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ABSTRACT: 
 

The objectives of this research were to: (1) develop rule sets in Definiens Developer 7® for mapping and monitoring riparian zone 

land-cover classes within two QuickBird images; and (2) compare the results of four object-oriented and pixel-based change 

detection approaches. Two QuickBird images, atmospherically corrected to at-surface reflectance, were captured in May and August 

2007 for a savanna woodlands area along Mimosa Creek in Central Queensland, Australia. In-situ vegetation structural 

measurements and LiDAR data, obtained on 28 May - 5 June and 15 July 2007 respectively, were used for calibration and validation. 

A sequential segmentation routine was applied to enable segmentation of large image datasets. An Isodata unsupervised classification 

was used for pixel-based classification and rule sets were developed for object-oriented classification of the following land-cover 

classes: streambed; riparian vegetation; bare ground; rangelands; and woodlands. Four object-oriented and pixel-based change 

detection routines were applied to the image data: post-classification comparison; image differencing; image regression; and the 

tasselled cap transformation. The object-oriented classification results showed that object- and class-related features and membership 

functions could be standardized in the rule sets for classifying the two QuickBird images. Results from the different change detection 

approaches indicated that post-classification comparison and image differencing produced more accurate results, especially when 

used together. All four change detection approaches were suited to object-oriented analysis. Advantages of the object-oriented 

change detection routines included: (1) no need for post-change detection filtering and smoothing; (2) less impact of slight geometric 

offsets between image datasets; and (3) the ability to include context relationships to improve change detection results. 

 

 

1. INTRODUCTION 

The increased use of high spatial resolution image data (pixels < 

5m x 5m) has produced a need for more research using object-

oriented approaches, as traditional per-pixel analysis is not 

suited to high spatial resolution image data because of the high 

level of variance of spectral reflectance signatures within 

individual features and land-cover classes. Image data of the 

Earth’s surface can be divided into homogenous objects at a 

number of different spatial scales. Object-oriented image 

segmentation and classification use this concept to divide image 

data into a hierarchy, where large objects consist of several 

smaller objects. This matches up with the widely accepted 

notion of hierarchy theory and spatial scales of ecological 

features from plants to global scales (Wiens, 1989). Object-

oriented image classification is based on the assumption that 

image objects provide a more appropriate scale to map 

environmental features at multiple spatial scales. Object-

oriented image classification typically consists of three main 

steps: (1) image segmentation; (2) development of an image 

object hierarchy based on training objects; and (3) classification 

(Benz et al., 2004). The advantage of using object-oriented 

image analysis is the capability to define criteria for image 

objects at set scales using spectral reflectance characteristics, as 

well as within and between object texture, shapes of features, 

context relationships, and ancillary spatial data of different 

spatial resolution consisting of both thematic and continuous 

data values (Bock et al., 2005). The inclusion of context 

relationships and shape of objects are important sources of 

additional information because most high spatial resolution 

image datasets consists of only four multi-spectral bands and a 

panchromatic band. 

 

Change detection techniques identify differences in the 

landscape occurring over time from two or more image datasets 

(Coppin et al., 2004). There have been limited attempts to 

compare object-oriented and pixel-based change detection 

approaches. Im et al. (2008) presented a comparison of object-

oriented and pixel-based change classification incorporating 

neighbourhood correlation images and found that the object-

oriented change classification produced higher accuracies than 

per-pixel classification when all other conditions were held 

constant. Desclee et al. (2006) investigated the utility of object-

oriented methods for forest change detection and found that the 

change detection accuracies achieved by the object-oriented 

method were higher than pixel-based methods regardless of the 

validation data source. Im et al. (2008) pointed out that future 

research should investigate the application of multi-resolution 

image segmentation in object-oriented change detection. 

