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ABSTRACT:   
 
We present a technique for extracting the buildings from high resolution satellite imagery using adaptive fuzzy-genetic approach. The 
technique was inspired from the genetic image exploitation system, GENIE PRO, conducted by Perkins et al., (2005) but brings an 
important novelty, which is an adaptive-fuzzy module that fine-tunes the genetic algorithm parameters aiming to improve the feature 
extraction performance. The technique integrates the well known genetic algorithm concepts such as population, chromosome, gene, 
crossover and mutation into the fundamental image processing concepts. The population is defined as the set of chromosomes, which 
consists of a predetermined number of image processing operations (genes). The genes are comprised the basic image processing 
operations. The algorithm is initiated by selecting the training samples for the building and non-building areas from the imagery. The 
image processing operations are applied in a chromosome-by-chromosome basis to obtain specific attribute planes. These planes are then 
fed into Fisher Linear Discriminant (FLD) module, which finds an optimal discriminating hyper plane between the building and non-
building features. Next, for each chromosome, the fitness values are calculated by analyzing the detection and mis-detection rates. After 
that the crossover and mutation operations are applied to arbitrary chromosome(s) to create a better population in the next generation by 
diversifying the current population. At the end of each generation cycle, the crossover and the mutation probabilities are adjusted by the 
adaptive-fuzzy module for the next generation. The evolutionary process is repeated until a satisfactory level of iteration is reached. 
Finally, a post-processing operation is performed in order to enhance the extracted building polygons by means of the morphological 
image processing operations. The approach was implemented on a selected urban area of the city of Ankara, Turkey using the 1-m 
resolution pan-sharpened IKONOS imagery. The study was found to be quite promising since the building regions were successfully 
extracted with an approximate detection rate of 90%.  

 
1. INTRODUCTION 

 
Since the largest part of world population lives in urban areas, 
many critical management issues involving geographical 
analysis are required such as urban planning, monitoring urban 
change and growth, civil protection, and environmental impact 
studies. In urban areas, land cover and land use change rapidly 
due to the new construction of the buildings, roads, and other 
man-made objects. In urban planning, monitoring these changes 
is an important issue and many Geographic Information System 
(GIS) applications suffer from the lack of timely land use 
information. Therefore, the maps should be regularly updated 
with the changes. In order to do that, for many years, the 
extraction of geographic features has been performed manually 
by human operators, with high accuracy and reliability. But, this 
is a very time consuming operation and requires qualified 
people. For that reason, automated object extraction from high 
resolution digital imagery has become a key concern for modern 
geospatial applications. 
  
Recent advances in the quality of satellite imagery and the 
desire to analyze this data has improved the development of 
new image processing techniques for automated object 
extraction. There are many applications in order to be able to 
efficiently extract individual objects from a scene for the 

purpose of spatial analysis and object retrievals from large-scale 
image databases. In these applications, the items of interest 
mainly focus on man-made structures, such as buildings and 
roads as well as the fields and forestry areas.  
 
One of the major research areas in urban remote sensing is the 
detection of buildings and their corresponding footprints, which 
are fundamental GIS data components and have been shown to 
be extremely useful in urban planning, infrastructure 
development, construction of telecommunication lines, 
pollution modeling, disaster planning, and many other kinds of 
urban simulations. In many applications of building detection, 
airborne remote sensing technology is widely used. One of the 
frequently used applications utilizing this technology is the 
detection of the buildings from their shadows from aerial 
photographs. Huertas and Nevatia (1988) and Irvin and 
McKeown (1989) focused on the relation between structures 
and their cast shadows for extracting the building footprints and 
estimating the building heights. Further, Noronha and Nevatia 
(2001) performed automatic detection and modeling of 
buildings from multiple aerial images. They described a system 
that detects and constructs 3-D models for rectilinear buildings. 
Rottensteiner and Briese (2002) presented a methodology for 
the automated generation of 3D building models from point 
clouds generated by the airborne LIDAR sensors.  
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A novel building extraction method from the concept of fitting 
CSG (Constructive Solid Geometry) primitives to aerial images 
was proposed by Tseng and Wang (2003). In their study a semi-
automatic procedure was adopted for performing high-level 
operations, such as building detection and model selection 
interactively by the operator and performing optimal model-
image fitting automatically using a least-squares fitting 
algorithm. In a more recent study conducted by Kim and 
Nevatia (2004), an approach was developed for detecting and 
describing complex buildings with flat or complex rooftops by 
using the multiple, overlapping images. In a method presented 
by Peng and Liu (2005), the use of monocular urban aerial 
images without any prior knowledge of illumination was carried 
out to extract buildings in dense urban areas. An automated 
extraction procedure for building footprints from airborne 
LIDAR data was proposed by Wang et al., (2006), who offered 
a novel Bayesian technique for automatically constructing 
building footprints from a pre-classified LIDAR point cloud. Lu 
et al., (2006) developed an approach for the automatic detection 
of buildings from aerial images using the combined analysis and 
interpretation techniques that include classification, shape 
modeling, and fusion. 
 
