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ABSTRACT: 
 
Virtually all segmentation methods require parameter tuning, quite a difficult task, mostly performed manually through a 
troublesome trial-and-error process. To overcome this difficulty, an earlier work describes an automatic parameter adjustment 
method using Genetic Algorithms (GAs), given an initial set of reference object samples. The method performs well only for 
homogeneous objects. However, in most real applications, the meaningful image objects are actually non-homogeneous, or rather, an 
ensemble of usually few homogeneous segments. This work addresses this issue and proposes a supervised GA-based method to 
automatically adjust the values of segmentation parameters in applications where meaningful objects are inhomogeneous, though 
formed by an assembly of homogeneous parts. Moreover the work introduces a post-segmentation procedure that merges adjacent 
segments into single units, which match the geometric form of the interest image objects. Specifically, a metric for detection of 
polygonal arrangements of segments is proposed herein. Experimental analyses evidence the higher performance of the new method 
for adjusting segmentation parameters in comparison with the earlier approach. The experiments also attest the ability of the 
proposed post-segmentation metric to detect polygonal shapes.  
 
 

1. INTRODUCTION 

Segmentation is the first and most important step in object 
based image analysis. This is not a simple task due to a number 
of reasons. One of them refers to the determination of parameter 
values for the segmentation algorithm. These should yield 
segments that are consistent with the meaningful objects in that 
particular application.  However, the relation between the 
parameter values and the segmentation outcome is far from 
being obvious. Hence, tuning accordingly often incurs a time-
consuming frustrating series of trials and errors. 
 
Feitosa et. al. (2006) propose an automatic method, in which a 
Genetic Algorithm (GA) searches the parameter space for the 
(near) optimum values. Optimality is then established by a 
fitness function that measures the level of agreement between 
the segmentation outcome and a set of analyst provided sample 
objects. The reported experiments attest that, indeed, the 
method performs well for homogeneous objects. 
 
In real applications, however, meaningful objects are often non-
homogeneous, though formed by an assembly of homogeneous 
parts. This paper addresses the detection of such objects. A new 
fitness function was also designed to favour segmentation 
results that match the sample objects with a minimum of 
segments. 
 
Once the (nearly) optimum set of parameter values was found 
and the image was segmented, a so-called post-segmentation 
procedure analyses the groups of adjacent segments that 
correspond to each of the interest objects. This issue has been 
addressed in Korting (2006), where a self-organizing map 
(SOM) infers from examples if a group of adjacent segments 
fits the type of image objects the analyst is after. 
 
A heuristic search for groups of adjacent segments that match 
an explicit object description is the alternative proposed herein. 

This method can potentially be applied to a variety of object 
types, as long as an appropriate description in terms of 
measurable attributes can be provided. However, the 
forthcoming analysis concentrates on the problem of detecting 
residences. The paper presents two novel geometric metrics to 
describe rooftops appearing in high-resolution images. 
 
The contribution of this work is twofold. First, a novel GA-
based algorithm is proposed to adjust the values of 
segmentation parameters in applications where the interest 
objects are inhomogeneous.  
 
Second, a new post-segmentation algorithm is introduced for 
determining the arrangement of segments produced by a prior 
segmentation step that best fits the interest objects.  
 
The overall accuracy of the post-segmentation – as well as its 
processing time – is intimately dependent on the actual 
segmentation quality, thus justifying the joint approach to both 
issues. 
 
This paper is organized as follows: the next section introduces 
the technique applied to the automatic adaptation of 
segmentation parameters; section 3 addresses the segmentation 
quality assessment measure; sections 4 to 6 present, 
respectively, the integral post-segmentation procedure, the 
methodology implemented on the operator design and the 
experimental analyses together with their respective results. All 
of which followed by some concluding remarks. 
 
 

2. EVOLUTIONARY TUNING OF SEGMENTATION 
PARAMETERS 

The key to a high segmentation quality lies in determining 
suitable values for each one of the parameters of a given 



 

technique. However, stating the relation between those and the 
algorithm’s outcome is hardly ever possible. 
  