 

The aim of this research was to compare the results of object-

oriented and pixel-based mapping approaches with focus on 

four different change detection techniques. The change 

detection approaches included post-classification comparison, 

image differencing, image regression and the tasselled cap 

transformation. Classified images were first produced using 

both object-oriented and pixel-based techniques and then 

applied to the post-classification comparison routine. The 

object-oriented and pixel-based techniques were embedded in 

the change analysis for the remaining three change detection 

approaches. The objectives of this research were to: (1) develop 

rule sets in Definiens Developer 7 for mapping and monitoring 

riparian zone land-cover classes within two QuickBird images; 



and (2) compare the results of object-oriented and pixel-based 

change detection approaches. As the two images used were 

captured less than three months apart, no land-cover change in 

the imaged area was expected. Hence, the focus of this work 

was to compare the results of object-oriented and pixel-based 

change detection approaches rather than mapping actual change. 

The results of the work are considered applicable to other land-

cover classes and will therefore provide information that can be 

used to determine the advantages, disadvantages and the 

suitability of object-oriented and pixel-based analysis using 

different change detection techniques. 

 

 

2. STUDY AREA 

The study area was located within the Fitzroy Catchment, 

Queensland, Australia and covered a 19km stretch of Mimosa 

Creek and associated riparian vegetation 10km upstream of the 

junction with the Dawson River (24º31’S; 149º46’E). Extensive 

clearing of surrounding woody vegetation has occurred in the 

past and transformed large areas into open woodland, here 

referred to as rangeland. However, patches of remnant 

woodland vegetation remain and regrowth is common. The 

major land use is grazing with some agriculture also occurring. 

The area receives on average 600-700mm of rain with the 

majority of rain between October and March. The stream and 

riparian zone widths of Mimosa Creek were in most cases 

between 10-30m and 15-80m, respectively. 

 

 
Figure 1. Location of study area, LiDAR coverage, and field 

sites. Photos show the riparian zone along Mimosa Creek. 

 

 

3. DATA AND METHODS 
 

3.1 Image and Field Data 
 

Two multi-spectral QuickBird images were captured of the 

study area on 18 May 2007 and 11 August 2007 with off-nadir 

angles of 20.0º and 14.6º respectively. The images were 

radiometrically corrected to at-sensor spectral radiance based on 

pre-launch calibration coefficients provided by DigitalGlobe. 

The FLAASH module in ENVI 4.3 was then used to 

atmospherically correct the August image to at-surface 

reflectance, with atmospheric parameters derived from the 

MODIS sensor and the Australian Bureau of Meteorology. Four 

pseudo-invariant features, with dark, moderate, and high 

reflectance, were used to produce a linear regression function to 

normalise the May image to at-surface reflectance (Jensen, 

2005). A total of 18 ground control points (GPCs) derived in the 

field were used to geometrically correct the August image (root 

mean square error (RMSE) = 0.59 pixels). The AutoSync 

function in Erdas Imagine 9.1 was used to automatically select 

300 GCPs to geo-reference the two QuickBird images. GPCs 

with a RMSE > 0.8 pixels were omitted from the rectification. 

Light Detection and Ranging (LiDAR) data were captured by 

the Leica ALS50-II on 15 July 2007 for a 5km stretch along 

Mimosa Creek (Figure 1). The LiDAR data were captured with 

an average point spacing of 0.5m and consisted of four returns 

with an average point density of 3.98 points/m2. 

 

In-situ vegetation structural measurements were obtained from 

28 May – 5 June 2007 within the riparian zone and the areas 

where riparian vegetation was merging into woodland 

vegetation or rangelands (Figure 1). Quantitative field 

measurements of ground cover, plant projective cover, trunk 

diameter, vegetation overhang, bank stability, creek width, and 

riparian zone width were obtained. 

 

3.2 Image Processing Methodology 

The two QuickBird images were first segmented and classified 

into major land-cover classes. The developed rule sets used for 

the classification were then compared to assess their general 

applicability for classifying different image datasets. The next 

stage focussed on comparing differences in the results of four 

object-oriented and pixel-based change detection techniques. 