As in airborne imagery, the recent high-resolution spaceborne 
images also provide a valuable information data source for the 
extraction of objects such as buildings. Lee et al., (2003) 
presented a building extraction approach guided by the 
classification results using both multispectral and panchromatic 
Ikonos images. In a different study, a combined fuzzy pixel- and 
object-based approach was employed for the discrimination of 
buildings from other urban land cover classes using the pan-
sharpened multispectral Ikonos imagery (Shackelford and 
Davis, 2003). The automatic detection and delineation of the 
buildings from high resolution space images were carried out by 
San and Turker, (2004). The proposed approach was developed 
for updating the buildings of an existing vector database making 
use of spectral values, Digital Elevation Model (DEM), and 
model-based extraction techniques. An integrated strategy for 
automated extraction of buildings from 1-meter resolution 
satellite imagery of urban areas was demonstrated by Jin and 
Davis (2005). Kim et al. (2006) proposed a new algorithm for 
extracting building lines from high-resolution satellite images. 
The approach was based on the extraction of lines from 
rectangular-shaped building roofs with a relatively large size. 
 
In building extraction, many general purpose supervised 
learning strategies have been applied using the multi-spectral 
imagery. The general approach employs purely spectral input 
vectors, built by the set of intensity values in each spectral 
channel for each pixel in the image. Although these vectors 
provide a suitable fixed-dimensionality space, in which the 
conventional classifiers often work well, it is evident that spatial 
relationships such as texture, proximity, or shape can be very 
informative in feature extraction. Therefore, such information 
can be added to the spectral dimensionality. However, there 
exists a combinatorial huge choice for these additional vector 
dimensions (Harvey et al., 2002). To deal with this problem, a 
hybrid evolutionary algorithm called GENIE (GENetic Image 
Exploitation) was developed by Perkins et al., (2000), who 
search a space of image processing operations for a set that can 
produce suitable feature planes, and a more conventional 
classifier which uses those feature planes to output a final 
classification. In a further study, Perkins et al. (2005) developed 

the system GENIE Pro. As in GENIE, this system was also a 
general purpose adaptive tool deriving automatic pixel 
classification algorithms for satellite and aerial imagery, from 
training input. In particular, GENIE Pro integrated spectral 
information and spatial cues such as texture, local morphology 
and large-scale shape information, in a much more sophisticated 
way. 
 
Recently, the idea of adaptive fuzzy-genetic algorithms, which 
is based on the adjustment of the selected control parameters or 
genetic operators, has been found to be quite promising. These 
algorithms offer the most appropriate exploration and 
exploitation behavior to avoid premature convergence problem 
and improve the final result. In Figure 1, an adaptive fuzzy-
genetic algorithm model, which was conducted by Herrera and 
Lozano (2003), is illustrated. 
 

 
Figure 1. The adaptive fuzzy-genetic algorithm model  

                       (Herrera and Lozano 2003). 
 
The objective of this study is to extract building regions from 
high resolution multispectral satellite imagery using an adaptive 
fuzzy-genetic approach. To do that, a novel methodology is 
proposed which is based on a well-known optimization 
technique (Genetic Algorithms) in cooperation with a 
conventional supervised image processing approach. Thus, the 
proposed approach can be considered to be a hybrid feature 
extraction procedure.  

 
 

2. STUDY AREA AND DATA 
 
The proposed approach was implemented in a selected urban 
area of the Batikent district, which is a planned and regularly 
developed settlement of Ankara, the capital city of Turkey. The 
area contains various types of buildings having different shapes 
and usage such as residence, industrial, commercial, social and 
cultural facilities. Batikent is on the western corridor of Ankara, 
lying over an area about 10,000,000 square meters. The district 
was a housing project of the 1980s, which was the biggest 
mass-housing project accomplished through cooperatives in 
Turkey.  
 
The input data set comprises the IKONOS pan-sharpened 
imagery, which was pre-processed for a former study conducted 
by San and Turker, (2004). The 1-m resolution pan-sharpened 
image of the study area is shown in Figure 2. 
 



 
 

Figure 2. The pan-sharpened image of the study area. 
 