The user can undertake this tuning step manually. Nevertheless, 
the massive number of possible parameters configurations 
enforces the adoption of an automatic search algorithm for this 
matter. 
 
In this study, the way of dealing with the parameters tuning 
issue for the segmentation stage is as formerly introduced in 
Feitosa et. al. (2006), a publication addressed to the description 
of an early version of the method adopted and briefly depicted 
in the remaining of this section. The tuning quality evaluation 
itself, nevertheless, deserved an individual section, since a 
novel measurement was specially devised for this particular 
problem of inhomogeneous objects detection.  
 
The standard classical definition of Genetic Algorithms (GAs) 
states that they are stochastic algorithms of search and 
optimization based on genetic inheritance and Darwinian strife 
to survival. They should be perceived, nonetheless, as a 
heuristic for finding the optimal solution to a problem, 
conducted by parallel search, rather than by exhaustion or a 
troublesome and time consuming trial-and-error process. 
 
In this specific application, the optimal solution is the set of 
parameters values, which minimises the function that represents 
how well the segmentation outcome fits a group of reference 
segments provided by the user. Furthermore, the searching 
heuristic is compounded of several (genetic) operators. The 
candidates for the (near) best solution – or chromosomes – must 
carry the information corresponding to the segmentation 
parameters in some designer-defined representation. 
 
 

 
 

Figure 1.  Basic GA architecture 
 

Figure 1 displays the basic architecture of a generic GA. 
Additionally, Figure 2 presents a schematic of the whole 
segmentation evaluation process underwent by every single one 
of the chromosomes in the population created – or renewed – at 
each generation. The schematic is actually the detailed 
procedure concerning the “Fitness Evaluation” block (Figure 1), 
when applied to the particular segmentation parameters 
calibration problem. 
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Figure 2.  Segmentation evaluation block diagram 
 

 
3. SEGMENTATION EVALUATION 

Since the candidates for optimal solution are matched against 
each other by the fitness function – which is actually the 
optimization problem statement itself – it must draw special 
designer’s attention.  
 
Figure 3 depicts all entities featured in the function devised for 
the parameters tuning and given by equation (1). 
 
 

 
 

Figure 3.  Graphical representation of all entities featured in 
 the fitness function 

 
Let us first assume that there are N reference segments 
delineated by the analyst. We denote by iRSA  (for i=1,…N) 
the area of the ith reference segment, expressed in pixels. Let 
also iΩ  be the set of segments produced by the segmentation 

algorithm and that have at least half of their pixels in the iRSA  

domain. With some abuse of notation, the symbol iΩ  stands, as 



 

well, for the set of pixels belonging to any segment in iΩ . Let 
us further consider 

• fpi  as the number of pixels in iΩ  that do not belong 
to the ith reference segment; the so-called false-
positives; 

• fni  as the number of pixels in the ith reference 
segment that do not belong to iΩ ; the so-called false-
negatives;  

• ib  as the number of border pixels in iΩ  that 
intersect the ith reference segment area , and 

• NS  as the number of non-empty iΩ . 
 
The fitness function then used by the GA to measure the 
segmentation quality is defined as 
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The behaviour of the function given above is worth being 
considered with care. First, both ifp  and ifn  terms favour 
solutions with a tight overlap with the reference segments, 
which most likely leads to solutions consisting of numerous 
small (in the limit of single-pixel) segments. The ib term 
counterbalances this effect by granting a lower score to 
solutions with few, larger, segments. 
 
Second, it can be easily demonstrated that F lies within [0 1], 
whereby F=0 corresponds to a perfect match between a 
solution and the set of reference segments. A noteworthy fact 
concerning the NS term is that it equals zero, when all segments 
produced by the segmentation algorithm have less than 50% 
overlap with the reference segments. In such cases, F is set to 1. 
 
 

4. POST-SEGMENTATION PROCEDURE 

This section presents an overview of the post-segmentation 
procedure.  
 