Comparisons were then made between the per-pixel and object-

oriented results for each change detection approach, and then 

between the different change detection approaches. 

3.2.1 Image Segmentation and Classification: The QuickBird 

images were segmented in Definiens Developer 7 using a 

sequential segmentation to avoid exceeding the maximum 

allowable number of objects in the first multi-resolution 

segmentation cycle. The green, red, and NIR bands from both 

QuickBird images were used together in the segmentation 

process to avoid misalignments of objects between images in 

areas without change to reduce erroneous detection of change 

along boundaries of land-cover classes (Johansen et al., in 

press). The sequential segmentation approach involved a 

number of individual steps (Figure 2a-h). First the image was 

segmented into large squares consisting of 1000 pixels x 1000 

pixels (Figure 2a-b). Each of these squares were then segmented 

one at a time using multi-resolution segmentation with a scale 

parameter of 30 (Figure 2c-d). Objects in contact with the 

separating line of the large squares (Figure 2e) were re-

segmented using a scale parameter of 60 to eliminate effects 

from the line on the objects (Figure 2f). Those objects that did 

not touch the line of the large squares were also re-segmented 

using a scale parameter of 60 to ensure a consistent spatial scale 

of objects (Figure 2g-h). The segmentation divided the multi-

spectral image pixels (6,800,000) into a total of 51,003 objects. 

 

A rule set was then developed independently for each of the two 

QuickBird images to classify the following land-cover classes: 

(1) riparian vegetation; (2) streambed; (3) woodlands; (4) 

rangelands; and (5) bare ground. The field and LiDAR data 

were used for training. Both object- and class-related features 

were used together with different membership functions and 

associated thresholds. The features, membership functions and 

thresholds required for classifying the two images were 

compared to assess the general applicability of the rule sets for 

object-oriented image classification. 

 

Pixel-based image classification of the two QuickBird image 

were all carried out based on Isodata unsupervised image 

classification of the same land-cover classes. To avoid any bias 

in the comparison of the object-oriented and pixel-based 

comparison, the pixel-based classification was based on the 

same bands as the object-oriented classifications, i.e. blue, 

green, red, NIR, NDVI, and standard deviation of the NIR band. 



However, the standard deviation band was excluded as it 

prevented accurate mapping of bare ground. The field and 

LiDAR data were used for labelling the 50 Isodata classes. A 

majority filter of 7x7 pixels was used for each image 

classification to reduce the salt-and-pepper effect prior to post-

classification comparison. 

 

 
Figure 2. Sequencial segmentation routine showing the 

individual stages of dividing the original image into objects. 

 

3.2.2 Post-Classification Comparison: The object-oriented 

image classifications of the two QuickBird images were used 

for post-classification comparison. Riparian vegetation changes 

occurring in the object-oriented post-classification comparison 

were compared to the corresponding pixel-based post-

classification comparison. As no change in land-cover classes 

was expected between the two images, the field data and the 

LiDAR data were considered suitable for validation. The 

labelled unsupervised per-pixel classifications were used as 

input into the pixel-based post-classification comparison. 

 

3.2.3. Image Differencing: Image differencing was used to 

subtract the blue, green, red, NIR, and NDVI bands of the May 

image from those of the August image. The pixel-based image 

differencing subtracted all image pixel values in the May image 

from the pixel values at the corresponding location in the 

August image for each band. The same approach was used for 

the object-oriented image differencing, where the mean value of 

each object (average value of all pixels within each object) in 

the May image was subtracted from the corresponding objects 

in the August image. Thresholds for different levels of change 

were set based on trial and error. 

 

3.2.4 Image Regression: Image regression describes the fit 

between two images captured at different times of the same 

area. The approach assumes that pixels/objects in one image are 

linearly related to the corresponding pixels/objects in the other 

image, i.e. the majority of pixel/object values have not changed 

between the time of the two image captures. The spectral 

reflectance of the August image was estimated using the May 

image and the best-fit regression equation between the two 

image datasets for each band. In the object-oriented approach, 

all 51,003 mean object values were included in the image 

regression of the blue, green, red, NIR, and NDVI bands. For 

the pixel-based approach a representative subset of 315,000 

pixels was used in the image regression. The dimension of the 

residuals was then used as an indicator of the level of change. 

