set to the seven
fuzzy image-regions, the CI index and the two relevant ANDI
indices (ten predictors in total), as indicated in the following for-
mula:

LANDCOV ER = g(f1 + f2 + f3 + . . . + f10) (9)

whereLANDCOV ER stands for the multinomial categorical
response,g is the SVM-based classification function, andf1 to
f10 represent the predictor variables.

The training sample was the same set of points used for the fuzzi-
fication stage. The fitted model uses 129 support vector and a
gamma value of 0.071. Figure 7 (a) shows the final land-cover
classification obtained using FIRME. As reference, a classifica-
tion obtained by using a single level hard segmentation approach
is shown in (b). Its apparent that FIRME results look cleaner
than hard segmentation output. Global Kappa Index of Agree-
ment (KIA) for the FIRME classification is 80%. Confusion ma-
trix is shown in Table 3. Note that confusion between Roads and
Rooftops is not completely solved.

Results show that the FIRME approach leads to good accuracy
for land-cover classes. Hence, it is suggested that fuzzy image-
regions provide information which is potentially useful to en-
hance the classification of remotely-sensed images covering com-
plex landscapes. Although the KIA index obtained in our exper-
iments is acceptable for most practical purposes (82%), bound-
aries of land-cover classes lack of a better definition and a poste-
rior integration into a vector GIS may cause problems. A further
investigation on the influence of using additional fuzzy properties
and relationships on thematic accuracy should be conducted. In

(a) (b)

(d)(c)

Figure 6: Images derived in the Feature Analysis stage: (a) CI
index for the whole set of classes, (b) ANDI index for Roads and
Rooftops1, c) ANDI index for Roads and Rooftops2, d) ANDI
index for Grass and Trees. White corresponds to 1.0 and black
corresponds to 0.0. Dark tones represent zones where degrees of
membership are competing.

addition, post-classification methods should be also tested care-
fully. It has been proved that using standard techniques, like ma-
jority filtering, for eliminating noise and smoothing images, may
modify susbtantially the classified image and the final accuracy
(Rencai et al., 2006).

5 CONCLUSIONS

The contribution of this paper is summarized as follows:

• A general and flexible GEOBIA method, based on fuzzy
sets, has been proposed for the classification of remotely
sensed images, and

• Experimental results demonstrate that it produces good the-
matic accuracy in complex urban environments.

FIRME, the new method, uses Fuzzy Image-Regions properties
as basis for classification. Fuzzy Image-Regions is a set of over-
lapping images representing degrees of memberships to compet-
ing land-cover classes. By analyzing relationships between the
fuzzy image-regions contextual attributes are integrated into the
vector of features used to discriminate between spectrally mixed
classes. The initial fuzzification of the multispectral image and
the posterior defuzzification are conducted using statistical learn-
ing methods. FIRME has been implemented usingR a robust
statistical language and environment.

The proposed method has the following advantages compared to
object-based image classification using commercial software: (i)
Simplicity: Except for providing a training sample, users do not
need to tweak scale or shape parameters, (ii) Flexibility: Users
can choose any learning statistic method for conducting the fuzzi-
fication and/or defuzzification stages, and (iii) Low cost: Users



( a ) (b )

Figure 7: Final land-cover classification: (a) using FIRME
method (PCC=0.83); (b) using crisp image-objects (PCC=0.70).
Classified images show Road in gray, Roof1 in orange, Roof2 in
cyan, Grass in light green, Trees in dark green, Water in blue and
Bare Soil in yellow.

may use free open source software tools for conducting accurate
remote sensing classification.

A further development of FIRME is to explore additional rela-
tionships and properties of fuzzy image-regions –only a few of
them were used in the presented experiments. Hence, our future
work will use geometric and contextual attributes which prove be
relevant for improving the image classification process. It will
also include testing the combination of SVM techniques with de-
cision trees methods in order to produce understandable classifi-
cation rules.
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