
IMAGE-TO-MAP CONFLICT DETECTION USING ITERATIVE TRIMMING :
APPLICATION TO FOREST CHANGE

Radoux, J. and Defourny, P.

Department of Environmetrics and Geomatics
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ABSTRACT:

Large scale vector databases are valued tools for forest management. It is therefore important to keep these databases up to date and
various change detection methods have been designed in this aim. Recently, object-based iterative trimming was successfully used to
detect change in temperate and tropical forests. The goal of the present study is to transfer this image-to-image method in an image-
to-map application. This study focuses on the detection of clear cuts and forest regeneration areas in a multi-spectral Quickbird image.
Various steps were necessary to bridge the gap between this image and the vector database. In order to reduce the effects of residual
parallax, the vector database was modified along forest boundaries using the viewing parameters of the satellite. Besides, the image
was segmented with a large homogeneity constraint in order to produce ”pure” image-objects. Eventually, the resulting image-objects
were automatically labeled using the information from the modified vector database, and the trimming algorithm was run for each forest
class. The hypothesis behind iterative trimming is that objects belonging to the same class share similar characteristics (e.g. spectral
reflectance). In other words, they belong to the same distribution. The class distribution was estimated using a non parametric method
in order to fit to the data even with complex distributions. The chosen method used kernel density estimates to build the probability
density function. Outliers were excluded based on a density threshold and the new parameters of the distribution were reprocessed until
the all objects are above the new threshold. The resulting outliers included the majority of the discrepancies between the image and the
map in the forest areas. About 50 % of the forest regeneration and 100 % of the clear cuts were properly detected. It is a promising way
to improve semi-automated map updating because the training dataset is the vector database itself. However, further work is needed to
test the method on other land cover types and to move from the detection toward the classification of the discrepancies.

1 INTRODUCTION

Large scale vector databases are valued tools for forest manage-
ment and Geographic Information System (GIS) have been used
in manifold forest application such as forest pest models (White,
1986) or fire management (Lowell and Astroth, 1989). Keep-
ing these database up to date is a real challenge because of the
cost of the field surveys in often remote areas and the frequency
of change due to exploitation and natural hazards (storms, in-
sects...). Very high resolution remote sensing gives the oppor-
tunity to update forest maps at lower costs. Nevertheless, semi-
automated processes are still to be develop in order to provide
operational tools for change detection.

Change detection algorithms provide valuable tools toward the
automation of map update. Broadly speaking, there are two main
approaches for change detection : post-classification comparison
or change mask classification. In the first case, two images are
classified, independently and with the same legend, and the re-
sulting maps are crossed or combined with specific decision rules.
This approach suffers from error propagation and misregistration
but gives straightforward information about the type of change.
In the second case, corresponding pixels or objects of different
dates are processed together in order to produce a change mask,
most of the time without information about the type of change
(Coppin et al., 2004, Lu et al., 2004).

Different image-to-image change detection algorithm have been
applied successfully on forest/non forest change. Recent stud-
ies (Stow et al., 2008, Hyvönen and Anttila, 2006) used object-
based classification (respectively nearest-neighbor and discrimi-
nant analysis) with bi-temporal aerial photographs. These meth-
ods showed good performance on the dataset but relied on train-

ing samples which may be costly to produce. The LTA-SVM al-
gorithm (Huang et al., 2008) used support vector machine (SVM)
on automatically selected training based with the assumption that
forests were the darkest vegetation type. Unfortunately, this method,
appropriate with Landsat images, cannot be applied on very high
spatial resolution images because enlightened tree crown pixels
are then as bright as other vegetation types. Another approach
used iterative trimming on multi-temporal image-objects with the
assumption that outliers in the distribution were likely to be forest
change (Desclée et al., 2006, Duveiller et al., 2008). This method
required a probability threshold to be adjusted, which could be
used for the whole images dataset.