The standard deviation of the residuals was used to set a 

threshold for change. 

 

3.2.5 Tasselled Cap Transformation: The multi-temporal 

generalisation of the tasselled cap transformation by Collins and 

Woodcock (1994) was used for both the object-oriented and 

pixel-based change detection. The reflectance values of twenty 

of the darkest objects/pixels (mainly areas with deep shadow or 

water) that had not changed between May and August were 

averaged and used as the origin of a new coordinate system. 

Twenty of the brightest unchanged objects/pixels and 20 of the 

unchanged objects/pixels with the highest NDVI values were 

used to produce an unchanged brightness axis and greenness 

axis. Ten objects/pixels showing the highest increase in NDVI 

values between May and August were then used to create a 

NDVI change vector through the origin perpendicular to the 

plane of the unchanged brightness and greenness axes. These 

were visually inspected to ensure that changes were not 

occurring due to image mis-registration. The tasselled cap 

transformation coefficients were applied in Definiens by 

defining three new arithmetic features: unchanged brightness, 

unchanged greenness, and vegetation changes. The pixel-based 

algorithms were calculated in the Modeler in Erdas Imagine 9.1. 

This produced images consisting of three bands, where the third 

band represented vegetation change. A threshold to identify 

change was set at 200 based on visual assessment. 

 

3.2.6 Comparison of Change Detection Results: Based on the 

results of the four change detection routines, advantages and 

disadvantages were identified in relation to using object-

oriented and pixel-based techniques. The combined utility of the 

post-classification comparison and the image differencing was 

also assessed using areas of land-cover change to develop a 

mask to examine the variation between the two images in NDVI 

values in areas classified as change in the post-classification 

comparison. Finally, the change detection results of the four 

different techniques used were compared. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Object-Oriented Image Classification 

The results of the object-oriented classification of the two 

QuickBird images revealed that similar features and 

membership functions could be used for both dates, but 

different thresholds for the membership functions were required 

for object-related features (Table 1). However, the standard 

deviation of the NIR band was required in the August image but 

not the May image for mapping rangelands. This was because 



of spectral overlap in NDVI values between rangelands and 

woodlands in August. Very little rain fell in the three months 

prior to the first image capture, while the study area received 

over 100mm in June, which affected the greenness of 

groundcover in August. However, it did not appear sufficient to 

create any water bodies within the creek. An obvious reduction 

in NDVI and NIR reflectance of the riparian canopy could be 

observed in the August image. As indicated in Table 1, the same 

membership functions and thresholds could be used for the 

class-related contextual features for both images, which show 

capacity for rule set standardization. Streambeds could not be 

spectrally classified in the pixel-based classification. Assessing 

the relative area of riparian vegetation within a local area (10 

pixel radius) enabled reclassification of bare ground to 

streambed, when more than 55% of the local area with bare 

ground consisted of riparian vegetation. Other context 

relationships such as assessment of the relative border of 

classified image objects were useful in improving the object-

oriented image classification. 

 

4.2 Change Detection Results 
 

Because of the small time gap (< 3 months) between the two 

image acquisition dates, no change in land-cover was expected 

between the two images. A total of 713,481 pixels were 

classified by the object-oriented approach as riparian vegetation 

in   either   the   May   or   August   image.   The   corresponding   pixels 

were evaluated for the pixel-based post-classification 

comparison. Only 34.69% of pixels were classified as no 

change in the pixel-based change detection, while 81.44% 

showed no change in the object-oriented change detection. A 

total of 418,019 pixels were classified by the pixel-based 

approach as riparian vegetation in either the May or August 

image. Out of these 51.44% of pixels were classified as no 

change in the pixel-based change detection, while 92.49% 

showed no change in the object-oriented change detection 

(Table 2). This clearly emphasizes the higher accuracy of the 

object-oriented change detection, as no pixels were expected to 

change land-cover. 

