
MONITORING VEGETATION STRUCTURE IN FLOODPLAINS FOR FLOOD RISK 
ESTIMATION 

 
 

E. A. Addink *, M. E. ten Haaf, S. M. de Jong 
Faculty of Geosciences, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands –  

(e.addink, m.tenhaaf, s.dejong)@geo.uu.nl 
 

Commission VI, WG VI/4 
 
 
KEY WORDS:  flood risk, floodplain, natural vegetation, De Blauwe Kamer, the Netherlands 
 
 
ABSTRACT: 
Floodplains are among the most valuable ecosystems of the world. In the Netherlands they have a double function, serving both 
safety and nature, recreational purposes. Safety standards for flood protection of this densely populated country are the highest 
world-wide, protecting against events expected to occur with an annual probability of 1/10,000. Rivers in the Netherlands are all 
embanked by dikes to protect the low-lying polders from flooding. Along the main river channels, embanked floodplains carry 
excess water during high-water periods. Objects within these embanked floodplains, whether natural or man-made, increase the 
hydraulic roughness and hamper the water flow, causing flood waters to increase. In 2006, the Dutch government adopted the Spatial 
Planning Key Decision Room for the River, aiming at reducing flood-water levels, together with restoring riverine ecosystems. To 
account for changes in floodplain vegetation over time, the government requires five-yearly updates of vegetation maps, to monitor 
hydraulic roughness patterns and ecological quality of the floodplain. 

We developed a monitoring method which combines object-based analysis of CIR photos with knowledge on vegetation-
succession paths. We selected the nature reserve De Blauwe Kamer, in the floodplain of the river Neder-Rijn as a pilot study. In 
1992 an open connection was created here between the main river channel and the floodplain, accompanied by creating relief 
differences in this formerly agricultural area, to increase landscape dynamics.  

Image interpretation of natural vegetation is generally hampered by spectral overlap between vegetation types. Within our 
monitoring method we combine two improvements to reduce this effect and increase classification accuracies. Object-based 
interpretation is the first step, because it deals with shape and internal variation of vegetation types, thus reducing spectral confusion. 
Next, we introduce succession rules based on succession paths observed in the reserve and similar areas. Knowing the vegetation 
stage at t=0, possible stages at t=1 can be deduced, reducing the number of possible classes. Together with the number of classes, 
spectral overlap will scale down. 
 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Floodplains: nature and safety 

Floodplains have a high biodiversity and are among the most 
threatened habitats on Earth (Tockner and Stanford, 2002). 
Their transitional position between river channels and the 
hinterland provides the ecosystems with strong gradients, 
resulting in high biodiversity. At the same time, the floodplains 
should protect the hinterland against flooding by storing the 
flood pulse during high water. Consequently, management of 
floodplains is facing two contradictory goals: 1) facilitating the 
development of natural vegetation and providing recreational 
space and 2) adapting room for peak discharge during high 
water. Aiming at just the first goal would result in a forested 
floodplain with vegetation patches of different development 
stages steered by the river dynamics. This would be a visually 
attractive landscape. Aiming at just the second goal would 
provide a floodplain with only low vegetation, so no obstacles 
would slow down the river. This would provide unsightly 
scenery.  

The Dutch government maintains the highest safety levels 
against flooding world-wide, with flooding risks being smaller 
than one per 10.000 years. However, to meet these safety levels, 
while at the same time conserving the historic fluviatile 
landscape, they adapted the Spatial Planning Support Decision 

‘Room for the River’ (V&W 1996). This combines natural river 
development with safety guarantees, e.g. by creating areas 
which can be inundated during high water. The anticipated 
result of this decision is a visually attractive landscape meeting 
the safety requirements set by the government. 

To guarantee safety levels, flood-risk models must be run 
every five years. This requires spatially explicit data on 
vegetation to derive hydraulic roughness parameters (Straatsma 
and Baptist, 2008). Despite the wide availability of data, tools 
and knowledge, and the strict legislation and regulations in the 
Netherlands, there is still no adequate concept for large-scale 
monitoring of natural areas. 
 