Image-to-vector land cover change detection algorithms are less
common that the former. Nevertheless, there is a great potential
coming from conflation or integration methods, where the infor-
mation from two digital maps are combined to produce a third
map which is better than each component sources (Cobb et al.,
1998). Based on matching algorithms, these methods are used
for boundary deconflicting (Butenuth et al., 2007) or network
registration (Chen et al., 2006) using, e.g., edge detection filter
and snakes. Other applications used both image and vector to
evaluate forest damages (Schardt et al., 1998), but image classi-
fication often remained a necessary intermediate step for confla-
tion. Nevertheless, recent studies achieved automated detection
of new buildings based on color information (chrominance) ex-
tracted from matching buildings between a vector database and a
aerial photograph (Ceresola et al., 2005). A similar approach was
used to classify land cover thanks to training areas extracted from
the vector database (Walter, 1998), but in this case the presence
of discrepancies inside the training dataset and the spectral het-
erogeneity inside the land cover classes reduced the accuracy of
the classification.



This study proposes a hybrid method using image processing and
GIS techniques in order to detect discrepancies between a single
satellite image and a vector database. The proposed method is
applied on change detection in temperate coniferous and decidu-
ous forest stands subjected to regular logging, where most of the
discrepancies are due to forest change.

2 DATA AND STUDY AREA

The study area is located in Southern Belgium and covers 40km2

of a rural landscape including forests, agricultural land and small
villages. The forests in this area are very fragmented temperate
forests including a dozen of different coniferous and deciduous
species ranging from regeneration to mature (up to 100 years old)
stands. It is covered by a Quickbird image and a vector database
based on the Belgian National Geographic Institute (NGI) data.

The multispectral Quickbird image was taken in summer 2006
and was provided as a orthoready product. It was orthorectified
using the Rapid Polynomial Coefficient provided with the prod-
uct and a 1/50 000 digital elevation model. The ground control
points were located from the vector database and the RMSE of
the orthorectification model was around 2 m at ground level. The
image was resampled at 2.8 m using a cubic convolution.

The vector database was composed of a 1/10 000 reference database
from the Belgian NGI and was complemented by a field survey in
2005. The NGI map achieved 1 m accuracy on non generalized
objects. This study focused on pure coniferous and deciduous
forests. They were distinguished in two classes on the map and
covered about 25% of the total area.

3 METHOD

In this study, the primary assumption is that the vector database
is a reliable source of information and that changes occur on lim-
ited areas. The detection of the discrepancies between the vector
database and the image consisted in three steps. First, the GIS
database is edited to account for residual parallax shift (section
3.1). Second, the image is segmented and labeled based on the
GIS database (section 3.2). Third, potential outliers are identified
using iterative trimming (section 3.3).

3.1 Secondary GIS database

The large scale vector databases from the NGI was produced
thanks to the photo-interpretation of aerial photographs comple-
mented with field surveys. Each land cover type is clearly de-
scribed in terms of actual content and delineation characteris-
tics. The representation of the objects in the database is also
constrained with some cartographic rules such as minimum map-
ping unit or edge generalization. Remote sensing imagery gives
a snapshot of the reality that differs from a categorical map in
several aspects : (i) boundaries are not generalized and are some-
times fuzzy, (ii) a given class may have different phenology due
to, e.g., vegetation seasonality or thematic generalization, (iii)
some objects are hidden by others and some edges suffer appar-
ent shift due to parallax and shade effects. Parallax effects can
be corrected on the image when the orthorectification uses a dig-
ital surface model (DSM), but this creates gaps where there was
no visibility, which are commonly filled with neighboring pixel
values. Instead of this, the image to map comparison was per-
formed based on a secondary vector database where the shadows
and the parallax effects were modeled(equation 1). This simple
trigonometric model used the mean satellite zenith and viewing
angles to predict parallax, which is precise enough with regards

to the spatial resolution of the satellite image. The apparent shift
S was calculated in the direction of viewing azimuth angle based
on stand height (H) and viewing zenith angle (V ZA). Shad-
ows were modeled the same way using the solar angles instead of
viewing angles. Spatial decision rules were then used to combine
the different layers consistently with the visibility from space.
For instance, shadows were hidden by the shifted tree crowns
and buildings but occluded other land cover types at ground level.
This created a secondary GIS database used in section 3.2.