 

A large part of the objects/pixels showing change between 

riparian vegetation and woodlands occurred in close proximity 

(within 30m) to the riparian zone. This issue was caused by 

woodland vegetation next to the riparian zone being denser and 

greener in May than in August. Hence, riparian zone width was 

overestimated in the May image and more accurately mapped in 

the August image. This is a common issue of mapping riparian 

zone width in the wet-dry tropics (Johansen et al. in press). 

Mapped changes from rangelands to riparian vegetation in the 

object-oriented change detection were in most cases rangelands 

in both May and August, but with greener patches in August 

resulting in misclassification as riparian vegetation. Slight mis-

registration between the two image datasets resulted in some 

small objects along the edges of riparian vegetation and 

rangelands being classified as rangelands in May and riparian 

vegetation in August. The object-oriented classification of 

change from riparian vegetation to bare ground (mainly from 

dry streambed to riparian vegetation) was correct in 95% of 

assessed cases (19 out of 20) because of thinning in the riparian 

canopy and the smaller off-nadir sensor angle in August, which 

increased the visible area of dry streambed. 

 

Table 2. Comparison of the percentage of pixels classified as 

change in the object-oriented and pixel-based post-classification 

comparison in areas classified as riparian vegetation in either 

the May or August image.  

 Pixels related to riparian 

change in object-

oriented post-

classification 

comparison 

Pixels related to riparian 

change in pixel-based 

post-classification 

comparison 

Change 

classes 

Object-

oriented 

approach 

Pixel-

based 

approach 

Object-

oriented 

approach 

Pixel-

based 

approach 

No change 81.44 34.69 92.49 51.44 
Non-riparian 

change 0.00 44.86 1.32 0.00 
Bare ground 

– riparian 0.00 0.05 0.00 0.58 
Rangelands – 

riparian 0.38 0.11 0.25 1.08 
Woodlands - 

riparian 6.64 14.73 2.72 33.93 
Riparian – 

bare ground 0.41 0.07 0.19 0.23 
Riparian – 

rangelands 0.20 1.05 0.03 4.02 
Riparian – 

woodlands 10.93 4.43 3.00 8.73 

Total pixels 713,481 713,481 418,019 418,119 

 

Table 1. Parameters for the rule sets used to classify bare ground, rangelands, riparian vegetation, woodlands, and streambeds. 

Domain Class name 
Object and Class-

Related Features 

Membership 

function 
Value (May) 

Value 

(August) 
Purpose 

Unclassified Bare ground Mean Red Larger than 1585-1595 1490 - 1495 To classify bare ground 

Unclassified Rangelands 

Mean NDVI / 

Standard deviation 

NIR 

Smaller than / 

Smaller than 

0.39-0.395 / 

222-224 

0.51-0.52 / 

222-224 

 

To classify rangelands 

Unclassified 
Riparian 

Vegetation 
Mean NDVI Larger than 0.645-0.65 0.54-0.55 

To classify riparian vegetation 

Unclassified Woodlands Mean NDVI About range 0.2-0.66 0.22-0.57 To classify woodlands 

Riparian 

Vegetation 
Woodlands 

Number of 

riparian vegetation  
<= 

4 (within a 

15 pixel 

perimeter) 

4 (within a 

15 pixel 

perimeter) 

To eliminate objects incorrectly classified 

as riparian vegetation 

Woodlands 
Riparian 

Vegetation 

Relative border to 

riparian vegetation 
> 0.4  0.3 

To eliminate objects within the riparian 

zone classified as woodlands 

Bare ground Streambed 
Relative area of 

riparian vegetation 
> 

0.55 (within 

a 10 pixel 

perimeter) 

0.55 (within 

a 10 pixel 

perimeter) 

To convert areas classified as bare ground 

within the riparian zone to streambed. 