4.1 Terminology 

In order to ease the understanding of this and the subsequent 
sections, some terms are defined bellow. 
 
Segment Sub-Cluster: Group of segments, sharing a specific 
property, whose union forms a single connected component.  
 
Segment Cluster: A segment sub-cluster containing no further 
adjacent segments with the property that establishes the 
membership to the sub-clusters. 
 
Winner Sub-Cluster: The most suitable segment sub-cluster 
within a cluster, according to pre-defined criteria. 
 
4.2     General Description 
 
The block diagram in Figure 4 illustrates the whole object 
detection method. The bold frame surrounds the stages 

concerning post-segmentation procedure and the rectangular 
boxes denote the processing blocks.  
 
 

 
 

Figure 4.  Inhomogeneous objects detection system 
 
The accuracy and the computational performance of the post-
segmentation procedure depend essentially on the quality of the 
segmented image produced in the foregoing step. In this 
context, quality is an assessment of how well each interest 
object matches some arrangement of few adjacent segments. 
 
The first post-segmentation step is carried out by a 
segmentation filter, which eliminates from the succeeding 
analysis all segments that do not meet a set of necessary 
conditions to be part of an interest object. Such conditions are 
formulated primarily by the characteristics of the interest 
objects as well as their context in the image. The segmentation 
filter may be viewed as a two-class classifier whose design and 
optimal parameter values are application dependent. In effect, it 
plays an important role in the whole procedure by reducing the 
problem complexity and consequently the processing time 
associated to the next step. 
 
The filter outputs the segment clusters to be processed by the 
post-segmentation operator, which yields the winner sub-
clusters, i.e. the final result of the whole post-segmentation 
procedure. 
 
 

5. POST-SEGMENTATION OPERATOR 

Apart from the new approach for the adaptation of segmentation 
parameters introduced in sections 2 and 3, a major contribution 
of this paper relates to the post-segmentation operator, which 
receives as inputs the filtered label images.  
 
A further input to the post-segmentation operator is the set of its 
own parameters values. The optimum set depends on both the 
characteristics of the image to be post-processed and the interest 
objects themselves. The post-segmentation parameters 
calibration is analogous to the problem addressed in section 2. 
This task can be performed either manually or by using GA or 
yet some other optimization method. Despite of its importance, 
a detailed discussion on this issue cannot be properly conducted 



 

in this paper due to space restrictions. Thus, it is assumed 
henceforth that suitable parameters values have been provided 
somehow. 
 
The post-segmentation operator processes all segment clusters 
separately. For each cluster, the shapes of their sub-clusters are 
individually evaluated on how well they fit the geometric form 
of the interest objects. 
 
Thus, the evaluation metric must be devised as to compare a 
given sub-cluster to a mold that is representative of the objects. 
The operator then applies it to all segment sub-clusters and 
elects a winner.  
 
5.1 Fitness Metric  

This subsection describes the metric devised for detecting 
polygonal objects whose edges are mainly parallel or 
perpendicular to one another.  
 
The Hough Transform for line fitting is applied to find the 
edges contouring each segment sub-cluster. The sub-cluster 
fitness metric M relates to the number of existing parallel and 
perpendicular edges detected by the Hough Transform, 
weighted by their length.  It is given by equation (2).  
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where il  is the thi  edge length in pixels, and θi (θj) is the ith 
(jth) edge angle in degrees. Only significant edges are 
considered in the above equation. To qualify as significant, an 
edge must fulfill a number of parameterized requirements, 
which are given by part of the post-segmentation parameter set. 
  
The following considerations help to understand the reasoning 
behind this equation. The |θj- θi| term is the angle formed by the 
ith  and jth edges. Thus, a low value of 
 

( )ijij
θθ −

≠
min  

 
implies there is another edge in the sub-cluster that is nearly 
parallel to the ith edge. Analogously a low value of  
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means that there is another edge in the sub-cluster nearly 
orthogonal to the ith edge. In consequence, M is expected to be 
close to zero if the sub-cluster contour consists mostly of 
parallel and perpendicular straight lines. After the clusters 
processing is completed, all winners have their evaluations 
normalised between 0 and 1.  
 