S = tan(V ZA) ∗H (1)

3.2 Image pre-processing

The labels of the GIS database were used as a priori information
in order to classify the Quickbird image. To do so, the orthorec-
tified Quickbird image was segmented using Definiens software
(Baatz and Schäpe, 2000) with small scale parameters (30) and
20% of this threshold allowed to the compactness. These param-
eter were found as a good compromise between the spectral co-
herence and the representativity of the image-objects within each
land cover class. However, the method is not very sensitive to
slightly different values. After segmentation, each image-object
was labeled thanks to a majority rule on the GISdatabase and the
mean spectral values were extracted for each band of the image.

3.3 Multivariate iterative trimming

Trimming consists in truncating a distribution from its least prob-
able values that behave like outliers. The common purpose of this
procedure is to improve the estimates of the parameter character-
izing a given distribution, such as sample mean and variance in
the case of Gaussian distribution (Kotz et al., 1988). As the aim
of this study is to identify discrepancies between the map and
the image, trimming is used to screen image-objects which are
not likely to be part of the real class distribution. As the esti-
mates of the distribution are influenced by the outliers, trimming
is performed until there is no more outliers. The estimates of the
distribution are thus updated at each iteration.

Contrary to the distribution of image differences, as used by (De-
sclée et al., 2006), the distribution of spectral values in land cover
classes cannot be parameterized with only a few parameters be-
cause complexity of the land cover patterns. Indeed, a single class
may contain several sub-classes. For instance, Picea sp. and
Larix sp. stands are both labeled as ”coniferous” but do not have
the same reflectance. Furthermore, temperate deciduous forests
are textured at the resolution of Quickbird multispectral sensors
(2.8 m). As the segmentation algorithm was mainly based on
spectral values, objects belonging to this class were grouping
crown pixels or shadow pixels together, so leading to bi-modal
distribution of the image-object pixel values. A non-parametric
probability density estimate, kernel density estimate (Silverman,
1986), was therefore selected because it does not require any as-
sumption on the shape of the distribution and is hence adaptive.
Gaussian kernels were selected for their good smoothing proper-
ties due to their open domain. For each iteration, the data were
whitened and the bandwidth was optimized using the Fukunaga
method (Fukunaga, 1972) (equation 2) .

f(x) =
(detS)−1/2

nhd
opt

n∑
i=1

k{h−2
opt(x−Xi)

T S−1(x−Xi)}, (2)

where S is the covariance matrix, d the number of dimensions, n
the number of observations and k(xT x) a Gaussian kernel. hopt



is the optimal bandwidth given by equation 3. The chosen kernel
smoothing method is the least expensive in terms of computation
time and its main disadvantage is a risk of oversmoothing in case
of large distribution tails. It therefore suits an iterative trimming,
which requires several calculation of the optimal bandwidth and
removes distribution tails.

hopt = {4/n(d + 2)}1/(d+4) (3)

The selection of outliers relies on a probability threshold α, which
is the only parameter that users need to tune. Values of 2.5, 5 and
10 percent were used in this case study. The density values be-
low which the integral of the probability density function (pdf )
was smaller than α were considered as outliers. For numerical
reasons, the integral was discretized so that the density threshold
was calculated at the zero of equation 4 for t.
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− 1 + α (4)

3.4 Accuracy assessment

The validation of the results was performed based on the com-
prehensive visual interpretation of the 6000+ objects labeled as
”coniferous” or ”deciduous”. For the sake of the analysis, dis-
crepancies between the map and the image were classified in 3
categories : clear cuts, regeneration and wrong class (deciduous
labeled as coniferous and reverse). Image-objects representative
of the class they belong to were labeled as ”typical”. Besides, the
shaded crowns and small forest gaps were labeled as ”shadows”.
Eventually, image-objects embedding both representative pixels
and discrepancies were labeled as ”mixed” when the least fre-
quent type occurred on more than 25 % of the object area. Table
1 summarize these values for each land cover class.

Coniferous [ha] Deciduous [ha]
Typical 213.0 647.6

Shadows 1.9 25.4
Clear cut 2.2 9.6

Regeneration 41.0 0.4
Wrong class 8.4 0.1

Mixed 10.7 13.2

Table 1: Area of the object categories used for the validation

4 RESULTS

Image-object produced by the segmentation of the image were
automatically labeled based on the secondary vector database.
The different steps of the process are presented on figure 1. As
shown in table 1, mixed-type objects occurred on both forest
types. They covered 4 % of the forest areas labeled as conifer-
ous, and 2 % in the case of deciduous forest. These mixed-type
objects were identified as discrepancies only for large values of α
and were mainly located at the interface between forests and crop
fields. It is worth noting that the thematic accuracy of the vector
database was very good. Most discrepancies were caused by for-
est exploitation and only a few percentage was due to confusion
between deciduous and coniferous. There was no confusion with
other land cover classes in this case study.