Woodlands 

and 

Rangelands 

Riparian 

Vegetation 

Relative area of 

riparian vegetation 

> (find enclosed 

by class 

algorithm) 

0.60 (within 

a 10 pixel 

perimeter)  

0.60 (within 

a 10 pixel 

perimeter) 

To eliminate incorrectly classified 

woodlands and rangelands objects 

surrounded by riparian vegetation 

Woodlands Rangelands 
Relative border to 

woodlands 
< 0.5 0.5 

To eliminate objects incorrectly classified 

as woodlands within rangelands areas 

Rangelands Woodlands 
Relative border to 

rangelands 
< 0.4 0.4  

To eliminate objects incorrectly classified 

as rangelands within woodlands areas 



The results of the NDVI image differencing showed that the 

pixel-based change detection had more pixels indicating large 

decreases and increases in NDVI values compared to the object-

oriented NDVI image differencing. That is a result of the 

extreme NDVI values being averaged out within the individual 

objects, which on average included 133 pixels. The pixel-based 

image differencing was more sensitive to slight geometric 

offsets between the two image datasets, while the object-

oriented approach was not affected (Figure 3). The 

characteristics were similar for the blue, green, red, and NIR 

bands. 

 

 
Figure 3. Differences between object-oriented (left hand side) 

and pixel-based (right hand side) change detection of four 

different change detection techniques. 

 

The best-fit equations and the coefficient of determination (R2) 

were calculated for both the object-oriented and pixel-based 

image regression of the two images (Table 3). The change maps 

derived using the object-oriented and pixel-based image 

regression were similar (Figure 3). However, many individual 

pixels were identified as change in the pixel-based approach 

possibly because of small changes caused by the sensor viewing 

geometry and the occurrence of slight image mis-registration. 

 

Table 3. Regression equations and R2 values for estimating 

spectral band values for August. 

 Object-oriented analysis Pixel-based analysis 

Bands Equations R2 Equations R2 

Blue 0.82B+116.1 0.76 0.75B+106.7 0.75 

Green 0.85G+142.2 0.79 0.73G+163.6 0.74 

Red 0.80R+219.8 0.77 0.65R+270.8 0.74 

NIR 0.70NI+557.8 0.62 0.51NI+917.7 0.31 

NDVI 0.58ND+0.15 0.69 0.61ND+0.15 0.70 

Note: B = blue band, G = green band, R = red band, NI = NIR 

band, and ND = NDVI band. 

 

The tasselled cap transformation worked well using the object-

oriented approach, where rangelands with increased grass cover 

in August were clearly identified. However, the pixel-based 

transformation provided very poor results (Figure 3). The 

transformation coefficients derived from the object-oriented 

approach were tested for the pixel-based transformation, which 

significantly improved the result. This indicates that the 10 

pixels selected for producing the axis representing change in 

vegetation were not representative. The 10 objects selected 

represented > 1000 pixels, which most likely makes the object-

oriented approach more robust. Slight image mis-registration 

(<2 pixels) as well as effects from the differences in image off-

nadir viewing resulted in the boundaries of tree crowns and their 

associated shadows appearing as change in the pixel-based 

transformation. The object-oriented transformation was not 

affected by slight image mis-registrations and off-nadir viewing 

differences (dependent on object size), as these were averaged 

out at the object level. 

 

4.3 Comparison of Change Detection Approaches 

The post-classification comparison provided useful information 

on changes from one land-cover class to the other. The results 

implied that phenological changes were not misclassified as 

land-cover change. This approach relies on high image 

classification accuracies of the two images. Mis-classification 

and mis-registration errors often result in unsatisfactory results 

(Coppin et al., 2004). The use of object-oriented post-

classification comparison significantly reduced effects of small 

mis-registration errors. In addition, the ability to include context 

information is a powerful tool that can improve the image 

classification accuracy. Also, the ease of manual editing of 

selected image objects, as opposed to thousands of pixels, 

further improves the ability of obtain accurately classified 

images. To enable comparison of two classified images of the 

same area, it is essential that the same segmentation (outline of 

individual objects) is used for both images to avoid 

misalignments of objects between images in areas without 

change to reduce erroneous detection of change along 

boundaries of land-cover classes. 