Earth observation is the proper tool to map changes in 
vegetation characteristics, as it provides spatially continuous 
data with high resolution. However, some problems are 
associated with change detection with remote sensing as well 
(Addink, 2001). Given the geometric accuracy of the images, 
pixels are easily compared with their neighbours. Besides, 
spectral differences, particularly in brightness, impede direct 
comparison between images. Finally, spectral confusion 
between classes hampers post-classification change detection. 
Object-oriented image analysis considers groups of pixels rather 
than individual pixels (Benz et al., 2004; Navulur, 2007). This 
provides many more variables to include in the analysis, like 
shape and neighbour characteristics, and furthermore do the 



 
  
Figure 1. Left: Location of De Blauwe Kamer in the Netherlands. Blue lines indicate the major rivers. Right: The floodplain north of 

the river belongs to the nature reserve. Situation in 1990 before modifying the area and inducing more natural dynamics. 
 
spatial objects of the analysis better represent natural objects at 
the Earth’s surface (Fisher, 1996). The concept of the 
Modifiable Area Unit Problem (MAUP) is directly linked to 
object definition. MAUP states that the same analysis will 
provide different results when performed with different 
tessellations (Openshaw, 1964). This is true for object-size and 
for object-shape variations. 
Object-based classification produces more accurate results, 
because the studied objects do better represent vegetation 
patches at the surface (Addink et al., 2007) and because spectral 
confusion between classes is reduced (Quartel et al., 2006). The 
feasibility of object-based change detection or monitoring has 
only limited extensively been explored (e.g. Addink et al., 2006; 
Hall and Hay, 2003), although it seems to overcome a number 
of the limitations of pixel-based change detection and thus to 
provide a more powerful change detection method. 
At the same time, vegetation processes are not random. Given a 
starting situation, vegetation can only show a limited number of 
states after a certain time. Natural succession, grazing, and 
flooding will all have their effect, but still the outcome will be 
related to the starting situation and will not be random. 
We aimed at developing a monitoring system where knowledge 
on natural vegetation development is integrated in object-
oriented change detection. By knowing the status of vegetation 
at a certain moment one can predict the possible stages the 
system may have reached after a given number of years. This 
knowledge can then be used to reduce the effect of spectral 
overlap between classes and thus to improve classification of 
vegetation. To provide useful input for the flood-risk models we 
focused on vegetation structure. 
 
1.2 Study Area 

In this study we selected the nature reserve ‘De Blauwe Kamer’ 
along the river Nederrijn, a tributary of the Rhine (figure 1). 
This formerly agricultural area was transformed into a nature 
reserve with dynamic river processes in 1992. The summer dike, 
the lower of the two dikes and closest to the main channel, was 
opened to enable direct interaction between the entire 
floodplain and the main river channel also during low 
discharge. Besides, new water bodies were created in the 
floodplain. Management consists of grazing by horses and 
sheep. 

This area was not transformed in the framework of the Room 
for the River initiative, but changes were already invoked in 
1992 to instigate increase of natural values. The effects of the 
increased river dynamics were closely followed and both 
vegetation maps and high-resolution photos are available for the 
area. Therefore, this area is ideal to develop and evaluate a 
monitoring system. 
 

2. DATA AND PREPROCESSING 

1.3.1 Aerial photos  
Analogue color-infrared photographs of the area are available 
for 1994 (Koppejan and Melman, 1995). For 2000 we had 
positives of aerial photographs (Koppejan, 2000). All were 
scanned such that the pixel size was 25cm. Using a digital 
elevation model they were orthorectified and mosaicked into 
two large images using histogram matching (figure 2). 
Whenever possible, cutlines would coincide with roads or 
parcel boundaries. Both images were radiometrically 
normalised, i.e. their mean value was set to 125 and the 
standard deviation to 60. This accounted for all variance present 
in the photos and allowed comparison over time. 
 