The change detection errors (Biging et al., 1998, e.g.) were com-
puted for the three values of α and each forest type (Tables 2 and

LABELED IMAGE-OBJECTS
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Figure 1: Results of the automatic labeling process. Left figures
are subsets of the image pre-processing and right figures show the
creation of the secondary GIS database. The resulting majority
map is shown at the bottom.

3). By construction, the number of outliers increased when the
α values increased. The detection accuracy of discrepancies was
therefore better when α was large but this created more commis-
sion errors (overdetection). For instance, the detection of forest
regeneration increased gradually from the use of small α toward
larger ones. However, it remained insufficient for the conifer-
ous forests and was associated with smaller detection accuracy of
the unchanged objects (in other words, more commission errors).
Clear cut detection was nearly perfect except with α = 0.025 in
the coniferous forest. Eventually, the method was unable to detect
the small coniferous patches in the forests labeled as deciduous
and the opposite was also very poor.

α = 0.025 α = 0.05 α = 0.1
Typical 100 98 95

Shadows 100 90 85
Clear cut 51 100 100

Regeneration 0 13 28
Deciduous 1 15 51

Mixed 3 59 72

Table 2: Class based detection accuracy for objects labeled as
coniferous forests

5 DISCUSSION

The proposed method is promising because of its ability to ad-
just on different land cover types in order to automatically de-



α = 0.025 α = 0.05 α = 0.1
Typical 100 95 86

Shadows 99 91 67
Clear cut 100 100 100

Regeneration 47 89 100
Coniferous 0 0 0

Mixed 24 77 93

Table 3: Class based detection accuracy for objects labeled as
deciduous forests

tect discrepancies with a high detection accuracy and acceptable
commission errors. Unfortunately, it is limited by the facts that
discrepancies must be scarce and different from the main class. If
the frequency of a given discrepancy type is too high, like for re-
generation in coniferous in this study, their probability density re-
mains above the threshold and the use of alternative approaches is
necessary. When the discrepancies are similar to the main class,
other characteristics may be used. However, the total number of
characteristics has to remain relatively small to avoid problems
when computing the pdf.

As often with natural resources, producing a crisp classification
of discrepancies with typical forests is useful for decision mak-
ing and easy to interpret, but is not coherent with the field reality.
Whereas clear cuts are unambiguously defined on the field, there
are different types of regeneration and there is a gradual change
between clear cut and mature forest stands. The outliers detection
also gives additional information on the reliability of the detec-
tion, namely the probability density and the number of iteration
before the object was excluded, which could improve the inter-
pretation of these results.

While the iterative trimming could be used either with pixels or
with objects, using objects has several advantages: (i) it reduces
the computation time, (ii) it is not sensitive to small misregistra-
tion errors and (iii) it reduces the intra-class heterogeneity, which
improves the detection of outliers. However, the use of spectral-
based segmentation algorithm did not reduce the heterogeneity in
deciduous forest as shaded and enlightened crowns formed dis-
tinct image-objects (figure 2). On the other hand, reducing the
spectral component in the segmentation algorithm would produce
more undesired mixed object which are also difficult to handle.
The development of texture-based segmentation algorithm may
thus improve the accuracy of the overall trimming process.

0 50 10025 Meters

Figure 2: Details of a typical deciduous mature stand in Belgium
illustrating the heterogeneity of the object mean values in near
infra-red (NIR). Spatial resolution is 2.8 m.

6 CONCLUSION

The proposed method was able to extract useful information for
forest managers based on a single satellite image and an existing

GIS database. The main advantages of the method are its flexibil-
ity and easy tuning capability. Its main disadvantage is its limited
capabilities in case of high frequency discrepancies.

Further work is necessary to classify the results of the outlier de-
tection, based on the automatically extracted information from
the typical classes. Combined with comprehensive discrepancy
detection in each land cover type of the GIS databse, this would
help to reduce the costs of map update.
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