This metric can be easily adapted for detecting other regular 
polygonal shapes. For hexagonal objects, for instance, the 
constant 90° is replaced by 120° in (2). In such case, parallel 
edges play the same role as before. 

The lower threshold (Mmin) is another parameter of the post-
segmentation operator. If a winner sub-cluster is given an 
evaluation lower then Mmin, it is cast aside. 
 
 

6. EXPERIMENTAL ANALYSIS 

A software prototype implementing the proposed method was 
built for validation and applied to the problem of detecting 
residential rooftops on high-resolution optical satellite images 
cropped from Google Earth®. 
 
The watershed-based segmentation algorithm described in Mota 
et al. (2007), was used in all experiments. The GA fitness 
function for determining the (near) optimal segmentation 
parameters values is given by equation (1).   
 
In Experiments 2 and 3, the segmentation filter relied 
exclusively on radiometric attributes. A detailed description of 
such filter can not be accommodated herein. Basically, it was 
designed to ideally suppress all segments that weren’t brownish 
to reddish. 
 
The accuracy of the post-segmentation outcome is given by a 
metric computed in the following way. A logical matrix having 
the same number of rows and columns as the input image 
represents the post-segmentation output. Its elements are equal 
to “1” in positions corresponding to pixels of the winner sub-
clusters and “0” otherwise. A target matrix with the same 
format was created manually to represent the ground truth, i.e., 
the ideal post-segmentation result, regarding the prior 
segmentation outcome. The performance quality is expressed 
by the similarity, given by the proportion of positions where the 
output and the target matrices agree and that do not correspond 
to filtered areas (i.e., positions equal to “0” in both matrices). 
 
The processing time measures reported in Experiments 2 and 3 
refer only to the post-segmentation operator – implemented in 
the MATLAB® environment – and to tests conducted in a 
Pentium Duo Core Processor (2.80 GHz – 2 Gb RAM 
Memory). The GA was implemented in C# and Experiment 1 
was conducted in the same computer. 

 
6.1     Experiment 1 
 
This subsection describes the experiments conducted to validate 
the proposed extension to the GA-based method for automatic 
tuning of segmentation parameter values. 
  
The input data for this experiment is the 402×382 RGB image 
of Figure 5a and the reference sample segments of Figure 5b.  
 
Figures 5c and 5d show, respectively, the segmentation results, 
if applying the parameter values tuned by equation (1) and the 
ones resulting from the fitness function proposed in Feitosa et 
al. (2006). The same C# implemented GA was adopted in both 
tests. Each segmentation evaluation was completed in 
approximately 280 ms. 
 
A comparison between Figures 5c and 5d shows that the new 
proposed fitness function yields fewer segments for each 
interest object appearing in the image. This typical behaviour 
may be attributed to the bi term, added to penalise segment 
borders that cross the interior of reference objects. This was the 
fitness function adopted in both subsequent experiments. 
 



 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 5.  Experiment on segmentation parameters tuning:  

a) input image; b) reference objects; c) proposed     
method outcome; d) original method outcome 

 
6.2     Experiment 2 
 
This experiment investigates the performance of the post-
segmentation operator for detecting rectangular rooftops. Figure 
6a shows the input image (386×240 pixels). 
 
Figure 6b presents the filtering step result. The post-
segmentation operator used the M metric exactly as stated by 
equation (2). Figure 6c shows the winner sub-clusters. The 
inhomogeneous objects were overall successfully detected, 
exception made to the fourth rooftop from top to bottom in the 
middle column. Notice that the left out segments form a 
rectangular object themselves. Although the winner election 
method prioritises larger sub-clusters, the one without those 
segments was still granted a higher grade. 
 
Table 1 presents the attained performance in terms of similarity 
to the target result and processing time.  
 