1.3.2 Vegetation structure 
Vegetation maps of the area are available for 1994. For 2000 an 
ecotope map is available. The legends of these maps do not 
show vegetation structure, which is needed to calculate 
hydraulic roughness. The legends were therefore translated 
based on the keys provided by Van Velzen et al. (2003). They 
defined vegetation structure at two levels: clusters and types, 
where several types together exclusively belong to one cluster. 
In ‘De Blauwe Kamer’ 7 structure clusters and 16 structure 
types were found in 1994 (table 1). In 2000 a 17th structure type 
had evolved. The areal extent of this class was only 0.05% of 
the total area, and was hence not taken into account. 
From these vegetation structure maps, succession paths were 
created for both structure clusters and types. The two maps were 
overlaid and intersected, creating polygons with attributes 
showing vegetation structure for 1994 and for 2000. Because of 
possible edge effects, all intersected polygons smaller than 2m2 
were neglected in further interpretation. For each structure class 
in 1994, the transition probability was calculated from the 
relative area occupied by the respective classes in 2000. 



 
 

 
 

Figure 2. Mosaics of the CIR photos of 1994 (top) and CIR positives of 2000 (bottom) 
 
 

Structure cluster Number of Structure types 
Pioneer 1 
Grass 3 
Herbaceous 1 
Swamp 5 
Shrubs 2 
Forest 2 
Other 2 

 
Table 1.  Vegetation structure classes (based on Van Velzen et 
al., 2003) 
 

3. METHODS 

The photos were first segmented, then classified and finally 
combined with the succession paths to obtain their final 
structure class (figure 3). This procedure was followed for both 
the structure clusters and for the structure types. 
 
1.4.1 Segmentation 
The photos were segmented using only spectral information. 
Weight for the near-infrared band was twice the weight for the 
visible bands. The internal heterogeneity of the objects was set 
such that many objects would fall into one map unit of the 
vegetation maps. This way the geometric representation of the 
classes was likely to be more precise. 

 
1.4.2 Classification 
For each segment the following attributes were selected: mean 
and standard deviation for bands Green, Red and NIR, and 
Brightness. To limit the necessary fieldwork in the final 
monitoring system as much as possible, the 1994 data was used 
to train the 2000 photos. A training set was created by using the 
vegetation map of 1994. From each class 30 randomly located 
objects were selected to comprise the training set. With these 
training sets (on structure clusters and types), the photo mosaic 
of 2000 was classified using quadratic discriminant analysis 
(QDA; often referred to as maximum likelihood classification 
within remote sensing studies). This produced posterior 
probability values of belonging to a certain class for each 
object. 
 
1.4.3 Integrating succession paths 
Based on the vegetation structure in 1994, the probabilities for 
the different structure classes in 2000 are determined. These 
values are multiplied with the posterior probabilities from the 
QDA analysis. The posterior classification probabilities and the 
succession path probabilities are weighed equally. The class 
showing the highest value after multiplication is assigned to an 
object as the vegetation structure class of 2000. 
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4. RESULTS 

4.1 Succession paths 

At the structure cluster level 49 different succession paths are 
theoretically possible. We found 45, indicating that vegetation 
does not necessarily follow the expected path. Beforehand, we 
considered some transitions unlikely, like ‘other’ (containing 
buildings, roads and water) changing into vegetation classes 
‘grass’ or ‘herbaceous’. But since the area was modified only in 
1992, revegetation was still in full swing between 1994 and 
2000. For instance, a road that was still clearly visible in the 
1994 image, was overgrown in 2000. 
At the structure type level 256 paths would be possible. Here 
we found 142. When analysing at type level, the succession 
paths can have a stronger effect than at the cluster level. 
 