 

Image differencing was found useful and easy to interpret 

because of the simplicity of the approach. The critical part of 

the approach is the definition of thresholds indicating change. It 

was found important to include more than just one band to 

identify all changes. The combined utility of the post-

classification comparison and the image differencing approach 



was assessed by evaluating the amount of change in NDVI 

values for those areas that changed from one land-cover class to 

another. Assuming that an NDVI increase or decrease of at least 

0.15 represented change, the amount of change within the 

riparian zone was reduced from 203,058 pixels to 69,777 pixels 

in the pixel-based approach and from 132,404 pixels to 36,668 

pixels in the object-oriented approach. That enabled not only 

elimination of areas incorrectly detected as change in the post-

classification comparison, but also assessment of the level of 

change in e.g. NDVI values within areas classified as the same 

land-cover class in both images. 

 

Image regression was fairly easy to apply and analyse. In this 

case, the values of the regression standard error were useful for 

the establishment of a threshold to detect change. One of the 

assumptions of this approach is that the majority of 

objects/pixels have not changed between the two times of image 

capture. This makes the pixel-based image regression very 

sensitive to small geometric offsets between the two images 

when using high spatial resolution image data. The object-

oriented approach on the other hand fulfils these requirements 

because of the larger objects ensuring a high degree of overlap 

even when slight mis-registrations occur. This would have been 

one of the reasons why the R2 values for the NIR band was 

lower for the pixel-based regression (Table 3). 

 

The tasselled cap transformation is relatively easy to interpret 

with a new layer representing change. However, this method 

only detects changes in a particular direction based on the 

selected change objects. The approach can be used to identify 

changes along the constructed axis of change, but other changes 

will not be reflected in the change component. For example, if 

examining vegetation change based on NDVI, changes between 

water and streambed along rivers and creeks may not be 

detected. The pixel-based tasselled cap transformation yielded 

poor results most likely because the selected vegetation change 

pixels were not representative. This is especially a problem 

when working with high spatial resolution image data, where 

pixels cover very small areas. For high spatial resolution image 

data the object-oriented tasselled cap transformation was 

superior in this image dataset. In addition, a disadvantage of the 

tasselled cap transformation approach is that the construction of 

the new coordinate system is laborious and requires previous 

knowledge of the study area and accurate definition of the 

changes to be identified. 

 

 

5. CONCLUSIONS 

This work focussed on the development and comparison of rule 

sets for object-oriented image classification and the comparison 

of results from four object-oriented and pixel-based change 

detection techniques using high spatial resolution QuickBird 

image data. The development of rule sets for classifying the two 

images showed that the setup of the rule sets can be 

standardized but that different thresholds for the membership 

functions are required for object-related features. 

 

In general, the object-oriented change detection approaches 

provided better results than the pixel-based routines because of 

the ability of the object-oriented approach to: (1) reduce effects 

of slight mis-registration between the two images; (2) reduce 

the ‘salt and pepper’ noise; (3) include context relationships and 

object shape information; (4) reduce effects of shadows from 

trees; and (5) reduce effects of differences in sensor viewing 

geometry. A combination of object-oriented post-classification 

comparison and NDVI image differencing produced the best 

results as this provided information on both land-cover change 

and the level of change. The image regression routine produced 

similar results for the object-oriented and pixel-based change 

detection, but the pixel-based approach is less likely to fulfil the 

associated assumptions. The tasselled cap transformation 

provided poor results for the pixel-based change detection 

because of the small size of the sample used for the calculation 

of change coefficients. This research shows the improved 

capabilities of using object-oriented change detection 

approaches for analysis of high spatial resolution image data. 
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