 

3. THE METHODOLOGY 
 

3.1 Background Information 
 
Before describing the proposed methodology, the fundamental 
image-based genetic algorithm concepts, which were developed 
by Perkins et al., (2000), should be clarified first. In this design, 
the population is generated from a predefined number of 
chromosomes. The structure of a chromosome consists of a 
predetermined number of image processing operations (genes), 
which are the well known image processing operations, such as 
basic mathematical, logical, thresholding operations as well as 
the spectral distance, spectral similarity, spectral angle and basic 
textural measures. These operations are randomly initialized 
from a gene pool that keeps those image processing operations. 
The structure of a population, chromosome and gene are 
illustrated in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The structure of a population, composed of M  

                       chromosomes and N genes in each chromosome. 
 
 
 

3.2 The Processing Steps 
 
The processing steps of the proposed methodology for building 
extraction from high-resolution satellite imagery using the 
adaptive fuzzy-genetic approach is represented in Figure 4. 
 
 
 Pan-sharpened 

IKONOS 
Imagery 

 
 
 
 
 Selection of 

Training and Test 
Regions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The building extraction methodology. 
 
The methodology is initiated by selecting the training and test 
regions for both the building and non-building areas from pan-
sharpened imagery. Then, the predetermined image processing 
operations are applied on the pan-sharpened input bands (RGB) 
in a chromosome-by-chromosome basis to obtain the spectral 
and texture attributes. For each chromosome, the attributes are 
stored in separate temporary image planes. Then, these planes 
are combined to construct a single grayscale image plane by 
employing a conventional classification algorithm, which is the 
Fisher Linear Discriminant (FLD). The classifier uses the 
training data and attempts to find an optimal discriminating 
hyperplane between the building and non-building features. 
Next, the fitness values are calculated using the detection and 
mis-detection rates. The detection rate is computed by the 
fraction of pixels marked as true that the algorithm gets correct. 
On the other hand, the mis-detection rate is defined as the 
percentage of pixels marked as false that the classifier gets 
wrong. This step is followed by the crossover and mutation 
operations that are to be applied on an arbitrary chromosome(s) 
except the one that having the best fitness value (elite 
chromosome). These operations are aimed to create a better 
population in the next generation by diversifying the current 
chromosomes. The single point crossover operation, which is 
used in this study, simply exchanges the genes of two 
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chromosomes starting from an arbitrary gene. On the other 
hand, mutation exchanges an arbitrary gene by a new gene 
randomly selected from the pool. The crossover and mutation 
operations are illustrated in Figures 5 and 6, respectively. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. An example crossover operation between two 
                       chromosomes, A and B. 
 
 
 
 
 
 
 
 
 

 
Figure 6. An example mutation operation on a single 

                        chromosome, C. 
 
3.2.1 Adaptive-Fuzzy Component 
 
In the adaptive-fuzzy component, the crossover and mutation 
probabilities are estimated by an adaptive-fuzzy logic controller. 
The idea behind this is as follows: The crossover and mutation 
probabilities (Pc and Pm) are increased if it consistently 
produces a better offspring (new chromosomes). However, Pc is 
decreased and Pm is increased when fave(k) (average fitness in 
kth generation) approaches to fmax(k) (maximum fitness in kth 
generation) or fave(k-1) approaches to fave(k). This scheme is 
based on the fact that it encourages the well-performing 
operators to destroy the potential chromosomes during the 
recombination process. According to the study conducted by 
Liu et al., (2005), two parameters (e1 and e2) are introduced to 
define the fuzzy rules for crossover and mutation operations 
shown in equations 1 and 2. 
 

e1 = (fmax(k) - fave(k)) / fmax(k) (1) 
  

e2 = (fave(k) - fave(k-1)) / fmax(k) (2) 
   
Using these parameters, the fuzzy rules are identified in order to 
describe the relation between the inputs e1 and e2 and the output 
(the step size of the crossover or mutation probabilities), shown 
in Tables 1 and 2.  
 

CROSSOVER e2 
e1 NL NS ZE PS PL 

PL NS ZE NS PS PL 
PS ZE ZE NL ZE ZE 
ZE NS NL NL NL NL 

 
Table 1. Fuzzy rules for crossover operation. 

MUTATION e2 
e1 NL NS ZE PS PL 
PL PS* ZE* PS* NS* NL*

PS ZE* ZE* PL* ZE* NS*

ZE PS* PL* PL* PL* PS*
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Table 2. Fuzzy rules for mutation operation. 

 
In these tables, the abbreviations NL, NS, ZE, PS and PL 
represent Negative Large, Negative Small, Zero, Positive Small 
and Positive Large, respectively. The inputs of the mutation 
controller (e1 and e2) are the same as those of the crossover 
controller. However, in table 2, the output values illustrated by 
the asterisk (*) are reduced by 10% compared with the output 
values given in table 1. The output values specify the step sizes 
of crossover and mutation rates, which are ΔPc and ΔPm, 
respectively. Using the membership functions defined in Liu et 
al., (2005), defuzzification process is performed by using the 
centroid approach and the computed crisp values are used to 
modify the genetic algorithm parameters presented in equations 
3 and 4. 