4.2 Spectral classification 

The image of 2000 was classified based on training objects 
extracted from the 1994 image, both on cluster and on type 
level (table 1). The quadratic discriminant analysis provided 
posterior probability values for each class for each object. 
Accuracy values were very low, which did not come as a 
surprise given the limited spectral information and the strong 
spectral confusion within vegetation. At the structure type level, 
overall accuracy for the objects was 12%, while at the cluster it 
level it was 33%. 
 
4.3 Classification integrating succession paths 

The posterior probability values that were obtained with the 
QDA, were multiplied with the transition probabilities derived 
from the succession path analysis. The object was assigned to 
the class with the highest outcome (table 2).  
The accuracy increased significantly by including the 
succession paths. Overall accuracy at the type level increased to 
38% of all objects, while at the cluster level it reached 56%. 
 
 

Structure cluster Accuracy 
Pioneer 44% 
Grass 69% 
Herbaceous 49% 
Swamp 35% 
Shrubs 25% 
Forest 34% 
Other 65% 
Overall 56% 

 
Table 2.  Classification accuracy at cluster level (expressed in 

percentage objects) 
 
 

5. DISCUSSION 

The aim of this study was to improve vegetation structure 
classification in order to allow reliable flood risk modelling. We 
combined object-based image analysis with knowledge on 
natural processes summarized by succession paths. Our study 
area De Blauwe Kamer was transformed from an intensively 
used agricultural area into an area where natural processes 
prevail. The inner-dikes were partly removed to allow 
interaction between the river and the floodplain during low 

discharges as well. Furthermore, new water bodies were created 
and elevation variation was increased. 
Distinction between vegetation classes often suffers from 
spectral confusion. To reduce this effect we combined the 
spectral classification with transitions described by succession 
paths. 
Classification was performed at two levels, structure clusters 
and structure types. Accuracy values without knowledge from 
the succession paths were 33% and 12%, respectively. By 
including the succession paths these values improved strongly 
and reached 56% (+70%) and 38% (+216%), respectively. The 
added value of the succession paths is obvious. 
These values still leave considerable room for improvements. 
However, it should be noted that part of the error can be 
ascribed to uncertainties in the vegetation maps. The minimum 
size of the mapping unit was considerably larger than individual 
pixels and the smallest objects. Particularly in situations where 
contrasting classes intermingle, like an old house being 
overgrown with nettles and blackberries, this will cause errors.  
A first step we intend to take to improve the accuracy is to make 
a selection of the posterior probabilities (entirely based on 
observations of the real situation) before combining them with 
the succession paths (predictions of the new situation). This 
way, more weight will be put on observations than on 
predictions. 
A second step will be to use training data from the year of 
observation. We used 1994 data to train the 2000 image in order 
to limit field work as much as possible. However, observations 
of the real situation might improve classification accuracy 
significantly. 
To extrapolate the method to other floodplains in the 
Netherlands, the succession paths should probably be adapted. 
A nation-wide scheme for transitions between structure classes 
is unlikely to offer the same beneficial results as a scheme for a 
specific floodplain. As we derived transition probabilities from 
area percentages, vegetation types with a larger extent will 
dominate the succession scheme. 
Although the effect of object-based image analysis has not been 
tested separately, we believe that it contributes to the accuracy. 
A problem with classifying vegetation is the internal variation, 
which is often characteristic. When using objects, this is not so 
much a problem, but rather a valuable addition to the 
classification. 
 

6. CONCLUSIONS 

The aim of the larger study is to develop a monitoring system of 
vegetation structure, which can provide data to calculate and 
simulate flood risks. Such simulations require maps of hydraulic 
roughness of the floodplains. Within this paper we presented 
the first results we obtained for object-based monitoring of the 
nature reserve De Blauwe Kamer. We had images that we 
classified using object-oriented image analysis combined with 
succession paths. The coarsest classification level, with 
structure clusters, reached an accuracy value of 56%. 
Improvements will be added to produce data that are 
sufficiently reliable to run safety checks with flood risk models.  
Although not perfect, the first results seem to promise a much 
faster mapping method than the conventional visual 
interpretation. 
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