 

Performance  
similarity 95.9 % 

processing time 28min 46sec 
 

Table 1.  Post-Segmentation performance in Experiment 2 
 
6.2     Experiment 3 
 
In order to test the performance of the method for objects of 
different forms, an image containing hexagonal rooftops was 
taken under consideration. The M metric of equation (2) 
underwent the alteration suggested in 5.1 for hexagonal objects 
and the procedure was applied as in the previous experiment, 
without any further changes. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 6.  Post-segmentation results; a) input image;  

              b) segmented image; c) detected objects  
 
The 292×325 pixels input image is shown in figure 7a. Clusters 
obtained after filtering are depicted in Figure 7b. 
 
Figure 7c presents the winner sub-clusters. Notice that the little 
protrusions on top of both hexagons are part of the larger 
segments and, therefore, couldn’t possibly be eliminated by the 
operator; despite the fact that they are not parts of the real 
objects. Nevertheless, the operator was able to find the best sub-
cluster for both rooftops appearing in the input image. It is also 
interesting to note that the amorphous segments seen in Figure 
7b are not present in the final outcome shown in Figure 7c. 
Since they are clusters themselves, each of them should be the 
only possible winner sub-cluster within their cluster. However, 
they were all discarded because the (normalised) evaluations 



 

returned by the M metric were below a user-selected threshold 
(Mmin).  
 
 

 
(a) 

 

 
(b) 

 
(c) 

 
Figure 7.  Experiment on post-segmentation: a) input image; 

 b) segment clusters; c) post-segmentation result  
 
Table 2 shows the performance achieved in terms of similarity 
and processing time. 
 
 

Performance  
similarity 99,8 % 

processing time 1min 7sec 
 

Table 2.  Post-Segmentation performance in Experiment 3 
 
Tables 1 and 2 show that results attained in Experiments 2 and 
3 were quite similar. The experiment series conducted so far is, 
however, still insufficient for a definitive judgment of the 
proposed methods. Nevertheless, these results encourage this 
investigation to go on. Taking into account the image sizes in 
Experiments 2 and 3 and the associated processing times, the 
demand for a more efficient search algorithm to find winner 
sub-clusters becomes evident.  
 
 

7. OVERALL EVALUATION AND CONCLUDING 
REMARKS 

This paper proposes an extension to a previous work for the 
automatic adaptation of segmentation parameters. Specifically, 
an alternative fitness function – which copes with 
inhomogeneous objects composed of few homogeneous parts – 
was embedded in the new Genetic Algorithm. The proposal has 
been tested for a number of images and types of objects and the 
result of a sample experiment was reported. Generally, the 
proposed extension outperforms the original method, when 
applied to non-homogeneous objects.  
 
A second contribution is a post-segmentation procedure that 
automatically finds, among segments provided by a foregoing 
step, the arrangements of homogeneous segments that best fit 
the meaningful image objects. The experimental analysis 
conducted so far and partially reported in this document, 
showed encouraging results.  
 
Nevertheless, design alternatives weren’t yet exhausted and 
must be approached in the ongoing research. Despite the fact 

that the software environment used for the experimental 
analysis is computationally inefficient, the processing time 
observed for some experiments was still significant. The 
exhaustive search as considered in this paper is acceptable, 
regarding such terms, only in cases where the number of 
segments to be arranged into a meaningful object is low. In this 
respect, the most important issue is the development of a non-
exhaustive search method for segment sub-cluster computation.  
 
The segmentation filtering technique is also worthy of further 
investigation. Naturally, the number of segments to be 
processed by the post-segmentation operator might drop 
significantly with the increase of its efficiency.  
 
Another issue concerns the automatic parameter tuning for the 
post-segmentation operator. A solution similar to the one 
presented in this text for the segmentation algorithm is an 
approach worth being considered.  
 
Finally, variants of the proposed Hough Transform-based 
metric for detecting meaningful objects of different forms 
should be taken under consideration, as well. 
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