 

Gene-2’ 

 

 
Pc(k) = Pc(k-1) + ΔPc(k) (3) 
  

Pm(k) = Pm(k-1) + ΔPm(k) (4) 
 
After determining the new probabilities, the next generation is 
initiated with a renewed population. The genetic algorithm runs 
repeatedly during a predetermined generation cycle, which 
almost yields an unchanged value of fitness in the extraction of 
the building regions.  
 
3.2.2 Post-processing Step 
 
Although the extracted buildings reveal the regions that might 
be the feature of interest, many false alarm areas are likely to 
appear. In order to eliminate the false alarm areas, a set of 
morphological image processing operations such as openings, 
closings are applied to the single grayscale image that is the 
output of the genetic algorithm. The opening operation 
generally smoothes the contour of an object, breaks narrow 
strips, and eliminates thin protrusions. On the other hand, the 
closing operation not only tends to smooth sections of contours, 
but also fuses narrow breaks and long thin gulfs, eliminates 
small holes, and fills the gaps in the contour (Gonzales and 
Woods, 2002).  
 
 

4. THE RESULTS 
 

To implement the approach, a software was developed using the 
MATLAB 7.01 programming tool, which provides a set of 
powerful image processing modules and a user-friendly 
programming environment. For building and non-building 
features, 20 rectangular areas were marked carefully on the pan-
sharpened IKONOS image in order to use them in the training 
phase. Similarly, 20 test regions different from the training 
rectangles were also selected. In order to make the assessments 
in the fitness calculation, the building and non-building regions 
were labeled 1 and 0, respectively. 
 
Next, the parameters of the genetic algorithm were initialized. 
The population size (number of chromosomes) was set to 20 

Gene-1 
 

Gene-2 ….... …....  

Gene-N 

Chromosome-C 



chromosomes and the number of genes in a chromosome was 
initiated as 5. Further, the number of temporary planes, the 
initial crossover and mutation rates were fixed to 4, 0.8, and 0.2, 
respectively. The above given values of the parameters were 
chosen through the experience, and have found to work fairly 
well over many different experiments. The stopping criterion 
was kept as 20 generations, which was quite sufficient for the 
algorithm to converge.  

 
In order to find the building regions, the algorithm was executed 
with two different variants. In the first case, the adaptive fuzzy 
module was excluded, which means that the crossover and the 
mutation probabilities were kept fixed. After several runs of the 
algorithm, the maximum fitness rate of 90.345% (averaged over 
5 runs) was reached within the stopping criterion. The 
performance curve for the averaged runs is shown in Figure 7. 
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Figure 7. The performance curve of the algorithm without    
                the adaptive fuzzy module. 
 
In the second case, the adaptive fuzzy module was taken into 
account in the genetic algorithm. That is, the crossover and the 
mutation rates were changed adaptively with respect to the 
performance measures. This change was determined by a rule-
based fuzzy logic controller mentioned in section 3.2.1. After 
making a number of experiments, the value of 91,135% was 
found to be the maximum fitness rate, averaged over 5 runs. 
The corresponding performance curve is illustrated in Figure 8. 
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Figure 8. The performance curve of the algorithm with the   
                adaptive fuzzy module. 

Figure 9 represents a selected output image, which has a fitness 
rate of 90,915% generated from the adaptive fuzzy-genetic 
approach. The improved building regions, after applying the 
post-processing stage, are illustrated in Figure 10. 
 

 
 

Figure 9. The extracted buildings. 
 

 
 

Figure 10. The building regions after post-processing. 
 
 

5. CONCLUSIONS 
 

In this study, we proposed a novel methodology based on a 
previous study conducted by Perkins et al., (2005) in an attempt 
to detect the building regions from the 1-m resolution pan-
sharpened IKONOS imagery. In this study, our major 
contribution is that the genetic image exploration was combined 
with the adaptive fuzzy-logic based controllers. As expected, 
the adaptive fuzzy approach was converged more quickly than 
the conventional approach within a few generations yielding an 
average fitness rate of 91%. The conventional genetic approach 



also yields a detection rate of 90% but the convergence speed 
can be considerably slow. This is due to the fixed initial 
probabilities of the crossover and mutation, which highly 
increase the risk to get trapped in local minimum solution. In 
addition, the post-processing step was also found be very useful 
for eliminating the false alarm areas.  
 
As a future work, high resolution (~ 20-30 cm) digital aerial 
images will be used to reveal the difference between the two 
variants of our methodology. In addition, the image processing 
operators will be enriched in order to boost the detection 
accuracy. Finally, the post-processing operation will be 
embedded into a genetic algorithm module that finds the best 
combination of image enhancement operators. 
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